metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1085-m1086

Di­chlorido[2-({[3-(cyclo­hexyl­aza­nium­yl)prop­yl]imino}­meth­yl)-5-meth­­oxy­phenolate]zinc

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 4 July 2011; accepted 6 July 2011; online 13 July 2011)

The title mononuclear zinc complex, [ZnCl2(C17H26N2O2)], was obtained by the reaction of 2-hy­droxy-4-meth­oxy­benzaldehyde, N-cyclo­hexyl­propane-1,3-diamine and zinc chloride in methanol. The ZnII atom is four-coordinated by the phenolate O atom and imine N atom of the bidentate zwitterionic Schiff base ligand 2-{[3-(cyclo­hexyl­amino)­prop­yl]imino­meth­yl}-5-meth­oxy­phenol, and by two chloride ions, generating a distorted ZnONCl2 tetra­hedral geometry. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along the c-axis direction.

Related literature

For the Schiff base complexes we reported previously, see: Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]); Wang & Ye (2011[Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.]). For similar zinc complexes, see: Zhu (2008[Zhu, X.-W. (2008). Acta Cryst. E64, m1456-m1457.]); Wang (2007[Wang, S.-X. (2007). Acta Cryst. E63, m706-m707.]); Ikmal Hisham et al. (2011[Ikmal Hisham, N. A., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m55.]); Datta et al. (2009[Datta, A., Chuang, N.-T., Huang, J.-H. & Lee, H. M. (2009). Acta Cryst. E65, m964.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C17H26N2O2)]

  • Mr = 426.67

  • Monoclinic, C 2/c

  • a = 25.118 (2) Å

  • b = 10.543 (1) Å

  • c = 14.992 (2) Å

  • β = 91.435 (1)°

  • V = 3968.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 298 K

  • 0.33 × 0.30 × 0.29 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.634, Tmax = 0.667

  • 10824 measured reflections

  • 4104 independent reflections

  • 3101 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.03

  • 4104 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 1.9554 (13)
Zn1—N1 2.0029 (17)
Zn1—Cl2 2.2129 (8)
Zn1—Cl1 2.2767 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.90 2.35 3.2106 (17) 160
N2—H2B⋯O1i 0.90 1.88 2.776 (2) 173
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into Schiff base complexes (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, a new mononuclear zinc(II) complex, Fig. 1. The Zn atom in the complex is four-coordinated by one phenolate O and one imine N atoms of the Schiff base ligand 2-[(3-cyclohexylaminopropylimino)methyl]-5-methoxyphenol, and by two Cl atoms, generating a distorted tetrahedral geometry. The Zn—O, Zn—N, and Zn—Cl bond lengths (Table 1) are comparable with those observed in other similar zinc(II) complexes (Zhu, 2008; Wang, 2007; Ikmal Hisham et al., 2011; Datta et al., 2009). In the crystal, molecules are linked via intermolecular N—H···O hydrogen bonds (Table 2), forming chains along the c direction (Fig. 2)

Related literature top

For the Schiff base complexes we reported previously, see: Wang (2009); Wang & Ye (2011). For similar zinc(II) complexes, see: Zhu (2008); Wang (2007); Ikmal Hisham et al. (2011); Datta et al. (2009).

Experimental top

2-Hydroxy-4-methoxybenzaldehyde (1.0 mmol, 0.152 g), N-cyclohexylpropane-1,3-diamine (1.0 mmol, 0.156 g), and zinc chloride (1.0 mmol, 0.137 g) were dissolved in MeOH (30 ml). The mixture was stirred at room temperature for 10 min to give a clear colorless solution. After keeping the solution in air for several days, colorless block-shaped crystals were formed at the bottom of the vessel.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, N—H distances of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title complex, viewed along the a axis. Hydrogen bonds are drawn as dashed lines. H atoms not related to the hydrogen bonding are omitted.
Dichlorido[2-({[3-(cyclohexylazaniumyl)propyl]imino}methyl)-5- methoxyphenolate]zinc top
Crystal data top
[ZnCl2(C17H26N2O2)]F(000) = 1776
Mr = 426.67Dx = 1.428 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.118 (2) ÅCell parameters from 3616 reflections
b = 10.543 (1) Åθ = 2.5–26.9°
c = 14.992 (2) ŵ = 1.52 mm1
β = 91.435 (1)°T = 298 K
V = 3968.9 (7) Å3Block, colorless
Z = 80.33 × 0.30 × 0.29 mm
Data collection top
Bruker SMART CCD
diffractometer
4104 independent reflections
Radiation source: fine-focus sealed tube3101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3130
Tmin = 0.634, Tmax = 0.667k = 813
10824 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0333P)2 + 1.6888P]
where P = (Fo2 + 2Fc2)/3
4104 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[ZnCl2(C17H26N2O2)]V = 3968.9 (7) Å3
Mr = 426.67Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.118 (2) ŵ = 1.52 mm1
b = 10.543 (1) ÅT = 298 K
c = 14.992 (2) Å0.33 × 0.30 × 0.29 mm
β = 91.435 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4104 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3101 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.667Rint = 0.021
10824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
4104 reflectionsΔρmin = 0.29 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.159066 (10)0.50173 (2)0.107303 (15)0.04105 (9)
Cl10.08297 (2)0.50677 (5)0.18660 (4)0.04897 (14)
Cl20.19579 (3)0.68984 (6)0.08640 (4)0.06432 (18)
N10.20745 (6)0.36504 (17)0.15451 (10)0.0402 (4)
N20.11696 (6)0.38198 (15)0.37490 (10)0.0352 (4)
H2A0.09990.42270.32980.042*
H2B0.12620.44050.41620.042*
O10.14586 (6)0.42308 (13)0.00928 (8)0.0435 (3)
O20.12094 (6)0.07054 (15)0.20497 (11)0.0587 (4)
C10.15368 (7)0.30174 (18)0.02645 (12)0.0344 (4)
C20.13357 (7)0.25212 (19)0.10742 (13)0.0381 (5)
H20.11600.30560.14770.046*
C30.13941 (8)0.1257 (2)0.12835 (14)0.0429 (5)
C40.16610 (10)0.0448 (2)0.06927 (17)0.0562 (6)
H40.16950.04090.08260.067*
C50.18707 (9)0.0919 (2)0.00792 (16)0.0553 (6)
H50.20550.03710.04620.066*
C60.18229 (8)0.2201 (2)0.03293 (13)0.0399 (5)
C70.09238 (12)0.1469 (3)0.26836 (17)0.0747 (8)
H7A0.06060.17860.24210.112*
H7B0.08310.09680.31990.112*
H7C0.11430.21690.28580.112*
C80.20912 (8)0.2578 (2)0.11472 (14)0.0443 (5)
H80.23040.19630.14220.053*
C90.23994 (8)0.3838 (2)0.23653 (13)0.0476 (5)
H9A0.26700.44720.22600.057*
H9B0.25770.30500.25250.057*
C100.20563 (8)0.4261 (2)0.31269 (13)0.0431 (5)
H10A0.18610.50170.29480.052*
H10B0.22840.44790.36360.052*
C110.16647 (8)0.3247 (2)0.34013 (14)0.0416 (5)
H11A0.15760.27160.28910.050*
H11B0.18290.27150.38580.050*
C120.07854 (7)0.29055 (19)0.41592 (13)0.0377 (4)
H120.09770.24030.46150.045*
C130.05542 (8)0.2016 (2)0.34577 (15)0.0494 (5)
H13A0.08380.15230.32010.059*
H13B0.03830.25060.29830.059*
C140.01487 (10)0.1127 (2)0.38684 (19)0.0663 (7)
H14A0.00100.05980.34040.080*
H14B0.03290.05750.42970.080*
C150.02850 (9)0.1850 (2)0.43294 (18)0.0616 (7)
H15A0.05200.12580.46190.074*
H15B0.04940.23240.38900.074*
C160.00489 (9)0.2753 (3)0.50150 (17)0.0676 (8)
H16A0.01270.22710.54880.081*
H16B0.03320.32430.52760.081*
C170.03513 (8)0.3651 (2)0.46006 (15)0.0511 (6)
H17A0.01710.41860.41620.061*
H17B0.05070.41940.50600.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04827 (15)0.04339 (15)0.03132 (13)0.00342 (11)0.00238 (10)0.00043 (10)
Cl10.0447 (3)0.0621 (4)0.0400 (3)0.0052 (3)0.0005 (2)0.0051 (3)
Cl20.0750 (4)0.0583 (4)0.0596 (4)0.0202 (3)0.0004 (3)0.0009 (3)
N10.0339 (9)0.0555 (11)0.0311 (9)0.0034 (8)0.0014 (7)0.0037 (8)
N20.0375 (9)0.0386 (9)0.0292 (8)0.0036 (7)0.0023 (7)0.0006 (7)
O10.0626 (9)0.0365 (8)0.0311 (7)0.0094 (7)0.0061 (6)0.0007 (6)
O20.0749 (11)0.0453 (9)0.0555 (10)0.0138 (8)0.0046 (8)0.0102 (8)
C10.0317 (10)0.0370 (11)0.0348 (10)0.0020 (8)0.0068 (8)0.0028 (8)
C20.0362 (10)0.0412 (11)0.0371 (11)0.0016 (9)0.0029 (8)0.0010 (9)
C30.0406 (11)0.0427 (12)0.0456 (12)0.0061 (10)0.0064 (9)0.0047 (10)
C40.0659 (15)0.0373 (12)0.0655 (16)0.0064 (11)0.0001 (13)0.0046 (12)
C50.0576 (14)0.0468 (14)0.0611 (15)0.0142 (11)0.0058 (12)0.0048 (12)
C60.0345 (10)0.0442 (12)0.0411 (11)0.0065 (9)0.0006 (9)0.0017 (9)
C70.098 (2)0.0668 (17)0.0577 (16)0.0215 (16)0.0208 (15)0.0052 (14)
C80.0368 (11)0.0531 (14)0.0432 (12)0.0113 (10)0.0016 (9)0.0088 (11)
C90.0319 (11)0.0718 (16)0.0389 (11)0.0018 (10)0.0018 (9)0.0049 (11)
C100.0385 (11)0.0552 (13)0.0353 (11)0.0071 (10)0.0018 (9)0.0021 (10)
C110.0406 (11)0.0445 (12)0.0401 (11)0.0029 (9)0.0071 (9)0.0012 (9)
C120.0353 (10)0.0423 (11)0.0354 (10)0.0025 (9)0.0010 (8)0.0064 (9)
C130.0473 (12)0.0404 (12)0.0607 (14)0.0069 (10)0.0071 (11)0.0095 (11)
C140.0581 (15)0.0444 (14)0.097 (2)0.0137 (12)0.0108 (14)0.0005 (14)
C150.0444 (13)0.0591 (15)0.0817 (18)0.0114 (12)0.0087 (12)0.0103 (14)
C160.0505 (14)0.089 (2)0.0642 (16)0.0095 (13)0.0186 (12)0.0027 (14)
C170.0425 (12)0.0611 (15)0.0501 (13)0.0067 (11)0.0076 (10)0.0128 (11)
Geometric parameters (Å, º) top
Zn1—O11.9554 (13)C8—H80.9300
Zn1—N12.0029 (17)C9—C101.515 (3)
Zn1—Cl22.2129 (8)C9—H9A0.9700
Zn1—Cl12.2767 (7)C9—H9B0.9700
N1—C81.279 (3)C10—C111.516 (3)
N1—C91.472 (2)C10—H10A0.9700
N2—C111.488 (2)C10—H10B0.9700
N2—C121.506 (2)C11—H11A0.9700
N2—H2A0.9000C11—H11B0.9700
N2—H2B0.9000C12—C171.510 (3)
O1—C11.320 (2)C12—C131.514 (3)
O2—C31.359 (2)C12—H120.9800
O2—C71.426 (3)C13—C141.526 (3)
C1—C21.404 (3)C13—H13A0.9700
C1—C61.421 (3)C13—H13B0.9700
C2—C31.378 (3)C14—C151.511 (3)
C2—H20.9300C14—H14A0.9700
C3—C41.390 (3)C14—H14B0.9700
C4—C51.354 (3)C15—C161.511 (3)
C4—H40.9300C15—H15A0.9700
C5—C61.408 (3)C15—H15B0.9700
C5—H50.9300C16—C171.525 (3)
C6—C81.440 (3)C16—H16A0.9700
C7—H7A0.9600C16—H16B0.9700
C7—H7B0.9600C17—H17A0.9700
C7—H7C0.9600C17—H17B0.9700
O1—Zn1—N195.66 (6)H9A—C9—H9B108.1
O1—Zn1—Cl2108.39 (5)C9—C10—C11112.44 (18)
N1—Zn1—Cl2116.33 (5)C9—C10—H10A109.1
O1—Zn1—Cl1110.54 (5)C11—C10—H10A109.1
N1—Zn1—Cl1110.01 (5)C9—C10—H10B109.1
Cl2—Zn1—Cl1114.29 (3)C11—C10—H10B109.1
C8—N1—C9118.95 (18)H10A—C10—H10B107.8
C8—N1—Zn1119.85 (14)N2—C11—C10111.25 (17)
C9—N1—Zn1121.17 (14)N2—C11—H11A109.4
C11—N2—C12115.66 (16)C10—C11—H11A109.4
C11—N2—H2A108.4N2—C11—H11B109.4
C12—N2—H2A108.4C10—C11—H11B109.4
C11—N2—H2B108.4H11A—C11—H11B108.0
C12—N2—H2B108.4N2—C12—C17108.84 (17)
H2A—N2—H2B107.4N2—C12—C13110.56 (16)
C1—O1—Zn1124.22 (12)C17—C12—C13110.99 (16)
C3—O2—C7118.51 (18)N2—C12—H12108.8
O1—C1—C2118.52 (17)C17—C12—H12108.8
O1—C1—C6122.71 (17)C13—C12—H12108.8
C2—C1—C6118.77 (18)C12—C13—C14110.40 (19)
C3—C2—C1121.28 (19)C12—C13—H13A109.6
C3—C2—H2119.4C14—C13—H13A109.6
C1—C2—H2119.4C12—C13—H13B109.6
O2—C3—C2124.8 (2)C14—C13—H13B109.6
O2—C3—C4115.2 (2)H13A—C13—H13B108.1
C2—C3—C4120.1 (2)C15—C14—C13111.7 (2)
C5—C4—C3119.4 (2)C15—C14—H14A109.3
C5—C4—H4120.3C13—C14—H14A109.3
C3—C4—H4120.3C15—C14—H14B109.3
C4—C5—C6123.1 (2)C13—C14—H14B109.3
C4—C5—H5118.5H14A—C14—H14B107.9
C6—C5—H5118.5C14—C15—C16110.7 (2)
C5—C6—C1117.37 (19)C14—C15—H15A109.5
C5—C6—C8116.79 (19)C16—C15—H15A109.5
C1—C6—C8125.77 (19)C14—C15—H15B109.5
O2—C7—H7A109.5C16—C15—H15B109.5
O2—C7—H7B109.5H15A—C15—H15B108.1
H7A—C7—H7B109.5C15—C16—C17111.4 (2)
O2—C7—H7C109.5C15—C16—H16A109.3
H7A—C7—H7C109.5C17—C16—H16A109.3
H7B—C7—H7C109.5C15—C16—H16B109.3
N1—C8—C6128.39 (19)C17—C16—H16B109.3
N1—C8—H8115.8H16A—C16—H16B108.0
C6—C8—H8115.8C12—C17—C16110.3 (2)
N1—C9—C10110.81 (16)C12—C17—H17A109.6
N1—C9—H9A109.5C16—C17—H17A109.6
C10—C9—H9A109.5C12—C17—H17B109.6
N1—C9—H9B109.5C16—C17—H17B109.6
C10—C9—H9B109.5H17A—C17—H17B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.902.353.2106 (17)160
N2—H2B···O1i0.901.882.776 (2)173
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C17H26N2O2)]
Mr426.67
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)25.118 (2), 10.543 (1), 14.992 (2)
β (°) 91.435 (1)
V3)3968.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.33 × 0.30 × 0.29
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.634, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
10824, 4104, 3101
Rint0.021
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.03
No. of reflections4104
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.29

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O11.9554 (13)Zn1—Cl22.2129 (8)
Zn1—N12.0029 (17)Zn1—Cl12.2767 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.902.353.2106 (17)160
N2—H2B···O1i0.901.882.776 (2)173
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Natural Science Foundation of Zhejiang Province (No. Y407318), and the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, A., Chuang, N.-T., Huang, J.-H. & Lee, H. M. (2009). Acta Cryst. E65, m964.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIkmal Hisham, N. A., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m55.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-X. (2007). Acta Cryst. E63, m706–m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235–241.  Web of Science CrossRef CAS Google Scholar
First citationZhu, X.-W. (2008). Acta Cryst. E64, m1456–m1457.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1085-m1086
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds