organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­bromo­naphthalene-2,3-diol

aKey Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: gao_qinghe@163.com

(Received 1 July 2011; accepted 6 July 2011; online 13 July 2011)

In the title compound (r.m.s. deviation for the non-H atoms = 0.020 Å), C10H6Br2O2, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, the same H atom also forms an inter­molecular O—H⋯O hydrogen bond, generating a C(2) chain propagating in [100]. The other O—H hydrogen forms a weak O—H⋯π inter­action, and short Br⋯Br contacts [3.5972 (9) Å] also occur.

Related literature

For the synthesis, see: Lai et al. (1993[Lai, Y.-H. & Yap, A. H.-T. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1373-1377.]). For a related structure, see: Ahn et al. (2009[Ahn, P. D., Bishop, R., Craig, D. C. & Scudder, M. L. (2009). Acta Cryst. E65, o636.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6Br2O2

  • Mr = 317.96

  • Orthorhombic, P 21 21 21

  • a = 5.0928 (9) Å

  • b = 11.932 (2) Å

  • c = 15.779 (3) Å

  • V = 958.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.42 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.356, Tmax = 0.486

  • 6339 measured reflections

  • 2363 independent reflections

  • 2156 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.00

  • 2363 reflections

  • 133 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 899 Friedel pairs

  • Flack parameter: 0.034 (15)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1ACg1i 0.82 (1) 2.94 (5) 3.441 (3) 122 (4)
O2—H2A⋯O2ii 0.81 (1) 2.26 (2) 3.038 (3) 161 (4)
O2—H2A⋯O1 0.81 (1) 2.24 (4) 2.653 (4) 112 (4)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Related literature top

For the synthesis, see: Lai et al. (1993). For a related structure, see: Ahn et al. (2009).

Experimental top

The title compound was synthesized according to the literature method (Lai et al., 1993). Crystals of (I) were grown by slow evaporation of a chloroform-methanol (5:1) solution at room temperature.

Refinement top

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) =1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I), with displacement ellipsoids drawn at the 30% probability level.
1,4-Dibromonaphthalene-2,3-diol top
Crystal data top
C10H6Br2O2F(000) = 608
Mr = 317.96Dx = 2.203 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3125 reflections
a = 5.0928 (9) Åθ = 2.6–27.3°
b = 11.932 (2) ŵ = 8.42 mm1
c = 15.779 (3) ÅT = 298 K
V = 958.9 (3) Å3Block, colorless
Z = 40.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2363 independent reflections
Radiation source: fine-focus sealed tube2156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 65
Tmin = 0.356, Tmax = 0.486k = 1515
6339 measured reflectionsl = 1821
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0277P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2363 reflectionsΔρmax = 0.37 e Å3
133 parametersΔρmin = 0.40 e Å3
2 restraintsAbsolute structure: Flack (1983), 899 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.034 (15)
Crystal data top
C10H6Br2O2V = 958.9 (3) Å3
Mr = 317.96Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0928 (9) ŵ = 8.42 mm1
b = 11.932 (2) ÅT = 298 K
c = 15.779 (3) Å0.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2363 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2156 reflections with I > 2σ(I)
Tmin = 0.356, Tmax = 0.486Rint = 0.039
6339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.37 e Å3
S = 1.00Δρmin = 0.40 e Å3
2363 reflectionsAbsolute structure: Flack (1983), 899 Friedel pairs
133 parametersAbsolute structure parameter: 0.034 (15)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18029 (8)0.17357 (3)0.16514 (2)0.04109 (12)
Br20.61683 (7)0.45789 (3)0.40915 (2)0.04028 (12)
C10.4056 (7)0.3970 (3)0.24593 (19)0.0273 (7)
C20.5849 (7)0.4724 (3)0.2089 (2)0.0331 (7)
H20.70240.51130.24310.040*
C30.5879 (8)0.4891 (3)0.1222 (2)0.0409 (9)
H30.70770.53860.09820.049*
C40.4101 (8)0.4313 (3)0.0709 (2)0.0423 (9)
H40.41030.44440.01280.051*
C50.2376 (8)0.3569 (3)0.1037 (2)0.0360 (8)
H50.12390.31830.06790.043*
C60.2291 (7)0.3372 (3)0.19325 (18)0.0285 (7)
C70.0531 (7)0.2609 (3)0.23054 (18)0.0289 (7)
C80.0467 (7)0.2438 (3)0.31682 (19)0.0291 (7)
C90.2215 (7)0.3043 (3)0.37007 (19)0.0285 (7)
C100.3945 (7)0.3778 (3)0.33519 (19)0.0267 (6)
O10.1160 (6)0.1729 (2)0.35854 (16)0.0424 (6)
H1A0.251 (5)0.151 (4)0.336 (3)0.064*
O20.2141 (6)0.2872 (2)0.45569 (15)0.0389 (6)
H2A0.072 (5)0.261 (4)0.468 (3)0.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0417 (2)0.0386 (2)0.04299 (19)0.00633 (18)0.00583 (16)0.00902 (16)
Br20.0427 (2)0.0432 (2)0.03491 (16)0.00489 (18)0.00972 (15)0.00380 (15)
C10.0291 (18)0.0237 (15)0.0290 (14)0.0050 (14)0.0019 (14)0.0014 (12)
C20.0373 (19)0.0308 (18)0.0311 (14)0.0022 (16)0.0035 (14)0.0004 (14)
C30.046 (2)0.041 (2)0.0359 (16)0.0081 (18)0.0107 (16)0.0062 (16)
C40.051 (2)0.048 (2)0.0274 (15)0.002 (2)0.0016 (15)0.0048 (15)
C50.042 (2)0.0394 (19)0.0269 (15)0.0025 (16)0.0019 (14)0.0007 (14)
C60.0333 (19)0.0274 (16)0.0248 (13)0.0058 (15)0.0004 (12)0.0010 (13)
C70.0299 (18)0.0271 (17)0.0296 (15)0.0002 (14)0.0038 (13)0.0058 (13)
C80.0304 (18)0.0238 (16)0.0332 (15)0.0018 (14)0.0028 (13)0.0027 (13)
C90.0329 (19)0.0290 (17)0.0235 (13)0.0054 (14)0.0009 (13)0.0020 (12)
C100.0298 (16)0.0245 (15)0.0256 (13)0.0004 (14)0.0059 (14)0.0037 (12)
O10.0440 (16)0.0422 (15)0.0408 (13)0.0125 (14)0.0013 (12)0.0070 (11)
O20.0422 (16)0.0486 (15)0.0258 (10)0.0055 (13)0.0010 (10)0.0066 (11)
Geometric parameters (Å, º) top
Br1—C71.888 (3)C5—C61.434 (4)
Br2—C101.886 (3)C5—H50.9300
C1—C21.409 (5)C6—C71.407 (5)
C1—C61.417 (5)C7—C81.377 (4)
C1—C101.428 (4)C8—O11.355 (4)
C2—C31.383 (4)C8—C91.421 (5)
C2—H20.9300C9—C101.359 (5)
C3—C41.397 (5)C9—O21.367 (4)
C3—H30.9300O1—H1A0.819 (10)
C4—C51.352 (5)O2—H2A0.810 (10)
C4—H40.9300
C2—C1—C6119.3 (3)C7—C6—C5122.5 (3)
C2—C1—C10122.5 (3)C1—C6—C5118.5 (3)
C6—C1—C10118.2 (3)C8—C7—C6121.6 (3)
C3—C2—C1120.6 (3)C8—C7—Br1116.4 (3)
C3—C2—H2119.7C6—C7—Br1122.0 (2)
C1—C2—H2119.7O1—C8—C7126.0 (3)
C2—C3—C4119.7 (3)O1—C8—C9114.4 (3)
C2—C3—H3120.1C7—C8—C9119.6 (3)
C4—C3—H3120.1C10—C9—O2121.0 (3)
C5—C4—C3121.6 (3)C10—C9—C8119.6 (3)
C5—C4—H4119.2O2—C9—C8119.4 (3)
C3—C4—H4119.2C9—C10—C1121.9 (3)
C4—C5—C6120.3 (3)C9—C10—Br2117.7 (2)
C4—C5—H5119.9C1—C10—Br2120.4 (2)
C6—C5—H5119.9C8—O1—H1A120 (3)
C7—C6—C1119.0 (3)C9—O2—H2A108 (3)
C6—C1—C2—C30.7 (5)Br1—C7—C8—O12.0 (5)
C10—C1—C2—C3179.5 (3)C6—C7—C8—C90.0 (5)
C1—C2—C3—C40.5 (6)Br1—C7—C8—C9178.4 (2)
C2—C3—C4—C51.6 (6)O1—C8—C9—C10179.8 (3)
C3—C4—C5—C61.4 (6)C7—C8—C9—C100.5 (5)
C2—C1—C6—C7179.1 (3)O1—C8—C9—O20.3 (5)
C10—C1—C6—C70.7 (5)C7—C8—C9—O2179.9 (3)
C2—C1—C6—C50.8 (5)O2—C9—C10—C1180.0 (3)
C10—C1—C6—C5179.4 (3)C8—C9—C10—C10.4 (5)
C4—C5—C6—C7179.8 (3)O2—C9—C10—Br21.7 (4)
C4—C5—C6—C10.2 (5)C8—C9—C10—Br2178.8 (2)
C1—C6—C7—C80.6 (5)C2—C1—C10—C9179.6 (3)
C5—C6—C7—C8179.5 (3)C6—C1—C10—C90.2 (5)
C1—C6—C7—Br1177.7 (2)C2—C1—C10—Br22.0 (4)
C5—C6—C7—Br12.2 (5)C6—C1—C10—Br2178.1 (2)
C6—C7—C8—O1179.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cg1i0.82 (1)2.94 (5)3.441 (3)122 (4)
O2—H2A···O2ii0.81 (1)2.26 (2)3.038 (3)161 (4)
O2—H2A···O10.81 (1)2.24 (4)2.653 (4)112 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H6Br2O2
Mr317.96
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.0928 (9), 11.932 (2), 15.779 (3)
V3)958.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)8.42
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.356, 0.486
No. of measured, independent and
observed [I > 2σ(I)] reflections
6339, 2363, 2156
Rint0.039
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.00
No. of reflections2363
No. of parameters133
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.40
Absolute structureFlack (1983), 899 Friedel pairs
Absolute structure parameter0.034 (15)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cg1i0.819 (10)2.94 (5)3.441 (3)122 (4)
O2—H2A···O2ii0.810 (10)2.261 (17)3.038 (3)161 (4)
O2—H2A···O10.810 (10)2.24 (4)2.653 (4)112 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to the Central China Normal University for financial support and thank Qi Li for the X-ray data collection.

References

First citationAhn, P. D., Bishop, R., Craig, D. C. & Scudder, M. L. (2009). Acta Cryst. E65, o636.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLai, Y.-H. & Yap, A. H.-T. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1373–1377.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds