organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(1-Iso­butyl-1H-imidazo[4,5-c]quinolin-4-yl)amino]­benzoic acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 15 July 2011; accepted 17 July 2011; online 30 July 2011)

In the title compound, C21H20N4O2, the statistically planar 1H-limidazole ring [maximum deviation = 0.003 (1) Å] makes dihedral angles of 1.33 (9) and 8.23 (7)°, respectively, with the essentially planar fused pyridine ring [maximum devation = 0.018 (1) Å] and the pendant benzene ring, which is attached to the pyridine ring by an —NH— group. An intra­molecular C—H⋯N inter­action, which generates an S(6) ring, helps to estalish the mol­ecular conformation. In the crystal, the mol­ecules are linked by N—H⋯O, C—H⋯O and O—H—N hydrogen bonds, which generate bifurcated R12(6) and R22(9) ring motifs, resulting in supra­molecular [001] chains. The crystal structure also features weak ππ stacking [centroid–centroid distance = 3.5943 (9) Å] and C—H⋯π inter­actions.

Related literature

For our previous study of a related structure and background references, see: Loh et al. (2011[Loh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011). Acta Cryst. E67, o407-o408.]). For a further related structure, see: Rasmussen et al. (2009[Rasmussen, K. G., Ulven, T. & Bond, A. D. (2009). Acta Cryst. E65, o742.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N4O2

  • Mr = 360.41

  • Monoclinic, P 21 /c

  • a = 9.6440 (1) Å

  • b = 15.1496 (2) Å

  • c = 14.5286 (2) Å

  • β = 123.927 (1)°

  • V = 1761.28 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.41 × 0.26 × 0.22 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.964, Tmax = 0.980

  • 23777 measured reflections

  • 5859 independent reflections

  • 4504 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.04

  • 5859 reflections

  • 254 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.860 (16) 2.114 (17) 2.9436 (14) 161.8 (15)
O2—H1O2⋯N4ii 0.99 (2) 1.71 (2) 2.6926 (13) 172 (2)
C3—H3A⋯O1i 0.93 2.42 3.1998 (15) 142
C5—H5A⋯N2 0.93 2.21 2.8337 (16) 123
C1—H1ACg2iii 0.93 2.94 3.3877 (14) 111
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

As part of our ongoing studies of imidazoquinoline derivatives with possible pharmacological activity (Loh et al., 2011), we now report the synthesis and structure of the title compound, (I).

The asymmetric unit of the title compound is shown in Fig. 1. The essentially planar 1H-limidazole ring (N3/N4/C15–C17) [maximum deviation = 0.003 (1) Å for atom C16] makes dihedral angles of 1.33 (9)° and 8.23 (7)° respectively with the essentially planar pyridine ring (N2/C8/C9/C14–C16 [maximum devation = 0.018 (1) Å for atom C8] and benzene ring (C1–C6) which is attached to the pridine ring by dimethylamine group (N1/C4/C8). The bond lengths (Allen et al., 1987) and angles are within normal ranges and is comparable to a closely the related structure (Rasmussen et al., 2009).

In the crystal structure (Fig. 2), the molecules are linked by intermolecular N1—H1N1···O1, C3—H3A···O1 and C5—H5A···N2 hydrogen bonds generating bifurcated R12(6) and R22(9) ring motifs, resulting in supramolecular [001] chains. Furthermore, the crystal structure is stabilized by weak π···π interactions between 1H-limidazole andpyridine rings [centroid–centroid distance = 3.5943 (9) Å; 1 - x, -y, 1 - z] and C—H···π interactions, involving Cg1 (N3/N4/C15–C17) and Cg2 (C9–C14) rings.

Related literature top

For our previous study of a related structure and background references, see: Loh et al. (2011). For a further related structure, see: Rasmussen et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 4-chloro-1-(2-metylpropyl)-1H-imidazo [4,5-c] quinoline (0.1 mol) in ethanol (30 ml), 3-Aminobenzoic acid (0.1 mol) was added and the reaction mixture was refluxed for 24 h. It was then concentrated, cooled and poured over crushed ice to get the precipitate which was filtered, washed with water and recrystallized from ethanol to yield colourless blocks of (I). Mp: 485–487 K.

Refinement top

Atoms H1N1 and H1O2 were located from a difference Fourier maps and refined freely [N–H = 0.860 (16) and O–H = 0.99 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The intramolecular hydrogen bond is shown by a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along a axis. Intermolecular hydrogen bonds link the molecules into chains along [001].
3-[(1-Isobutyl-1H-imidazo[4,5-c]quinolin-4-yl)amino]benzoic acid top
Crystal data top
C21H20N4O2F(000) = 760
Mr = 360.41Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5489 reflections
a = 9.6440 (1) Åθ = 2.2–32.1°
b = 15.1496 (2) ŵ = 0.09 mm1
c = 14.5286 (2) ÅT = 296 K
β = 123.927 (1)°Block, colourless
V = 1761.28 (4) Å30.41 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
5859 independent reflections
Radiation source: fine-focus sealed tube4504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 31.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1314
Tmin = 0.964, Tmax = 0.980k = 2022
23777 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.3392P]
where P = (Fo2 + 2Fc2)/3
5859 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H20N4O2V = 1761.28 (4) Å3
Mr = 360.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6440 (1) ŵ = 0.09 mm1
b = 15.1496 (2) ÅT = 296 K
c = 14.5286 (2) Å0.41 × 0.26 × 0.22 mm
β = 123.927 (1)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
5859 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4504 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.980Rint = 0.035
23777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.51 e Å3
5859 reflectionsΔρmin = 0.22 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14729 (12)0.33971 (6)0.12947 (8)0.0215 (2)
O20.15417 (11)0.47845 (6)0.18402 (7)0.01792 (19)
N10.16268 (13)0.15414 (6)0.43284 (9)0.0156 (2)
N20.24570 (13)0.09564 (6)0.32204 (8)0.0155 (2)
N30.33813 (12)0.13649 (6)0.49615 (8)0.0148 (2)
N40.22805 (13)0.02550 (7)0.53736 (8)0.0153 (2)
C10.07884 (15)0.42262 (8)0.33507 (10)0.0170 (2)
H1A0.06240.48210.31600.020*
C20.05934 (17)0.39045 (8)0.41686 (11)0.0206 (3)
H2A0.02690.42870.45160.025*
C30.08756 (16)0.30209 (8)0.44747 (10)0.0188 (2)
H3A0.07520.28220.50300.023*
C40.13454 (14)0.24239 (7)0.39563 (10)0.0142 (2)
C50.15066 (14)0.27426 (8)0.31152 (9)0.0142 (2)
H5A0.17940.23580.27480.017*
C60.12366 (14)0.36354 (7)0.28254 (9)0.0136 (2)
C70.14233 (14)0.39209 (8)0.19153 (9)0.0144 (2)
C80.21835 (14)0.08493 (7)0.40042 (9)0.0141 (2)
C90.30995 (14)0.02752 (8)0.29402 (10)0.0149 (2)
C100.33503 (16)0.04493 (8)0.20876 (10)0.0190 (2)
H10A0.30560.09970.17400.023*
C110.40222 (16)0.01784 (8)0.17665 (11)0.0207 (3)
H11A0.41700.00560.11990.025*
C120.44865 (16)0.10040 (8)0.22899 (11)0.0198 (2)
H12A0.49630.14220.20780.024*
C130.42430 (15)0.12010 (8)0.31138 (10)0.0173 (2)
H13A0.45470.17530.34510.021*
C140.35331 (14)0.05705 (8)0.34531 (9)0.0143 (2)
C150.31713 (14)0.06692 (7)0.42760 (9)0.0135 (2)
C160.24962 (14)0.00111 (8)0.45501 (9)0.0139 (2)
C170.28305 (15)0.10753 (8)0.55894 (10)0.0163 (2)
H17A0.28410.14230.61210.020*
C180.41403 (15)0.22270 (8)0.50622 (10)0.0168 (2)
H18A0.51320.21420.50560.020*
H18B0.44900.24840.57720.020*
C190.29783 (15)0.28790 (8)0.41406 (10)0.0175 (2)
H19A0.24610.25760.34250.021*
C200.40172 (18)0.36485 (9)0.41590 (13)0.0277 (3)
H20A0.48290.34310.40290.041*
H20B0.45790.39340.48690.041*
H20C0.32970.40640.35900.041*
C210.15965 (15)0.31946 (8)0.42709 (11)0.0211 (3)
H21A0.08500.35750.36630.032*
H21B0.20800.35130.49560.032*
H21C0.09890.26950.42760.032*
H1N10.1529 (19)0.1435 (11)0.4871 (14)0.021 (4)*
H1O20.171 (3)0.4938 (15)0.1246 (18)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0341 (5)0.0166 (4)0.0218 (5)0.0039 (4)0.0207 (4)0.0028 (3)
O20.0250 (4)0.0134 (4)0.0200 (4)0.0004 (3)0.0155 (4)0.0017 (3)
N10.0232 (5)0.0119 (4)0.0170 (5)0.0023 (4)0.0145 (4)0.0020 (3)
N20.0192 (5)0.0131 (5)0.0163 (5)0.0004 (4)0.0112 (4)0.0007 (3)
N30.0184 (5)0.0110 (4)0.0150 (5)0.0013 (3)0.0094 (4)0.0002 (3)
N40.0184 (5)0.0141 (5)0.0147 (4)0.0001 (3)0.0100 (4)0.0003 (3)
C10.0215 (5)0.0135 (5)0.0182 (5)0.0030 (4)0.0125 (5)0.0018 (4)
C20.0298 (6)0.0166 (6)0.0220 (6)0.0062 (5)0.0186 (5)0.0018 (4)
C30.0265 (6)0.0170 (6)0.0200 (6)0.0043 (4)0.0174 (5)0.0031 (4)
C40.0149 (5)0.0123 (5)0.0148 (5)0.0012 (4)0.0079 (4)0.0009 (4)
C50.0162 (5)0.0125 (5)0.0151 (5)0.0001 (4)0.0094 (4)0.0002 (4)
C60.0145 (5)0.0135 (5)0.0130 (5)0.0005 (4)0.0077 (4)0.0002 (4)
C70.0136 (5)0.0143 (5)0.0146 (5)0.0008 (4)0.0074 (4)0.0017 (4)
C80.0153 (5)0.0119 (5)0.0144 (5)0.0002 (4)0.0078 (4)0.0006 (4)
C90.0160 (5)0.0141 (5)0.0149 (5)0.0015 (4)0.0087 (4)0.0020 (4)
C100.0236 (6)0.0170 (6)0.0196 (6)0.0031 (4)0.0141 (5)0.0015 (4)
C110.0257 (6)0.0214 (6)0.0198 (6)0.0050 (5)0.0158 (5)0.0049 (5)
C120.0207 (6)0.0195 (6)0.0226 (6)0.0030 (4)0.0143 (5)0.0073 (5)
C130.0177 (5)0.0153 (5)0.0192 (6)0.0008 (4)0.0106 (5)0.0033 (4)
C140.0140 (5)0.0142 (5)0.0142 (5)0.0014 (4)0.0077 (4)0.0023 (4)
C150.0145 (5)0.0112 (5)0.0140 (5)0.0004 (4)0.0075 (4)0.0003 (4)
C160.0155 (5)0.0131 (5)0.0134 (5)0.0008 (4)0.0082 (4)0.0006 (4)
C170.0209 (5)0.0138 (5)0.0155 (5)0.0009 (4)0.0111 (5)0.0005 (4)
C180.0182 (5)0.0119 (5)0.0189 (6)0.0029 (4)0.0094 (5)0.0003 (4)
C190.0194 (5)0.0134 (5)0.0197 (6)0.0002 (4)0.0109 (5)0.0022 (4)
C200.0284 (7)0.0178 (6)0.0411 (8)0.0009 (5)0.0220 (6)0.0083 (5)
C210.0194 (6)0.0175 (6)0.0245 (6)0.0001 (4)0.0111 (5)0.0006 (5)
Geometric parameters (Å, º) top
O1—C71.2219 (15)C9—C101.4131 (17)
O2—C71.3231 (14)C9—C141.4225 (16)
O2—H1O20.99 (2)C10—C111.3709 (18)
N1—C81.3755 (15)C10—H10A0.9300
N1—C41.4106 (15)C11—C121.4012 (18)
N1—H1N10.860 (16)C11—H11A0.9300
N2—C81.3145 (15)C12—C131.3750 (18)
N2—C91.3771 (15)C12—H12A0.9300
N3—C171.3592 (15)C13—C141.4146 (16)
N3—C151.3852 (14)C13—H13A0.9300
N3—C181.4641 (15)C14—C151.4280 (17)
N4—C171.3185 (15)C15—C161.3907 (16)
N4—C161.3838 (15)C17—H17A0.9300
C1—C21.3908 (17)C18—C191.5327 (16)
C1—C61.3923 (16)C18—H18A0.9700
C1—H1A0.9300C18—H18B0.9700
C2—C31.3887 (17)C19—C211.5238 (18)
C2—H2A0.9300C19—C201.5276 (18)
C3—C41.4041 (16)C19—H19A0.9800
C3—H3A0.9300C20—H20A0.9600
C4—C51.4008 (16)C20—H20B0.9600
C5—C61.3973 (16)C20—H20C0.9600
C5—H5A0.9300C21—H21A0.9600
C6—C71.4945 (16)C21—H21B0.9600
C8—C161.4371 (16)C21—H21C0.9600
C7—O2—H1O2111.6 (13)C13—C12—C11120.54 (11)
C8—N1—C4128.29 (10)C13—C12—H12A119.7
C8—N1—H1N1115.8 (11)C11—C12—H12A119.7
C4—N1—H1N1115.7 (11)C12—C13—C14120.52 (11)
C8—N2—C9120.30 (10)C12—C13—H13A119.7
C17—N3—C15106.38 (10)C14—C13—H13A119.7
C17—N3—C18125.57 (10)C13—C14—C9118.92 (11)
C15—N3—C18127.95 (10)C13—C14—C15127.81 (11)
C17—N4—C16104.21 (10)C9—C14—C15113.27 (10)
C2—C1—C6118.33 (11)N3—C15—C16105.18 (10)
C2—C1—H1A120.8N3—C15—C14132.51 (11)
C6—C1—H1A120.8C16—C15—C14122.30 (10)
C3—C2—C1121.03 (11)N4—C16—C15110.61 (10)
C3—C2—H2A119.5N4—C16—C8130.39 (11)
C1—C2—H2A119.5C15—C16—C8118.97 (11)
C2—C3—C4120.89 (11)N4—C17—N3113.62 (11)
C2—C3—H3A119.6N4—C17—H17A123.2
C4—C3—H3A119.6N3—C17—H17A123.2
C5—C4—C3118.17 (11)N3—C18—C19113.99 (10)
C5—C4—N1124.73 (10)N3—C18—H18A108.8
C3—C4—N1117.10 (11)C19—C18—H18A108.8
C6—C5—C4120.25 (11)N3—C18—H18B108.8
C6—C5—H5A119.9C19—C18—H18B108.8
C4—C5—H5A119.9H18A—C18—H18B107.6
C1—C6—C5121.31 (11)C21—C19—C20111.64 (11)
C1—C6—C7121.77 (10)C21—C19—C18110.94 (10)
C5—C6—C7116.91 (10)C20—C19—C18108.90 (10)
O1—C7—O2122.72 (11)C21—C19—H19A108.4
O1—C7—C6122.59 (10)C20—C19—H19A108.4
O2—C7—C6114.69 (10)C18—C19—H19A108.4
N2—C8—N1120.53 (10)C19—C20—H20A109.5
N2—C8—C16120.36 (10)C19—C20—H20B109.5
N1—C8—C16119.10 (10)H20A—C20—H20B109.5
N2—C9—C10116.40 (11)C19—C20—H20C109.5
N2—C9—C14124.70 (11)H20A—C20—H20C109.5
C10—C9—C14118.89 (11)H20B—C20—H20C109.5
C11—C10—C9120.90 (12)C19—C21—H21A109.5
C11—C10—H10A119.6C19—C21—H21B109.5
C9—C10—H10A119.6H21A—C21—H21B109.5
C10—C11—C12120.20 (12)C19—C21—H21C109.5
C10—C11—H11A119.9H21A—C21—H21C109.5
C12—C11—H11A119.9H21B—C21—H21C109.5
C6—C1—C2—C31.50 (19)N2—C9—C14—C13177.58 (11)
C1—C2—C3—C40.8 (2)C10—C9—C14—C131.70 (16)
C2—C3—C4—C50.58 (18)N2—C9—C14—C152.51 (16)
C2—C3—C4—N1179.23 (12)C10—C9—C14—C15178.21 (10)
C8—N1—C4—C53.85 (19)C17—N3—C15—C160.25 (12)
C8—N1—C4—C3175.94 (11)C18—N3—C15—C16176.10 (11)
C3—C4—C5—C61.29 (17)C17—N3—C15—C14179.22 (12)
N1—C4—C5—C6178.50 (11)C18—N3—C15—C142.9 (2)
C2—C1—C6—C50.77 (18)C13—C14—C15—N30.0 (2)
C2—C1—C6—C7178.19 (11)C9—C14—C15—N3179.85 (11)
C4—C5—C6—C10.63 (17)C13—C14—C15—C16178.78 (11)
C4—C5—C6—C7179.64 (10)C9—C14—C15—C161.32 (16)
C1—C6—C7—O1164.52 (12)C17—N4—C16—C150.49 (13)
C5—C6—C7—O114.48 (16)C17—N4—C16—C8177.45 (12)
C1—C6—C7—O215.91 (16)N3—C15—C16—N40.46 (13)
C5—C6—C7—O2165.09 (10)C14—C15—C16—N4179.56 (10)
C9—N2—C8—N1176.50 (10)N3—C15—C16—C8177.74 (10)
C9—N2—C8—C162.20 (16)C14—C15—C16—C81.36 (17)
C4—N1—C8—N23.04 (18)N2—C8—C16—N4178.96 (11)
C4—N1—C8—C16175.68 (11)N1—C8—C16—N42.32 (18)
C8—N2—C9—C10179.91 (10)N2—C8—C16—C153.25 (16)
C8—N2—C9—C140.79 (17)N1—C8—C16—C15175.47 (10)
N2—C9—C10—C11178.40 (11)C16—N4—C17—N30.33 (13)
C14—C9—C10—C110.94 (18)C15—N3—C17—N40.05 (13)
C9—C10—C11—C120.58 (19)C18—N3—C17—N4176.51 (10)
C10—C11—C12—C131.35 (19)C17—N3—C18—C19104.71 (13)
C11—C12—C13—C140.55 (18)C15—N3—C18—C1979.60 (15)
C12—C13—C14—C90.97 (17)N3—C18—C19—C2171.13 (13)
C12—C13—C14—C15178.92 (11)N3—C18—C19—C20165.62 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.860 (16)2.114 (17)2.9436 (14)161.8 (15)
O2—H1O2···N4ii0.99 (2)1.71 (2)2.6926 (13)172 (2)
C3—H3A···O1i0.932.423.1998 (15)142
C5—H5A···N20.932.212.8337 (16)123
C1—H1A···Cg2iii0.932.943.3877 (14)111
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H20N4O2
Mr360.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.6440 (1), 15.1496 (2), 14.5286 (2)
β (°) 123.927 (1)
V3)1761.28 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.26 × 0.22
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.964, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
23777, 5859, 4504
Rint0.035
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.04
No. of reflections5859
No. of parameters254
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.860 (16)2.114 (17)2.9436 (14)161.8 (15)
O2—H1O2···N4ii0.99 (2)1.71 (2)2.6926 (13)172 (2)
C3—H3A···O1i0.932.423.1998 (15)142
C5—H5A···N20.932.212.8337 (16)123
C1—H1A···Cg2iii0.932.943.3877 (14)111
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z1/2; (iii) x, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PF121K/811012). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationLoh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011). Acta Cryst. E67, o407–o408.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRasmussen, K. G., Ulven, T. & Bond, A. D. (2009). Acta Cryst. E65, o742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds