inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

LaZn12.37 (1), a zinc-deficient variant of the NaZn13 structure type

aDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla i Mefodia 6,79005 Lviv, Ukraine, and bAgilent Technologies UK Ltd, 10 Mead Road, Oxford Industrial Park, Yarnton, Oxfordshire, OX5 1QU, England
*Correspondence e-mail: romaniuk@ua.fm

(Received 10 July 2011; accepted 18 July 2011; online 30 July 2011)

The title compound (lanthanum dodecazinc), LaZn12.37 (1), is confirmed to be a nonstoichiometric (zinc-deficient) modification of the NaZn13 structure type, in which one Zn atom (Wyckoff site 8b, site symmetry m[\overline{3}]) has a fractional site occupancy of 0.372 (11). The other Zn atom (96i, m) and the La atom (8a, 432) are fully occupied. The coordination polyhedra of the Zn atoms are distorted icosa­hedra, whereas the La atoms are surrounded by 24 Zn atoms, forming pseudo-Frank–Kasper polyhedra. Electronic structure calculations indicate that Zn—Zn bonding is much stronger than La—Zn bonding.

Related literature

For general background to inter­metallics, see: Berche et al. (2009[Berche, A., Record, M.-C. & Rogez, J. (2009). Open Thermodynamics J. 3, 7-16]); Oshchapovsky et al. (2010[Oshchapovsky, I., Pavlyuk, V., Fässler, T. F. & Hlukhyy, V. (2010). Chem. Met. Alloys, 3, 177-183.]); Pavlyuk et al. (2009[Pavlyuk, V., Oshchapovsky, I. & Marciniak, B. (2009). J. Alloys Compd, 477, 145-148.]); Rolla & Iandelli (1941[Rolla, L. & Iandelli, A. (1941). Ric. Sci. 12, 1216-1226.]). For isotypic structures, see: Iandelli & Palenzona (1967[Iandelli, A. & Palenzona, A. (1967). J. Less Common Met. 12, 333-343.]); Kuz'ma et al. (1966[Kuz'ma, Y. B., Kripyakevich, P. I. & Ugrin, N. S. (1966). Inorg. Mater. 2, 544-548.]); Veleckis et al. (1967[Veleckis, E., Schablaske, R. V., Johnson, I. & Feder, H. M. (1967). Trans. Metall. Soc. AIME, 239, 58-63.]). For electronic structure calculations with the TB-LMTO-ASA package, see: Andersen et al. (1986[Andersen, K., Povlovska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 51-53.]).

Experimental

Crystal data
  • LaZn12.37

  • Mr = 947.00

  • Cubic, [F m \overline 3c ]

  • a = 12.0940 (9) Å

  • V = 1768.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 37.49 mm−1

  • T = 293 K

  • 0.05 × 0.03 × 0.01 mm

Data collection
  • Agilent Gemini Ultra diffractometer with Eos CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.368, Tmax = 1.0

  • 1543 measured reflections

  • 110 independent reflections

  • 108 reflections with I > 2σ(I)

  • Rint = 0.122

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.052

  • S = 1.22

  • 110 reflections

  • 12 parameters

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.08 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). Diamond. Crystal Impact GbR, Bonn, Germany.]) and VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The results presented in this paper are the part of systematic investigation of ternary rare earth–Zn–Sn systems (see Pavlyuk et al., (2009) and Oshchapovsky et al., (2010)). The corresponding binary La—Zn system is not completely explored yet (Berche et al., 2009).

LaZn12.37 (1) is the only nonstoichiometric compound in the binary La—Zn system. It was found by Rolla et al.(Rolla & Iandelli,1941) for the first time. Later Kuz'ma et al., (1966), Veleckis et al.,(1967) and Iandelli & Palenzona, (1967) determined the cell parameters of LaZn12.37 (1). These parameters vary a little so Veleckis et al. supposed that LaZn12.37 (1) was nonstoichiometric. However, according to Berche et al. (2009) the homogeneity range was not determined accurately. Until now there were no single-crystal data indicating positions with partial occupation. In this article we will try to fill this gap. Unit cell projection of the LaZn12.37 (1) compound together with coordination polyhedra of atoms are given in Figure 1. La1 atoms are surrounded by 24 fully occupied positions of zinc atoms forming pseudo-Frank-Kasper polyhedra [LaZn24] (CN = 24). Coordination polyhedron of the Zn2 atom is distorted icosahedron [ZnLa2Zn10] (CN = 12) made of two lanthanum atoms and ten or nine zinc atoms (one position is partially occupied). Zn3 atom in partially occupied position is surrounded by twelve zinc atoms forming isosahedron [ZnZn12].

Electronic structure of LaZn12.37 (1) was calculated using TB-LMTO-ASA (Andersen et al., 1986) program package. According to the results of calculations by TB-LMTO-ASA package this compound has metallic bonding (see Fig.2). In this compound the formation of bonds is close to those in Zintl phases, however they have different coordination polyhedra. Lanthanum atoms donate their electrons to zinc atoms. So positive charge density can be observed around lanthanum atoms and negative charge density is around zinc atoms. This indicates that besides of metallic bonding which is dominate in this compound the weak covalent interaction also exists. ELF which indicates bond formation is mostly located at zinc atoms (see Fig. 3 a, b, c). Thus zinc - zinc bonding is much stronger than lanthanum - zinc bonding. So this compound can be treated as insertion of lanthanum atoms into framework made of zinc atoms.

Related literature top

For general background to intermetallics, see: Berche et al. (2009); Oshchapovsky et al. (2010); Pavlyuk et al. (2009); Rolla & Iandelli (1941). For isostructural/isotypic structures, see: Iandelli & Palenzona (1967); Kuz'ma et al. (1966); Veleckis et al. (1967). For electronic structure calculations with the TB-LMTO-ASA package, see: Andersen et al. (1986).

Experimental top

Small irregularly shaped single-crystal of the LaZn12.37 (1) binary compound was selected by mechanical fragmentation of sample with nominal composition LaZn20Sn2. Alloy was prepared by mixing stoichiometric amounts of powders of zinc, tin and LaZn ligature with subsequent pressing them into pellets. These pellets were enclosed in evacuated silica ampoules and heated in the resistance oven. After that alloys were annealed at 600°C for 30 days and quenched in cold water. No reaction between alloys and quartz containers was observed.

Refinement top

(type here to add refinement details)

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006)and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Unit cell projection and coordination polyhedra of atoms in the LaZn12.37 (1) compound
[Figure 2] Fig. 2. Density of states plot in the LaZn12.37 (1) compound
[Figure 3] Fig. 3. The results of electromic localization function calculations. a - unit cell slice with x=0–1, y=0–1, z=0–0.25 and isosurface drawn at the ELF level=0.5; b - ELF map drawn at z=0; c - ELF map drawn at z=0.25.
lanthanum dodecazinc top
Crystal data top
LaZn12.37Dx = 7.113 Mg m3
Mr = 947.00Mo Kα radiation, λ = 0.71073 Å
Cubic, Fm3cCell parameters from 811 reflections
Hall symbol: -F 4c 2 3θ = 3.4–28.9°
a = 12.0940 (9) ŵ = 37.49 mm1
V = 1768.9 (2) Å3T = 293 K
Z = 8Irregular platelet, grey
F(000) = 3426.00.05 × 0.03 × 0.01 mm
Data collection top
Agilent Gemini Ultra
diffractometer with Eos CCD detector
110 independent reflections
Radiation source: Enhance (Mo) X-ray Source108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.122
ω scansθmax = 28.3°, θmin = 3.4°
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
h = 1416
Tmin = 0.368, Tmax = 1.0k = 1616
1543 measured reflectionsl = 916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0097P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.81 e Å3
110 reflectionsΔρmin = 1.08 e Å3
12 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00058 (8)
Crystal data top
LaZn12.37Z = 8
Mr = 947.00Mo Kα radiation
Cubic, Fm3cµ = 37.49 mm1
a = 12.0940 (9) ÅT = 293 K
V = 1768.9 (2) Å30.05 × 0.03 × 0.01 mm
Data collection top
Agilent Gemini Ultra
diffractometer with Eos CCD detector
110 independent reflections
Absorption correction: multi-scan
CrysAlis PRO (Agilent, 2011)
108 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 1.0Rint = 0.122
1543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02412 parameters
wR(F2) = 0.0520 restraints
S = 1.22Δρmax = 0.81 e Å3
110 reflectionsΔρmin = 1.08 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.25000.25000.25000.0081 (5)
Zn20.00000.17786 (6)0.11938 (6)0.0113 (4)
Zn30.00000.00000.00000.006 (2)0.372 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0081 (5)0.0081 (5)0.0081 (5)0.0000.0000.000
Zn20.0120 (5)0.0097 (5)0.0123 (5)0.0000.0000.0031 (3)
Zn30.006 (2)0.006 (2)0.006 (2)0.0000.0000.000
Geometric parameters (Å, º) top
La1—Zn2i3.5211 (4)Zn2—Zn2ii2.6854 (8)
La1—Zn2ii3.5211 (4)Zn2—Zn2i2.6854 (8)
La1—Zn23.5211 (4)Zn2—Zn2ix2.6859 (12)
La1—Zn2iii3.5211 (4)Zn2—Zn2xv2.6859 (12)
La1—Zn2iv3.5211 (4)Zn2—Zn2xvi2.8875 (15)
La1—Zn2v3.5211 (4)Zn2—La1xvii3.5211 (4)
La1—Zn2vi3.5211 (4)Zn3—Zn2xviii2.5906 (7)
La1—Zn2vii3.5211 (4)Zn3—Zn2xix2.5906 (7)
La1—Zn2viii3.5211 (4)Zn3—Zn2xx2.5906 (7)
La1—Zn2ix3.5211 (4)Zn3—Zn2i2.5906 (7)
La1—Zn2x3.5211 (4)Zn3—Zn2ii2.5906 (7)
La1—Zn2xi3.5211 (4)Zn3—Zn2xiii2.5906 (7)
Zn2—Zn2xii2.5522 (10)Zn3—Zn2xxi2.5906 (7)
Zn2—Zn2x2.5522 (10)Zn3—Zn2xxii2.5906 (7)
Zn2—Zn32.5906 (7)Zn3—Zn2xxiii2.5906 (7)
Zn2—Zn2xiii2.6854 (8)Zn3—Zn2xvi2.5906 (7)
Zn2—Zn2xiv2.6854 (8)Zn3—Zn2xiv2.5906 (7)
Zn2i—La1—Zn2ii44.832 (17)Zn2ii—Zn2—Zn2xv161.98 (3)
Zn2i—La1—Zn244.832 (17)Zn2i—Zn2—Zn2xv108.22 (3)
Zn2ii—La1—Zn244.832 (17)Zn2ix—Zn2—Zn2xv65.03 (3)
Zn2i—La1—Zn2iii163.67 (2)Zn2xii—Zn2—Zn2xvi106.09 (2)
Zn2ii—La1—Zn2iii128.82 (2)Zn2x—Zn2—Zn2xvi163.91 (2)
Zn2—La1—Zn2iii146.29 (2)Zn3—Zn2—Zn2xvi56.130 (16)
Zn2i—La1—Zn2iv128.82 (2)Zn2xiii—Zn2—Zn2xvi57.477 (19)
Zn2ii—La1—Zn2iv146.29 (2)Zn2xiv—Zn2—Zn2xvi105.27 (2)
Zn2—La1—Zn2iv163.67 (2)Zn2ii—Zn2—Zn2xvi105.27 (2)
Zn2iii—La1—Zn2iv44.832 (17)Zn2i—Zn2—Zn2xvi57.477 (19)
Zn2i—La1—Zn2v146.29 (2)Zn2ix—Zn2—Zn2xvi57.484 (14)
Zn2ii—La1—Zn2v163.67 (2)Zn2xv—Zn2—Zn2xvi57.484 (14)
Zn2—La1—Zn2v128.82 (2)Zn2xii—Zn2—La168.752 (6)
Zn2iii—La1—Zn2v44.832 (17)Zn2x—Zn2—La168.752 (6)
Zn2iv—La1—Zn2v44.832 (17)Zn3—Zn2—La1117.115 (12)
Zn2i—La1—Zn2vi119.133 (3)Zn2xiii—Zn2—La1173.86 (2)
Zn2ii—La1—Zn2vi106.477 (13)Zn2xiv—Zn2—La1122.82 (4)
Zn2—La1—Zn2vi151.31 (2)Zn2ii—Zn2—La167.584 (9)
Zn2iii—La1—Zn2vi44.84 (2)Zn2i—Zn2—La167.584 (9)
Zn2iv—La1—Zn2vi42.496 (13)Zn2ix—Zn2—La167.580 (12)
Zn2v—La1—Zn2vi78.388 (9)Zn2xv—Zn2—La1122.80 (3)
Zn2i—La1—Zn2vii151.31 (2)Zn2xvi—Zn2—La1116.657 (11)
Zn2ii—La1—Zn2vii119.133 (3)Zn2xii—Zn2—La1xvii68.752 (6)
Zn2—La1—Zn2vii106.477 (13)Zn2x—Zn2—La1xvii68.752 (6)
Zn2iii—La1—Zn2vii42.496 (13)Zn3—Zn2—La1xvii117.115 (12)
Zn2iv—La1—Zn2vii78.388 (9)Zn2xiii—Zn2—La1xvii67.584 (9)
Zn2v—La1—Zn2vii44.84 (2)Zn2xiv—Zn2—La1xvii67.584 (9)
Zn2vi—La1—Zn2vii86.486 (17)Zn2ii—Zn2—La1xvii122.82 (4)
Zn2i—La1—Zn2viii106.477 (13)Zn2i—Zn2—La1xvii173.86 (2)
Zn2ii—La1—Zn2viii151.31 (2)Zn2ix—Zn2—La1xvii122.80 (3)
Zn2—La1—Zn2viii119.133 (3)Zn2xv—Zn2—La1xvii67.580 (12)
Zn2iii—La1—Zn2viii78.388 (9)Zn2xvi—Zn2—La1xvii116.657 (11)
Zn2iv—La1—Zn2viii44.84 (2)La1—Zn2—La1xvii118.34 (2)
Zn2v—La1—Zn2viii42.496 (13)Zn2xviii—Zn3—Zn2xix62.436 (7)
Zn2vi—La1—Zn2viii86.486 (17)Zn2xviii—Zn3—Zn2xx62.436 (7)
Zn2vii—La1—Zn2viii86.486 (17)Zn2xix—Zn3—Zn2xx62.436 (7)
Zn2i—La1—Zn2ix42.496 (13)Zn2xviii—Zn3—Zn2117.564 (7)
Zn2ii—La1—Zn2ix78.388 (9)Zn2xix—Zn3—Zn2117.564 (7)
Zn2—La1—Zn2ix44.84 (2)Zn2xx—Zn3—Zn2180.00 (3)
Zn2iii—La1—Zn2ix151.31 (2)Zn2xviii—Zn3—Zn2i180.00 (3)
Zn2iv—La1—Zn2ix119.133 (3)Zn2xix—Zn3—Zn2i117.564 (7)
Zn2v—La1—Zn2ix106.477 (13)Zn2xx—Zn3—Zn2i117.564 (7)
Zn2vi—La1—Zn2ix146.29 (2)Zn2—Zn3—Zn2i62.436 (7)
Zn2vii—La1—Zn2ix121.00 (2)Zn2xviii—Zn3—Zn2ii117.564 (7)
Zn2viii—La1—Zn2ix77.04 (2)Zn2xix—Zn3—Zn2ii180.00 (3)
Zn2i—La1—Zn2x78.388 (9)Zn2xx—Zn3—Zn2ii117.564 (7)
Zn2ii—La1—Zn2x44.84 (2)Zn2—Zn3—Zn2ii62.436 (7)
Zn2—La1—Zn2x42.496 (13)Zn2i—Zn3—Zn2ii62.436 (7)
Zn2iii—La1—Zn2x106.477 (13)Zn2xviii—Zn3—Zn2xiii67.74 (3)
Zn2iv—La1—Zn2x151.31 (2)Zn2xix—Zn3—Zn2xiii62.436 (7)
Zn2v—La1—Zn2x119.133 (3)Zn2xx—Zn3—Zn2xiii117.564 (7)
Zn2vi—La1—Zn2x121.00 (2)Zn2—Zn3—Zn2xiii62.436 (7)
Zn2vii—La1—Zn2x77.04 (2)Zn2i—Zn3—Zn2xiii112.26 (3)
Zn2viii—La1—Zn2x146.29 (2)Zn2ii—Zn3—Zn2xiii117.564 (7)
Zn2ix—La1—Zn2x86.486 (17)Zn2xviii—Zn3—Zn2xxi117.564 (7)
Zn2i—La1—Zn2xi44.84 (2)Zn2xix—Zn3—Zn2xxi67.74 (3)
Zn2ii—La1—Zn2xi42.496 (13)Zn2xx—Zn3—Zn2xxi62.436 (7)
Zn2—La1—Zn2xi78.388 (9)Zn2—Zn3—Zn2xxi117.564 (7)
Zn2iii—La1—Zn2xi119.133 (3)Zn2i—Zn3—Zn2xxi62.436 (7)
Zn2iv—La1—Zn2xi106.477 (13)Zn2ii—Zn3—Zn2xxi112.26 (3)
Zn2v—La1—Zn2xi151.31 (2)Zn2xiii—Zn3—Zn2xxi117.564 (7)
Zn2vi—La1—Zn2xi77.04 (2)Zn2xviii—Zn3—Zn2xxii62.436 (7)
Zn2vii—La1—Zn2xi146.29 (2)Zn2xix—Zn3—Zn2xxii117.564 (7)
Zn2viii—La1—Zn2xi121.00 (2)Zn2xx—Zn3—Zn2xxii67.74 (3)
Zn2ix—La1—Zn2xi86.486 (17)Zn2—Zn3—Zn2xxii112.26 (3)
Zn2x—La1—Zn2xi86.486 (17)Zn2i—Zn3—Zn2xxii117.564 (7)
Zn2xii—Zn2—Zn2x90.0Zn2ii—Zn3—Zn2xxii62.436 (7)
Zn2xii—Zn2—Zn3162.22 (4)Zn2xiii—Zn3—Zn2xxii117.564 (7)
Zn2x—Zn2—Zn3107.78 (4)Zn2xxi—Zn3—Zn2xxii117.564 (7)
Zn2xii—Zn2—Zn2xiii113.70 (3)Zn2xviii—Zn3—Zn2xxiii112.26 (3)
Zn2x—Zn2—Zn2xiii116.33 (3)Zn2xix—Zn3—Zn2xxiii117.564 (7)
Zn3—Zn2—Zn2xiii58.782 (3)Zn2xx—Zn3—Zn2xxiii62.436 (7)
Zn2xii—Zn2—Zn2xiv134.159 (17)Zn2—Zn3—Zn2xxiii117.564 (7)
Zn2x—Zn2—Zn2xiv61.64 (4)Zn2i—Zn3—Zn2xxiii67.74 (3)
Zn3—Zn2—Zn2xiv58.782 (3)Zn2ii—Zn3—Zn2xxiii62.436 (7)
Zn2xiii—Zn2—Zn2xiv60.0Zn2xiii—Zn3—Zn2xxiii180.0
Zn2xii—Zn2—Zn2ii134.159 (17)Zn2xxi—Zn3—Zn2xxiii62.436 (7)
Zn2x—Zn2—Zn2ii61.64 (4)Zn2xxii—Zn3—Zn2xxiii62.436 (7)
Zn3—Zn2—Zn2ii58.782 (3)Zn2xviii—Zn3—Zn2xvi117.564 (7)
Zn2xiii—Zn2—Zn2ii111.18 (2)Zn2xix—Zn3—Zn2xvi62.436 (7)
Zn2xiv—Zn2—Zn2ii65.05 (4)Zn2xx—Zn3—Zn2xvi112.26 (3)
Zn2xii—Zn2—Zn2i113.70 (3)Zn2—Zn3—Zn2xvi67.74 (3)
Zn2x—Zn2—Zn2i116.33 (3)Zn2i—Zn3—Zn2xvi62.436 (7)
Zn3—Zn2—Zn2i58.782 (3)Zn2ii—Zn3—Zn2xvi117.564 (7)
Zn2xiii—Zn2—Zn2i106.450 (14)Zn2xiii—Zn3—Zn2xvi62.436 (7)
Zn2xiv—Zn2—Zn2i111.18 (2)Zn2xxi—Zn3—Zn2xvi62.436 (7)
Zn2ii—Zn2—Zn2i60.0Zn2xxii—Zn3—Zn2xvi180.0
Zn2xii—Zn2—Zn2ix61.62 (4)Zn2xxiii—Zn3—Zn2xvi117.564 (7)
Zn2x—Zn2—Zn2ix134.15 (2)Zn2xviii—Zn3—Zn2xiv62.436 (7)
Zn3—Zn2—Zn2ix103.88 (3)Zn2xix—Zn3—Zn2xiv112.26 (3)
Zn2xiii—Zn2—Zn2ix108.22 (3)Zn2xx—Zn3—Zn2xiv117.564 (7)
Zn2xiv—Zn2—Zn2ix161.98 (3)Zn2—Zn3—Zn2xiv62.436 (7)
Zn2ii—Zn2—Zn2ix111.90 (3)Zn2i—Zn3—Zn2xiv117.564 (7)
Zn2i—Zn2—Zn2ix56.74 (3)Zn2ii—Zn3—Zn2xiv67.74 (3)
Zn2xii—Zn2—Zn2xv61.62 (4)Zn2xiii—Zn3—Zn2xiv62.436 (7)
Zn2x—Zn2—Zn2xv134.15 (2)Zn2xxi—Zn3—Zn2xiv180.00 (3)
Zn3—Zn2—Zn2xv103.88 (3)Zn2xxii—Zn3—Zn2xiv62.436 (7)
Zn2xiii—Zn2—Zn2xv56.74 (3)Zn2xxiii—Zn3—Zn2xiv117.564 (7)
Zn2xiv—Zn2—Zn2xv111.90 (3)Zn2xvi—Zn3—Zn2xiv117.564 (7)
Symmetry codes: (i) y, z, x; (ii) z, x, y; (iii) z+1/2, y+1/2, x+1/2; (iv) x+1/2, z+1/2, y+1/2; (v) y+1/2, x+1/2, z+1/2; (vi) x+1/2, y, z+1/2; (vii) y, z+1/2, x+1/2; (viii) z+1/2, x+1/2, y; (ix) z, y+1/2, x; (x) x, z, y+1/2; (xi) y+1/2, x, z; (xii) x, z+1/2, y; (xiii) y, z, x; (xiv) z, x, y; (xv) z, y+1/2, x; (xvi) x, y, z; (xvii) x, y+1/2, z+1/2; (xviii) y, z, x; (xix) z, x, y; (xx) x, y, z; (xxi) z, x, y; (xxii) x, y, z; (xxiii) y, z, x.

Experimental details

Crystal data
Chemical formulaLaZn12.37
Mr947.00
Crystal system, space groupCubic, Fm3c
Temperature (K)293
a (Å)12.0940 (9)
V3)1768.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)37.49
Crystal size (mm)0.05 × 0.03 × 0.01
Data collection
DiffractometerAgilent Gemini Ultra
diffractometer with Eos CCD detector
Absorption correctionMulti-scan
CrysAlis PRO (Agilent, 2011)
Tmin, Tmax0.368, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
1543, 110, 108
Rint0.122
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.052, 1.22
No. of reflections110
No. of parameters12
Δρmax, Δρmin (e Å3)0.81, 1.08

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006)and VESTA (Momma & Izumi, 2008), publCIF (Westrip, 2010).

 

Footnotes

also at Institute of Chemistry and Environmental Protection, Jan Dlugosz University, Armii Krajowej 13/15 Ave, 42-200 Czestochowa, Poland.

Acknowledgements

The single crystal investigations were supported by Agilent Technologies.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationAndersen, K., Povlovska, Z. & Jepsen, O. (1986). Phys. Rev. B, 34, 51–53.  CrossRef Web of Science Google Scholar
First citationBerche, A., Record, M.-C. & Rogez, J. (2009). Open Thermodynamics J. 3, 7–16  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). Diamond. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationIandelli, A. & Palenzona, A. (1967). J. Less Common Met. 12, 333–343.  CrossRef CAS Google Scholar
First citationKuz'ma, Y. B., Kripyakevich, P. I. & Ugrin, N. S. (1966). Inorg. Mater. 2, 544–548.  Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOshchapovsky, I., Pavlyuk, V., Fässler, T. F. & Hlukhyy, V. (2010). Chem. Met. Alloys, 3, 177–183.  Google Scholar
First citationPavlyuk, V., Oshchapovsky, I. & Marciniak, B. (2009). J. Alloys Compd, 477, 145–148.  Web of Science CrossRef CAS Google Scholar
First citationRolla, L. & Iandelli, A. (1941). Ric. Sci. 12, 1216–1226.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeleckis, E., Schablaske, R. V., Johnson, I. & Feder, H. M. (1967). Trans. Metall. Soc. AIME, 239, 58–63.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds