organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis[(3-allyl­imidazolium-1-yl)meth­yl]mesitylene bis­­(hexa­fluoridophosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 June 2011; accepted 9 July 2011; online 16 July 2011)

In the title mol­ecular salt, C23H30N42+·2PF6, the central benzene ring of the cation makes dihedral angles of 89.80 (8) and 85.23 (7)° with the pendant imidazole rings. In the crystal, the cations and anions are linked by numerous C—H⋯F hydrogen bonds, thereby forming a three-dimensional network.

Related literature

For further details of imidazol-2-ylidenes, see: Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]); Scott & Nolan (2005[Scott, N. M. & Nolan, S. P. (2005). Eur. J. Inorg. Chem. 10, 1815-1828.]); Scholl et al. (1999[Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953-956.]). For a related structure, see: Villegas et al. (2005[Villegas, J. M., Stoyanov, S. R., Moore, C. E., Eichhorn, D. M. & Rillema, D. P. (2005). Acta Cryst. E61, m533-m534.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30N42+·2PF6

  • Mr = 652.45

  • Monoclinic, P 21 /n

  • a = 11.9269 (4) Å

  • b = 19.1480 (6) Å

  • c = 12.4233 (4) Å

  • β = 103.479 (1)°

  • V = 2759.04 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.67 × 0.29 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 0.961

  • 67401 measured reflections

  • 9961 independent reflections

  • 8004 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.05

  • 9961 reflections

  • 397 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯F3i 1.00 (2) 2.49 (2) 3.411 (2) 153.1 (18)
C1—H2B⋯F7ii 1.01 (2) 2.47 (2) 3.480 (2) 173.7 (18)
C3—H3A⋯F6ii 0.97 2.53 3.3303 (17) 140
C3—H3B⋯F2i 0.97 2.48 3.4151 (17) 161
C4—H4A⋯F8iii 0.93 2.37 3.248 (2) 157
C5—H5A⋯F4iv 0.93 2.34 3.0754 (16) 136
C5—H5A⋯F12iii 0.93 2.52 3.1110 (18) 122
C6—H6A⋯F6ii 0.93 2.31 3.1005 (16) 143
C14—H14A⋯F9iv 0.97 2.45 3.401 (2) 167
C15—H15A⋯F6ii 0.93 2.42 3.1873 (16) 139
C16—H16A⋯F8iv 0.93 2.46 3.3113 (19) 152
C17—H17A⋯F3 0.93 2.53 3.2000 (18) 129
C18—H18B⋯F4ii 0.97 2.54 3.2398 (17) 129
C18—H18B⋯F6ii 0.97 2.50 3.3781 (17) 150
Symmetry codes: (i) x, y, z-1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Since Arduengo's report of stable imidazol-2-ylidenes (Arduengo et al., 1991), there has been growing interest in the use of N-heterocyclic carbene (NHC) species (Scott & Nolan, 2005). NHC ligands act as σ-donor ligands with minimal π-accepting. NHC ligands have proved to be particularly useful in olefin metathesis and palladium-catalyzed cross-coupling reactions. Imidazol-2-ylidene and imidazolin-2-ylidene-based ruthenium alkylidenes are more active and thermally stable than the original tricyclohexylphosphine-based systems developed by Scholl et al., (1999). The title compound (I), which possesses an imidazolidine ring, is a member of this NHC family.

The asymmetric unit of the title compound, (Fig. 1), consists of one 2,4-Bis(3-allylimidazolium-1-ylmethyl)mesityleninium dication and two hexafluorophosphate anions. The central benzene (C8–C13) ring makes dihedral angles of 89.80 (8)° and 85.23 (7)° with the terminal imidazole (N1/N2/C4–C6)/(N3/N4/C15–C17) rings. The P–F distances in the anion are in the range 1.5906 (9)–1.6161 (9) Å. This values agree with a previously reported crystal structure (Villegas et al., 2005).

In the crystal (Fig. 2) of (I), the cations and anions are linked via intermolecular C—H···F (Table 1) hydrogen bonds forming a three-dimensional network.

Related literature top

For further details of imidazol-2-ylidenes, see: Arduengo et al. (1991); Scott & Nolan (2005); Scholl et al. (1999). For a related structure, see: Villegas et al. (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of imidazole (0.9 g, 13.2 mmol) and sodium hydroxide (0.5 g, 12 mmol) in DMSO (5 ml) was heated to 90°C for 2 hr. The mixture was cooled to room temperature using a water bath. To this mixture, a solution of 2,4-bis(bromomethyl) mesitylene (2 g, 6.5 mmol) in DMSO (10 ml) was added. The mixture was then heated to 40°C for 1 hr, then poured into water (40 ml) followed by cooling in ice. The precipitate formed was collected, washed with water, and recrystallized from methanol/water to give product A (1,3-bis(N-imidazole-1-yl methyl) benzene) as a white solid (1.39 g, 56%). Furthermore, a mixture of A (0.5 g, 1.3 mmol) and allyl bromide (0.4 g, 3.3 mmol) in acetonitrile (30 ml) was refluxed at 90°C for 24 hr. The solvent was removed under reduced pressure to give a pale-brown oil. The resulted bromide salt was converted to its hexafluorophosphate salt by metathesis reaction using KPF6 (0.2g, 1.1 mmol) in 20 ml of methanol. The precipitate formed was collected and washed with distilled water (2 × 5 ml) and then recrystallized from acetonitrile to give colorless solid (0.41g, 87%). Colourless blocks of (I) were obtained by slow evaporation of the salt solution in acetonitrile at room temperature.

Refinement top

Atoms H1A, H2A, H2B, H19A, H20A and H20B were located from a difference Fourier maps and refined freely [C–H = 0.96 (2)–1.01 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group. The highest residual electron density peak is located at 0.78 Å from P1 and the deepest hole 0.56 Å located at from P2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the title compound, showing the hydrogen-bonded (dashed lines) network.
2,4-Bis[(3-allylimidazolium-1-yl)methyl]mesitylene bis(hexafluoridophosphate) top
Crystal data top
C23H30N42+·2PF6F(000) = 1336
Mr = 652.45Dx = 1.571 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9948 reflections
a = 11.9269 (4) Åθ = 2.7–32.5°
b = 19.1480 (6) ŵ = 0.26 mm1
c = 12.4233 (4) ÅT = 100 K
β = 103.479 (1)°Block, colourless
V = 2759.04 (15) Å30.67 × 0.29 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
9961 independent reflections
Radiation source: fine-focus sealed tube8004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 32.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1711
Tmin = 0.845, Tmax = 0.961k = 2928
67401 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0492P)2 + 1.8158P]
where P = (Fo2 + 2Fc2)/3
9961 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C23H30N42+·2PF6V = 2759.04 (15) Å3
Mr = 652.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9269 (4) ŵ = 0.26 mm1
b = 19.1480 (6) ÅT = 100 K
c = 12.4233 (4) Å0.67 × 0.29 × 0.15 mm
β = 103.479 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
9961 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8004 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.961Rint = 0.030
67401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.94 e Å3
9961 reflectionsΔρmin = 0.38 e Å3
397 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.29845 (3)0.210329 (17)0.80189 (3)0.01483 (7)
F10.35585 (8)0.23350 (5)0.92540 (7)0.02644 (19)
F20.39126 (7)0.14866 (5)0.80923 (8)0.02345 (18)
F30.38042 (8)0.26307 (5)0.75519 (8)0.02462 (18)
F40.21375 (8)0.15861 (4)0.84670 (8)0.02257 (18)
F50.23971 (8)0.18722 (5)0.67721 (7)0.02409 (18)
F60.20405 (7)0.27188 (4)0.79326 (7)0.02129 (17)
P20.39326 (4)0.09732 (2)0.23406 (3)0.02263 (9)
F70.33168 (13)0.17019 (7)0.23935 (15)0.0666 (4)
F80.45444 (12)0.02332 (6)0.22843 (11)0.0535 (4)
F90.39508 (16)0.08293 (9)0.36090 (9)0.0744 (6)
F100.27072 (10)0.05948 (7)0.19677 (10)0.0473 (3)
F110.51578 (10)0.13420 (6)0.27155 (9)0.0408 (3)
F120.39313 (10)0.10992 (6)0.10809 (8)0.0338 (2)
N10.66628 (10)0.10107 (6)0.07606 (9)0.0179 (2)
N20.77406 (11)0.02414 (6)0.17799 (9)0.0183 (2)
N30.64891 (10)0.12044 (6)0.58660 (9)0.0156 (2)
N40.54619 (10)0.20808 (6)0.51093 (9)0.0159 (2)
C10.66298 (15)0.23004 (9)0.12513 (14)0.0291 (3)
C20.69336 (13)0.20738 (7)0.02262 (13)0.0223 (3)
C30.61482 (12)0.16890 (7)0.03541 (12)0.0200 (3)
H3A0.60260.19650.09710.024*
H3B0.54060.16140.01530.024*
C40.65806 (15)0.04084 (8)0.01475 (12)0.0260 (3)
H4A0.61430.03450.05700.031*
C50.72544 (15)0.00746 (7)0.07818 (12)0.0263 (3)
H5A0.73690.05330.05830.032*
C60.73677 (12)0.08990 (7)0.17422 (11)0.0180 (2)
H6A0.75680.12250.23090.022*
C70.85691 (13)0.00899 (7)0.27138 (11)0.0211 (3)
H7A0.92920.01710.25020.025*
H7B0.82690.05390.28720.025*
C80.87906 (12)0.03551 (6)0.37446 (11)0.0159 (2)
C90.80327 (11)0.03173 (7)0.44525 (11)0.0162 (2)
C100.82516 (11)0.07270 (6)0.54174 (10)0.0146 (2)
C110.92042 (11)0.11794 (7)0.56595 (10)0.0153 (2)
C120.99366 (11)0.12044 (7)0.49427 (11)0.0162 (2)
H12A1.05750.14980.51080.019*
C130.97463 (11)0.08027 (7)0.39822 (11)0.0159 (2)
C140.74462 (12)0.06960 (7)0.61879 (11)0.0187 (2)
H14A0.71310.02280.61780.022*
H14B0.78740.07950.69370.022*
C150.64268 (11)0.17246 (7)0.51443 (11)0.0172 (2)
H15A0.69670.18230.47330.021*
C160.55241 (12)0.12253 (8)0.63004 (12)0.0204 (3)
H16A0.53490.09200.68200.024*
C170.48838 (13)0.17740 (8)0.58249 (12)0.0215 (3)
H17A0.41830.19180.59560.026*
C180.51008 (12)0.27030 (7)0.44200 (11)0.0189 (2)
H18A0.42720.26910.41330.023*
H18B0.54600.26960.37950.023*
C190.54258 (16)0.33656 (8)0.50622 (13)0.0271 (3)
C200.4720 (2)0.39046 (9)0.50092 (17)0.0386 (4)
C210.69872 (13)0.01543 (8)0.41868 (13)0.0241 (3)
H21A0.63640.00620.44310.036*
H21B0.71720.05930.45590.036*
H21C0.67630.02310.34020.036*
C221.05571 (13)0.08804 (8)0.32222 (13)0.0239 (3)
H22A1.11980.11680.35710.036*
H22B1.01570.10940.25420.036*
H22C1.08330.04280.30700.036*
C230.94331 (13)0.16523 (8)0.66612 (12)0.0227 (3)
H23A1.01100.19270.66760.034*
H23B0.95490.13740.73210.034*
H23C0.87850.19560.66230.034*
H1A0.582 (2)0.2231 (12)0.1680 (19)0.045 (6)*
H2A0.7719 (18)0.2165 (11)0.0220 (17)0.031 (5)*
H2B0.7170 (19)0.2563 (12)0.1625 (18)0.039 (6)*
H19A0.6209 (19)0.3395 (11)0.5498 (18)0.035 (5)*
H20A0.498 (2)0.4327 (13)0.541 (2)0.050 (7)*
H20B0.391 (2)0.3861 (12)0.456 (2)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01606 (15)0.01226 (13)0.01678 (15)0.00022 (11)0.00507 (12)0.00065 (11)
F10.0319 (5)0.0247 (4)0.0199 (4)0.0002 (4)0.0005 (4)0.0046 (3)
F20.0204 (4)0.0201 (4)0.0300 (4)0.0057 (3)0.0060 (3)0.0014 (3)
F30.0232 (4)0.0206 (4)0.0332 (5)0.0039 (3)0.0129 (4)0.0017 (3)
F40.0245 (4)0.0154 (4)0.0311 (4)0.0004 (3)0.0132 (4)0.0038 (3)
F50.0256 (4)0.0267 (4)0.0188 (4)0.0009 (4)0.0028 (3)0.0038 (3)
F60.0235 (4)0.0159 (4)0.0268 (4)0.0062 (3)0.0106 (3)0.0037 (3)
P20.0322 (2)0.01989 (16)0.01803 (16)0.00999 (15)0.01042 (15)0.00370 (13)
F70.0671 (9)0.0405 (7)0.0987 (12)0.0078 (6)0.0322 (9)0.0301 (7)
F80.0680 (8)0.0262 (5)0.0476 (7)0.0109 (5)0.0242 (6)0.0042 (5)
F90.1209 (13)0.0869 (11)0.0207 (5)0.0730 (10)0.0274 (7)0.0135 (6)
F100.0404 (6)0.0615 (8)0.0444 (7)0.0288 (6)0.0185 (5)0.0124 (6)
F110.0414 (6)0.0502 (7)0.0307 (5)0.0255 (5)0.0080 (5)0.0122 (5)
F120.0448 (6)0.0379 (5)0.0193 (4)0.0120 (5)0.0084 (4)0.0035 (4)
N10.0218 (5)0.0155 (5)0.0146 (5)0.0008 (4)0.0008 (4)0.0006 (4)
N20.0270 (6)0.0130 (5)0.0135 (5)0.0009 (4)0.0019 (4)0.0005 (4)
N30.0157 (5)0.0170 (5)0.0149 (5)0.0006 (4)0.0055 (4)0.0021 (4)
N40.0164 (5)0.0166 (5)0.0158 (5)0.0015 (4)0.0060 (4)0.0012 (4)
C10.0252 (7)0.0332 (8)0.0287 (8)0.0002 (6)0.0062 (6)0.0084 (6)
C20.0200 (6)0.0196 (6)0.0263 (7)0.0004 (5)0.0034 (6)0.0014 (5)
C30.0201 (6)0.0198 (6)0.0190 (6)0.0035 (5)0.0020 (5)0.0033 (5)
C40.0387 (8)0.0184 (6)0.0161 (6)0.0054 (6)0.0029 (6)0.0022 (5)
C50.0446 (9)0.0143 (6)0.0165 (6)0.0024 (6)0.0002 (6)0.0036 (5)
C60.0233 (6)0.0149 (5)0.0142 (5)0.0022 (5)0.0014 (5)0.0015 (4)
C70.0290 (7)0.0158 (6)0.0162 (6)0.0064 (5)0.0003 (5)0.0014 (5)
C80.0203 (6)0.0120 (5)0.0139 (5)0.0040 (4)0.0009 (5)0.0002 (4)
C90.0167 (5)0.0126 (5)0.0176 (6)0.0007 (4)0.0006 (5)0.0015 (4)
C100.0154 (5)0.0140 (5)0.0143 (5)0.0023 (4)0.0035 (4)0.0023 (4)
C110.0168 (5)0.0134 (5)0.0145 (5)0.0024 (4)0.0014 (5)0.0004 (4)
C120.0148 (5)0.0155 (5)0.0176 (6)0.0004 (4)0.0022 (5)0.0007 (4)
C130.0167 (5)0.0148 (5)0.0165 (5)0.0041 (4)0.0045 (5)0.0033 (4)
C140.0192 (6)0.0195 (6)0.0183 (6)0.0042 (5)0.0063 (5)0.0060 (5)
C150.0167 (6)0.0186 (6)0.0176 (6)0.0019 (5)0.0070 (5)0.0039 (5)
C160.0206 (6)0.0228 (6)0.0210 (6)0.0006 (5)0.0116 (5)0.0039 (5)
C170.0211 (6)0.0249 (7)0.0221 (6)0.0029 (5)0.0122 (5)0.0030 (5)
C180.0197 (6)0.0188 (6)0.0190 (6)0.0044 (5)0.0060 (5)0.0033 (5)
C190.0379 (9)0.0208 (6)0.0235 (7)0.0014 (6)0.0090 (7)0.0013 (5)
C200.0603 (13)0.0220 (7)0.0392 (10)0.0048 (8)0.0230 (10)0.0002 (7)
C210.0229 (7)0.0219 (6)0.0254 (7)0.0062 (5)0.0015 (6)0.0007 (5)
C220.0254 (7)0.0252 (7)0.0240 (7)0.0050 (6)0.0117 (6)0.0035 (5)
C230.0257 (7)0.0222 (6)0.0190 (6)0.0000 (5)0.0028 (5)0.0057 (5)
Geometric parameters (Å, º) top
P1—F11.5906 (9)C7—H7A0.9700
P1—F41.6040 (9)C7—H7B0.9700
P1—F31.6052 (9)C8—C131.4015 (19)
P1—F51.6063 (9)C8—C91.4022 (19)
P1—F21.6066 (9)C9—C101.4053 (18)
P1—F61.6161 (9)C9—C211.5124 (19)
P2—F121.5830 (10)C10—C111.4044 (18)
P2—F71.5853 (13)C10—C141.5070 (18)
P2—F111.5918 (11)C11—C121.3860 (19)
P2—F91.5949 (12)C11—C231.5116 (18)
P2—F101.6000 (11)C12—C131.3931 (19)
P2—F81.6029 (12)C12—H12A0.9300
N1—C61.3273 (17)C13—C221.5081 (19)
N1—C41.3729 (18)C14—H14A0.9700
N1—C31.4746 (17)C14—H14B0.9700
N2—C61.3325 (17)C15—H15A0.9300
N2—C51.3801 (18)C16—C171.351 (2)
N2—C71.4802 (17)C16—H16A0.9300
N3—C151.3306 (17)C17—H17A0.9300
N3—C161.3810 (17)C18—C191.501 (2)
N3—C141.4825 (17)C18—H18A0.9700
N4—C151.3297 (17)C18—H18B0.9700
N4—C171.3771 (17)C19—C201.324 (2)
N4—C181.4719 (17)C19—H19A0.97 (2)
C1—C21.314 (2)C20—H20A0.96 (3)
C1—H1A1.00 (2)C20—H20B1.00 (2)
C1—H2B1.01 (2)C21—H21A0.9600
C2—C31.502 (2)C21—H21B0.9600
C2—H2A0.99 (2)C21—H21C0.9600
C3—H3A0.9700C22—H22A0.9600
C3—H3B0.9700C22—H22B0.9600
C4—C51.352 (2)C22—H22C0.9600
C4—H4A0.9300C23—H23A0.9600
C5—H5A0.9300C23—H23B0.9600
C6—H6A0.9300C23—H23C0.9600
C7—C81.5093 (18)
F1—P1—F490.10 (5)N2—C7—H7B109.2
F1—P1—F390.67 (5)C8—C7—H7B109.2
F4—P1—F3178.56 (5)H7A—C7—H7B107.9
F1—P1—F5179.61 (6)C13—C8—C9120.73 (12)
F4—P1—F589.78 (5)C13—C8—C7119.79 (12)
F3—P1—F589.44 (5)C9—C8—C7119.48 (12)
F1—P1—F290.82 (5)C8—C9—C10119.18 (12)
F4—P1—F290.45 (5)C8—C9—C21120.87 (12)
F3—P1—F290.76 (5)C10—C9—C21119.95 (12)
F5—P1—F289.55 (5)C11—C10—C9120.47 (12)
F1—P1—F689.83 (5)C11—C10—C14119.47 (12)
F4—P1—F689.31 (5)C9—C10—C14120.04 (12)
F3—P1—F689.47 (5)C12—C11—C10118.90 (12)
F5—P1—F689.79 (5)C12—C11—C23119.23 (12)
F2—P1—F6179.30 (5)C10—C11—C23121.85 (12)
F12—P2—F790.75 (8)C11—C12—C13122.00 (12)
F12—P2—F1190.63 (6)C11—C12—H12A119.0
F7—P2—F1190.00 (8)C13—C12—H12A119.0
F12—P2—F9178.63 (9)C12—C13—C8118.70 (12)
F7—P2—F990.62 (10)C12—C13—C22118.79 (12)
F11—P2—F989.28 (7)C8—C13—C22122.49 (12)
F12—P2—F1089.57 (6)N3—C14—C10111.56 (10)
F7—P2—F1090.56 (8)N3—C14—H14A109.3
F11—P2—F10179.40 (8)C10—C14—H14A109.3
F9—P2—F1090.51 (7)N3—C14—H14B109.3
F12—P2—F889.27 (7)C10—C14—H14B109.3
F7—P2—F8179.50 (8)H14A—C14—H14B108.0
F11—P2—F890.50 (7)N4—C15—N3108.54 (11)
F9—P2—F889.36 (9)N4—C15—H15A125.7
F10—P2—F888.94 (7)N3—C15—H15A125.7
C6—N1—C4108.81 (12)C17—C16—N3106.82 (12)
C6—N1—C3125.49 (12)C17—C16—H16A126.6
C4—N1—C3125.43 (12)N3—C16—H16A126.6
C6—N2—C5108.41 (12)C16—C17—N4107.27 (12)
C6—N2—C7126.08 (11)C16—C17—H17A126.4
C5—N2—C7125.47 (11)N4—C17—H17A126.4
C15—N3—C16108.72 (11)N4—C18—C19111.76 (12)
C15—N3—C14126.29 (11)N4—C18—H18A109.3
C16—N3—C14124.97 (11)C19—C18—H18A109.3
C15—N4—C17108.65 (11)N4—C18—H18B109.3
C15—N4—C18124.60 (11)C19—C18—H18B109.3
C17—N4—C18126.74 (11)H18A—C18—H18B107.9
C2—C1—H1A119.1 (14)C20—C19—C18123.37 (17)
C2—C1—H2B123.2 (13)C20—C19—H19A120.2 (13)
H1A—C1—H2B117.6 (18)C18—C19—H19A116.3 (13)
C1—C2—C3124.43 (14)C19—C20—H20A120.1 (15)
C1—C2—H2A119.8 (12)C19—C20—H20B119.0 (14)
C3—C2—H2A115.7 (12)H20A—C20—H20B121 (2)
N1—C3—C2109.89 (12)C9—C21—H21A109.5
N1—C3—H3A109.7C9—C21—H21B109.5
C2—C3—H3A109.7H21A—C21—H21B109.5
N1—C3—H3B109.7C9—C21—H21C109.5
C2—C3—H3B109.7H21A—C21—H21C109.5
H3A—C3—H3B108.2H21B—C21—H21C109.5
C5—C4—N1107.18 (12)C13—C22—H22A109.5
C5—C4—H4A126.4C13—C22—H22B109.5
N1—C4—H4A126.4H22A—C22—H22B109.5
C4—C5—N2106.98 (12)C13—C22—H22C109.5
C4—C5—H5A126.5H22A—C22—H22C109.5
N2—C5—H5A126.5H22B—C22—H22C109.5
N1—C6—N2108.62 (11)C11—C23—H23A109.5
N1—C6—H6A125.7C11—C23—H23B109.5
N2—C6—H6A125.7H23A—C23—H23B109.5
N2—C7—C8112.08 (11)C11—C23—H23C109.5
N2—C7—H7A109.2H23A—C23—H23C109.5
C8—C7—H7A109.2H23B—C23—H23C109.5
C6—N1—C3—C289.28 (17)C9—C10—C11—C23177.05 (12)
C4—N1—C3—C284.05 (17)C14—C10—C11—C231.50 (18)
C1—C2—C3—N1123.60 (16)C10—C11—C12—C131.00 (19)
C6—N1—C4—C50.02 (19)C23—C11—C12—C13177.38 (12)
C3—N1—C4—C5174.28 (14)C11—C12—C13—C80.70 (19)
N1—C4—C5—N20.06 (19)C11—C12—C13—C22177.63 (12)
C6—N2—C5—C40.12 (19)C9—C8—C13—C120.68 (19)
C7—N2—C5—C4178.04 (14)C7—C8—C13—C12179.55 (11)
C4—N1—C6—N20.10 (17)C9—C8—C13—C22177.59 (12)
C3—N1—C6—N2174.35 (13)C7—C8—C13—C222.18 (19)
C5—N2—C6—N10.14 (17)C15—N3—C14—C1012.72 (19)
C7—N2—C6—N1178.04 (13)C16—N3—C14—C10169.41 (12)
C6—N2—C7—C811.4 (2)C11—C10—C14—N390.40 (14)
C5—N2—C7—C8171.03 (14)C9—C10—C14—N388.16 (15)
N2—C7—C8—C1395.56 (15)C17—N4—C15—N30.55 (16)
N2—C7—C8—C984.21 (15)C18—N4—C15—N3178.83 (12)
C13—C8—C9—C100.98 (19)C16—N3—C15—N40.54 (16)
C7—C8—C9—C10179.26 (11)C14—N3—C15—N4177.62 (12)
C13—C8—C9—C21178.76 (12)C15—N3—C16—C170.32 (16)
C7—C8—C9—C211.00 (18)C14—N3—C16—C17177.88 (13)
C8—C9—C10—C111.27 (18)N3—C16—C17—N40.02 (17)
C21—C9—C10—C11178.47 (12)C15—N4—C17—C160.35 (17)
C8—C9—C10—C14179.82 (11)C18—N4—C17—C16179.02 (13)
C21—C9—C10—C140.07 (18)C15—N4—C18—C1996.85 (16)
C9—C10—C11—C121.28 (18)C17—N4—C18—C1982.41 (18)
C14—C10—C11—C12179.83 (11)N4—C18—C19—C20135.43 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F3i1.00 (2)2.49 (2)3.411 (2)153.1 (18)
C1—H2B···F7ii1.01 (2)2.47 (2)3.480 (2)173.7 (18)
C3—H3A···F6ii0.972.533.3303 (17)140
C3—H3B···F2i0.972.483.4151 (17)161
C4—H4A···F8iii0.932.373.248 (2)157
C5—H5A···F4iv0.932.343.0754 (16)136
C5—H5A···F12iii0.932.523.1110 (18)122
C6—H6A···F6ii0.932.313.1005 (16)143
C14—H14A···F9iv0.972.453.401 (2)167
C15—H15A···F6ii0.932.423.1873 (16)139
C16—H16A···F8iv0.932.463.3113 (19)152
C17—H17A···F30.932.533.2000 (18)129
C18—H18B···F4ii0.972.543.2398 (17)129
C18—H18B···F6ii0.972.503.3781 (17)150
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H30N42+·2PF6
Mr652.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.9269 (4), 19.1480 (6), 12.4233 (4)
β (°) 103.479 (1)
V3)2759.04 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.67 × 0.29 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.845, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
67401, 9961, 8004
Rint0.030
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.05
No. of reflections9961
No. of parameters397
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.94, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···F3i1.00 (2)2.49 (2)3.411 (2)153.1 (18)
C1—H2B···F7ii1.01 (2)2.47 (2)3.480 (2)173.7 (18)
C3—H3A···F6ii0.972.533.3303 (17)140
C3—H3B···F2i0.972.483.4151 (17)161
C4—H4A···F8iii0.932.373.248 (2)157
C5—H5A···F4iv0.932.343.0754 (16)136
C5—H5A···F12iii0.932.523.1110 (18)122
C6—H6A···F6ii0.932.313.1005 (16)143
C14—H14A···F9iv0.972.453.401 (2)167
C15—H15A···F6ii0.932.423.1873 (16)139
C16—H16A···F8iv0.932.463.3113 (19)152
C17—H17A···F30.932.533.2000 (18)129
C18—H18B···F4ii0.972.543.2398 (17)129
C18—H18B···F6ii0.972.503.3781 (17)150
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH thanks Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short-term grant (304/PKIMIA/639001) and RU grants (1001/PKIMIA/813023 and 1001/PKIMIA/811157). HKF and MH thank the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

References

First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationScholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953–956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScott, N. M. & Nolan, S. P. (2005). Eur. J. Inorg. Chem. 10, 1815–1828.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillegas, J. M., Stoyanov, S. R., Moore, C. E., Eichhorn, D. M. & Rillema, D. P. (2005). Acta Cryst. E61, m533–m534.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds