organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2155-o2156

Benzyl N-(1-{N′-[(E)-2,3-dihy­dr­oxy­benzyl­­idene]hydrazinecarbon­yl}-2-hy­dr­oxy­eth­yl)carbamate dihydrate

aCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cFundação Oswaldo Cruz, Instituto de Tecnologia, em Fármacos – Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 July 2011; accepted 20 July 2011; online 30 July 2011)

The organic mol­ecule in the title dihydrate, C18H19N3O6·2H2O, adopts a twisted U-shape with the major twists evident about the chiral C atom [the C—N—C—C torsion angle is −88.2 (4) °] and about the oxygen–benzyl bond [C—O—C—C = 74.2 (4) °]. The conformation about the imine bond [1.290 (4) Å] is E and an intra­molecular O—H⋯N hydrogen bond helps to establish the near coplanarity of the hy­droxy­benzene and hydrazine groups. The crystal packing features O—H⋯O and N—H⋯O hydrogen bonds, leading to two-dimensional supra­molecular arrays in the ab plane with weak C—H⋯π connections between the arrays.

Related literature

For background to the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009[Jiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274-280.]); Yakura et al. (2007[Yakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429-4438.]). For background to N-acyl­hydrazone derivatives from L-serine for anti-tumour testing, see: de Souza et al. (2010[Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, o3253-o3254.], 2011[Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o1868-o1869.]); Pinheiro et al. (2010[Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004-o1005.], 2011[Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o581-o582.]); Howie et al. (2011[Howie, R. A., de Souza, M. V. N., Pinheiro, A. C., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483-491.]); Tiekink et al. (2011[Tiekink, E. R. T., Souza, M. V. N. de, Pinheiro, A. C., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o1866-o1867.]); Wardell et al. (2011[Wardell, J. L., Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T. & Wardell, S. M. S. V. (2011). Acta Cryst. E67, o1888-o1889.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O6·2H2O

  • Mr = 409.39

  • Orthorhombic, P 21 21 21

  • a = 4.7570 (2) Å

  • b = 13.1011 (4) Å

  • c = 30.5511 (9) Å

  • V = 1904.00 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.887, Tmax = 1.000

  • 12958 measured reflections

  • 2560 independent reflections

  • 1984 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.114

  • S = 1.11

  • 2560 reflections

  • 289 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 (2) 1.88 (2) 2.604 (3) 143 (3)
O2—H2o⋯O1wi 0.84 (2) 1.79 (2) 2.625 (3) 170 (3)
O4—H4o⋯O1ii 0.82 (3) 1.97 (3) 2.791 (3) 176 (3)
O1w—H1w⋯O2iii 0.85 (2) 2.05 (2) 2.894 (3) 169 (3)
O1w—H2w⋯O2wii 0.84 (2) 2.04 (2) 2.879 (3) 176 (2)
O2w—H3w⋯O3 0.85 (2) 2.38 (2) 3.188 (3) 160 (3)
O2w—H4w⋯O3iv 0.86 (3) 1.97 (2) 2.818 (3) 168 (3)
N2—H2n⋯O5iv 0.87 (2) 2.08 (2) 2.892 (3) 154 (2)
N2—H2n⋯N3 0.87 (2) 2.34 (2) 2.705 (3) 106 (2)
N3—H3n⋯O2wii 0.85 (3) 2.28 (3) 3.078 (3) 157 (3)
C18—H18⋯Cg1v 0.95 2.94 3.700 (3) 138
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y+1, z; (iv) x+1, y, z; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The motivation for investigations of molecules related to the title compound, (I), arise from the anti-tumour activity of L-serine derivatives (Jiao et al., 2009; Yakura et al., 2007) and, in particular, the development of N-acylhydrazone derivatives from L-serine for use in anti-tumour testing (Pinheiro et al., 2010; de Souza et al., 2010; Pinheiro et al., 2011: Howie et al., 2011; de Souza et al., (2011); Howie et al. (2011); Tiekink et al. (2011); Wardell et al. (2011).

The crystallographic asymmetric unit of (I) comprises an organic molecule and two water molecules of crystallization. While the absolute structure could not be determined experimentally, the assignment of the S-configuration at the C9 atom is based on a starting reagent, L-serine. Overall, the organic molecule has a twisted U-shape with the two benzene rings lying to the same side of the molecule. Twists are evident about the chiral centre [the C11—N3—C9—C8 torsion angle is -88.2 (4) °] and about the benzyl group [C11—O6—C12—C13 is 74.2 (4) °]. The co-planarity at the hydroxylbenzene/hydrazine residue arises as a result of an intramolecular O1—H···N1 hydrogen bond (Table 1). The conformation about the N1C7 imine bond [1.290 (4) Å] is E.

In the crystal, each of the acidic hydrogen atoms forms a significant hydrogen bond (Table 1). Thus, the O2- and O4-hydroxy groups form hydrogen bonds to the water-O1w and hydroxy-O1 atoms, respectively. The O1w-water molecule forms hydrogen bonds to the hydroxy-O2 and water-O2w atoms, while the O2w-water molecule forms connections to symmetry related carbonyl-O3 atoms, implying the latter is bifurcated. Finally, amine-N2—H is connected to carbonyl-O5, and amine-N3—H is connected to water-O2w. The result of the hydrogen bonding scheme is the formation of layers in the ab plane, Fig. 2. Connections between layers that stack along the c axis are of the form C—H···π, Table 1.

Related literature top

For background to the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009); Yakura et al. (2007). For background to N-acylhydrazone derivatives from L-serine for anti-tumour testing, see: de Souza et al. (2010, 2011); Pinheiro et al. (2010, 2011); Howie et al. (2011); Tiekink et al. (2011); Wardell et al. (2011).

Experimental top

To a stirred solution of methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-hydroxypropanoate (0.3 g, 1.17 mmol), prepared from (2S)-2-amino-3-hydroxypropanoate hydrochloride and benzyl chloroformate (21 ml, 0.15 mol), in ethanol (10 ml) was added N2H4.H2O (80%, 5.5 mmol). The reaction mixture was stirred for 24 h at room temperature, rotary evaporated and the residue washed with cold ethanol (3 x 10 ml) to give benzyl (1S)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate in 78% yield, which was used as such for the next stage. To a stirred solution of (S)-PhCH2OCONHCH(CH2OH)CONHNH2 (1.0 mmol) in ethanol (10 ml) at room temperature was added 2, 3-dihydroxybenzaldehyde (1.05 mmol). The reaction mixture was refluxed for 4 h, rotary evaporated and the residue purified by washing with cold ethanol (3 x 10 ml), affording the title compound, M.pt. 423 K, yield 81%. The sample for the structure determination was recrystallized from EtOH as pale-brown blocks of the dihydrate. The water molecules were presumably absorbed from the atmosphere. 1H NMR (500 MHz, DMSO-d6) δ (p.p.m.): 11.76 (1H, s, NHN), 10.95 (1H, s, C1—OH or C2—OH), 9.21 (1H, s, C1—OH or C2—OH), 8.41 (1H, s, N=CH),7.44 (1H, d, J= 7.4, NHCH), 7.40–7.20 (5H, m, Ph), 6.94 (1H, d, J= 7.8, H6), 6.85–6.80 (1H, m, H4), 6.73 (1H, t, J= 7.8, H5), 5.04 (3H, m, CH2Ph and OH), 4.15 (1H, m, CH), 3.75–3.55 (2H, m, CH2OH). 13C NMR (125 MHz, DMSO-d6) δ (p.p.m.): 171.1, 156.0, 145.6, 145.2, 141.6, 136.9, 128.4, 127.9, 127.8, 127.7, 120.0, 119.2, 117.4, 116.5, 65.4, 61.4, 56.3. IR (cm-1, KBr): 3270 (O—H), 1676 (COCH and COO). MS/ESI: [M—H]: 372.3.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O–H = 0.84 ± 0.01 and N–H = 0.86±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N. In the absence of significant anomalous scattering effects, 1782 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the chirality of the L-serine starting material.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the stacking of 2-D supramolecular arrays in the ab plane in (I), and with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively.
Benzyl N-(1-{N'-[(E)-2,3- dihydroxybenzylidene]hydrazinecarbonyl}-2-hydroxyethyl)carbamate dihydrate top
Crystal data top
C18H19N3O6·2H2OF(000) = 864
Mr = 409.39Dx = 1.428 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9601 reflections
a = 4.7570 (2) Åθ = 2.9–27.5°
b = 13.1011 (4) ŵ = 0.11 mm1
c = 30.5511 (9) ÅT = 120 K
V = 1904.00 (11) Å3Block, pale-brown
Z = 40.18 × 0.12 × 0.10 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2560 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 65
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1716
Tmin = 0.887, Tmax = 1.000l = 3739
12958 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.034P)2 + 0.4778P]
where P = (Fo2 + 2Fc2)/3
2560 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.23 e Å3
9 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H19N3O6·2H2OV = 1904.00 (11) Å3
Mr = 409.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.7570 (2) ŵ = 0.11 mm1
b = 13.1011 (4) ÅT = 120 K
c = 30.5511 (9) Å0.18 × 0.12 × 0.10 mm
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2560 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1984 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.074
12958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0509 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.23 e Å3
2560 reflectionsΔρmin = 0.26 e Å3
289 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5296 (5)0.14889 (15)0.34576 (7)0.0256 (5)
H1O0.435 (7)0.2000 (19)0.3378 (10)0.038*
O20.8776 (5)0.00115 (16)0.38088 (8)0.0289 (6)
H2O0.719 (4)0.022 (3)0.3735 (12)0.043*
O30.0260 (5)0.33623 (15)0.27559 (7)0.0288 (6)
O40.3510 (5)0.54140 (18)0.23084 (7)0.0293 (6)
H4O0.391 (10)0.571 (3)0.2077 (11)0.044*
O50.3437 (5)0.58789 (16)0.34957 (7)0.0246 (5)
O60.0248 (5)0.71487 (15)0.35850 (6)0.0249 (6)
N10.4021 (7)0.34210 (18)0.34263 (8)0.0222 (6)
N20.2671 (6)0.42717 (19)0.32640 (8)0.0225 (6)
H2N0.337 (7)0.4863 (14)0.3341 (10)0.027*
N30.0278 (6)0.60659 (19)0.30326 (8)0.0218 (6)
H3N0.172 (9)0.642 (2)0.2984 (10)0.026*
C10.7354 (7)0.2756 (2)0.39369 (9)0.0208 (7)
C20.7133 (7)0.1748 (2)0.37819 (10)0.0204 (7)
C30.8820 (8)0.0997 (2)0.39619 (10)0.0230 (7)
C41.0684 (8)0.1236 (2)0.42946 (10)0.0264 (8)
H41.18460.07160.44140.032*
C51.0887 (9)0.2223 (2)0.44573 (10)0.0283 (8)
H51.21610.23760.46880.034*
C60.9210 (8)0.2979 (2)0.42797 (9)0.0257 (8)
H60.93180.36550.43910.031*
C70.5738 (8)0.3584 (2)0.37454 (9)0.0228 (7)
H70.59490.42570.38570.027*
C80.0844 (8)0.4187 (2)0.29279 (9)0.0213 (7)
C90.0437 (8)0.5184 (2)0.27644 (9)0.0213 (7)
H90.25290.51090.27630.026*
C100.0533 (8)0.5356 (3)0.22979 (10)0.0253 (8)
H10A0.00800.47850.21090.030*
H10B0.02690.59980.21810.030*
C110.1316 (8)0.6322 (2)0.33806 (10)0.0213 (7)
C120.1522 (9)0.7377 (2)0.40029 (9)0.0267 (8)
H12A0.35920.73480.39730.032*
H12B0.10090.80810.40900.032*
C130.0615 (8)0.6646 (2)0.43599 (10)0.0240 (7)
C140.1605 (8)0.5972 (2)0.43100 (10)0.0286 (8)
H140.26120.59480.40420.034*
C150.2360 (8)0.5330 (3)0.46517 (10)0.0305 (8)
H150.38590.48590.46130.037*
C160.0959 (9)0.5366 (3)0.50491 (10)0.0299 (8)
H160.14990.49310.52830.036*
C170.1231 (9)0.6044 (3)0.50978 (11)0.0342 (9)
H170.22010.60790.53690.041*
C180.2039 (8)0.6676 (3)0.47569 (10)0.0295 (8)
H180.35730.71320.47950.035*
O1W0.4103 (6)0.91059 (18)0.35680 (8)0.0343 (6)
H1W0.248 (4)0.936 (3)0.3598 (11)0.051*
H2W0.416 (8)0.876 (2)0.3336 (7)0.051*
O2W0.5751 (6)0.28389 (19)0.22018 (7)0.0310 (6)
H3W0.420 (4)0.282 (3)0.2339 (10)0.047*
H4W0.695 (6)0.303 (3)0.2392 (9)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (15)0.0216 (11)0.0302 (12)0.0024 (10)0.0065 (11)0.0023 (10)
O20.0241 (14)0.0196 (12)0.0430 (13)0.0005 (12)0.0046 (12)0.0010 (10)
O30.0296 (15)0.0218 (11)0.0350 (12)0.0035 (12)0.0039 (12)0.0053 (10)
O40.0240 (14)0.0372 (14)0.0268 (12)0.0026 (12)0.0030 (12)0.0055 (11)
O50.0228 (14)0.0230 (11)0.0280 (11)0.0033 (11)0.0013 (11)0.0011 (10)
O60.0295 (15)0.0199 (11)0.0254 (11)0.0061 (11)0.0002 (11)0.0010 (9)
N10.0241 (16)0.0187 (13)0.0237 (13)0.0026 (13)0.0005 (13)0.0024 (11)
N20.0248 (17)0.0155 (13)0.0273 (13)0.0008 (13)0.0066 (13)0.0003 (11)
N30.0163 (16)0.0215 (14)0.0276 (14)0.0010 (13)0.0002 (13)0.0001 (11)
C10.0201 (18)0.0213 (16)0.0210 (14)0.0004 (15)0.0020 (15)0.0014 (13)
C20.0199 (18)0.0199 (16)0.0214 (15)0.0011 (15)0.0019 (15)0.0001 (13)
C30.0212 (19)0.0184 (15)0.0293 (16)0.0006 (15)0.0038 (15)0.0021 (13)
C40.0189 (19)0.0291 (17)0.0314 (17)0.0024 (16)0.0020 (16)0.0060 (14)
C50.027 (2)0.0305 (17)0.0274 (16)0.0039 (18)0.0052 (16)0.0053 (14)
C60.026 (2)0.0254 (16)0.0255 (15)0.0048 (17)0.0005 (16)0.0014 (14)
C70.0238 (19)0.0212 (16)0.0235 (15)0.0002 (15)0.0015 (16)0.0008 (13)
C80.0195 (18)0.0248 (16)0.0195 (14)0.0026 (16)0.0002 (14)0.0012 (13)
C90.0191 (18)0.0201 (14)0.0248 (15)0.0008 (15)0.0003 (15)0.0009 (12)
C100.023 (2)0.0295 (17)0.0232 (15)0.0018 (16)0.0027 (16)0.0013 (14)
C110.024 (2)0.0158 (14)0.0240 (16)0.0003 (15)0.0037 (15)0.0018 (12)
C120.034 (2)0.0211 (16)0.0247 (15)0.0012 (16)0.0032 (16)0.0017 (13)
C130.0264 (19)0.0186 (15)0.0269 (16)0.0055 (16)0.0033 (15)0.0019 (13)
C140.026 (2)0.0315 (18)0.0279 (17)0.0005 (17)0.0006 (16)0.0013 (15)
C150.026 (2)0.0289 (18)0.0366 (19)0.0015 (17)0.0031 (17)0.0013 (16)
C160.030 (2)0.0300 (18)0.0299 (17)0.0053 (18)0.0082 (18)0.0059 (15)
C170.042 (2)0.0332 (19)0.0276 (17)0.003 (2)0.0038 (18)0.0001 (15)
C180.029 (2)0.0257 (17)0.0337 (18)0.0031 (17)0.0026 (17)0.0021 (15)
O1W0.0290 (15)0.0288 (13)0.0451 (14)0.0034 (13)0.0043 (13)0.0095 (11)
O2W0.0283 (15)0.0302 (12)0.0346 (13)0.0016 (14)0.0016 (12)0.0039 (11)
Geometric parameters (Å, º) top
O1—C21.364 (4)C6—H60.9500
O1—H1O0.842 (10)C7—H70.9500
O2—C31.374 (4)C8—C91.526 (4)
O2—H2O0.843 (10)C9—C101.515 (4)
O3—C81.233 (3)C9—H91.0000
O4—C101.418 (4)C10—H10A0.9900
O4—H4O0.83 (4)C10—H10B0.9900
O5—C111.216 (4)C12—C131.515 (4)
O6—C111.350 (4)C12—H12A0.9900
O6—C121.445 (3)C12—H12B0.9900
N1—C71.290 (4)C13—C141.385 (5)
N1—N21.379 (3)C13—C181.390 (4)
N2—C81.350 (4)C14—C151.388 (4)
N2—H2N0.875 (10)C14—H140.9500
N3—C111.349 (4)C15—C161.386 (5)
N3—C91.456 (4)C15—H150.9500
N3—H3N0.84 (4)C16—C171.378 (5)
C1—C61.401 (4)C16—H160.9500
C1—C21.407 (4)C17—C181.385 (5)
C1—C71.453 (4)C17—H170.9500
C2—C31.383 (4)C18—H180.9500
C3—C41.385 (5)O1W—H1W0.851 (10)
C4—C51.388 (4)O1W—H2W0.845 (10)
C4—H40.9500O2W—H3W0.848 (10)
C5—C61.383 (5)O2W—H4W0.852 (10)
C5—H50.9500
C2—O1—H1O111 (3)N3—C9—H9108.3
C3—O2—H2O116 (3)C10—C9—H9108.3
C10—O4—H4O104 (3)C8—C9—H9108.3
C11—O6—C12114.7 (3)O4—C10—C9106.9 (3)
C7—N1—N2115.6 (2)O4—C10—H10A110.3
C8—N2—N1120.5 (2)C9—C10—H10A110.3
C8—N2—H2N121 (2)O4—C10—H10B110.3
N1—N2—H2N116 (2)C9—C10—H10B110.3
C11—N3—C9120.6 (3)H10A—C10—H10B108.6
C11—N3—H3N118 (2)O5—C11—N3125.2 (3)
C9—N3—H3N122 (2)O5—C11—O6124.2 (3)
C6—C1—C2119.6 (3)N3—C11—O6110.7 (3)
C6—C1—C7118.6 (3)O6—C12—C13112.7 (3)
C2—C1—C7121.8 (3)O6—C12—H12A109.1
O1—C2—C3118.9 (3)C13—C12—H12A109.1
O1—C2—C1121.7 (3)O6—C12—H12B109.1
C3—C2—C1119.4 (3)C13—C12—H12B109.1
O2—C3—C4118.2 (3)H12A—C12—H12B107.8
O2—C3—C2121.6 (3)C14—C13—C18119.1 (3)
C4—C3—C2120.2 (3)C14—C13—C12122.8 (3)
C3—C4—C5121.2 (3)C18—C13—C12118.1 (3)
C3—C4—H4119.4C13—C14—C15120.1 (3)
C5—C4—H4119.4C13—C14—H14120.0
C6—C5—C4119.1 (3)C15—C14—H14120.0
C6—C5—H5120.4C16—C15—C14120.9 (3)
C4—C5—H5120.4C16—C15—H15119.5
C5—C6—C1120.5 (3)C14—C15—H15119.5
C5—C6—H6119.7C17—C16—C15118.7 (3)
C1—C6—H6119.7C17—C16—H16120.6
N1—C7—C1121.0 (3)C15—C16—H16120.6
N1—C7—H7119.5C16—C17—C18121.0 (3)
C1—C7—H7119.5C16—C17—H17119.5
O3—C8—N2122.8 (3)C18—C17—H17119.5
O3—C8—C9121.4 (3)C17—C18—C13120.3 (3)
N2—C8—C9115.8 (3)C17—C18—H18119.9
N3—C9—C10109.9 (3)C13—C18—H18119.9
N3—C9—C8113.7 (2)H1W—O1W—H2W109 (2)
C10—C9—C8108.3 (3)H3W—O2W—H4W105 (2)
C7—N1—N2—C8179.6 (3)O3—C8—C9—N3174.4 (3)
C6—C1—C2—O1178.0 (3)N2—C8—C9—N36.7 (4)
C7—C1—C2—O13.1 (5)O3—C8—C9—C1063.2 (4)
C6—C1—C2—C32.0 (5)N2—C8—C9—C10115.7 (3)
C7—C1—C2—C3176.9 (3)N3—C9—C10—O464.5 (3)
O1—C2—C3—O23.0 (5)C8—C9—C10—O460.2 (3)
C1—C2—C3—O2177.0 (3)C9—N3—C11—O51.4 (5)
O1—C2—C3—C4179.4 (3)C9—N3—C11—O6179.0 (3)
C1—C2—C3—C40.7 (5)C12—O6—C11—O510.5 (4)
O2—C3—C4—C5178.4 (3)C12—O6—C11—N3169.9 (3)
C2—C3—C4—C50.7 (5)C11—O6—C12—C1374.2 (4)
C3—C4—C5—C60.6 (6)O6—C12—C13—C1412.3 (5)
C4—C5—C6—C10.7 (5)O6—C12—C13—C18169.4 (3)
C2—C1—C6—C52.0 (5)C18—C13—C14—C150.8 (5)
C7—C1—C6—C5176.9 (3)C12—C13—C14—C15179.1 (3)
N2—N1—C7—C1178.2 (3)C13—C14—C15—C161.4 (5)
C6—C1—C7—N1179.3 (3)C14—C15—C16—C170.8 (5)
C2—C1—C7—N10.4 (5)C15—C16—C17—C180.4 (5)
N1—N2—C8—O31.2 (5)C16—C17—C18—C131.0 (5)
N1—N2—C8—C9177.7 (3)C14—C13—C18—C170.4 (5)
C11—N3—C9—C10150.3 (3)C12—C13—C18—C17178.0 (3)
C11—N3—C9—C888.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (2)1.88 (2)2.604 (3)143 (3)
O2—H2o···O1wi0.84 (2)1.79 (2)2.625 (3)170 (3)
O4—H4o···O1ii0.82 (3)1.97 (3)2.791 (3)176 (3)
O1w—H1w···O2iii0.85 (2)2.05 (2)2.894 (3)169 (3)
O1w—H2w···O2wii0.84 (2)2.04 (2)2.879 (3)176 (2)
O2w—H3w···O30.85 (2)2.38 (2)3.188 (3)160 (3)
O2w—H4w···O3iv0.86 (3)1.97 (2)2.818 (3)168 (3)
N2—H2n···O5iv0.87 (2)2.08 (2)2.892 (3)154 (2)
N2—H2n···N30.87 (2)2.34 (2)2.705 (3)106 (2)
N3—H3n···O2wii0.85 (3)2.28 (3)3.078 (3)157 (3)
C18—H18···Cg1v0.952.943.700 (3)138
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y+1, z; (iv) x+1, y, z; (v) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H19N3O6·2H2O
Mr409.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)4.7570 (2), 13.1011 (4), 30.5511 (9)
V3)1904.00 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12958, 2560, 1984
Rint0.074
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.114, 1.11
No. of reflections2560
No. of parameters289
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (2)1.88 (2)2.604 (3)143 (3)
O2—H2o···O1wi0.84 (2)1.79 (2)2.625 (3)170 (3)
O4—H4o···O1ii0.82 (3)1.97 (3)2.791 (3)176 (3)
O1w—H1w···O2iii0.85 (2)2.05 (2)2.894 (3)169 (3)
O1w—H2w···O2wii0.84 (2)2.04 (2)2.879 (3)176 (2)
O2w—H3w···O30.85 (2)2.38 (2)3.188 (3)160 (3)
O2w—H4w···O3iv0.86 (3)1.97 (2)2.818 (3)168 (3)
N2—H2n···O5iv0.874 (19)2.08 (2)2.892 (3)154 (2)
N2—H2n···N30.874 (19)2.34 (2)2.705 (3)106 (2)
N3—H3n···O2wii0.85 (3)2.28 (3)3.078 (3)157 (3)
C18—H18···Cg1v0.952.943.700 (3)138
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y+1, z; (iv) x+1, y, z; (v) x1/2, y+3/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Pinheiro, A. C., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274–280.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004–o1005.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o581–o582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, o3253–o3254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o1868–o1869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T., Souza, M. V. N. de, Pinheiro, A. C., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o1866–o1867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, J. L., Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T. & Wardell, S. M. S. V. (2011). Acta Cryst. E67, o1888–o1889.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429–4438.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2155-o2156
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds