organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2173-o2174

2,13-Di­benzyl-5,16-di­ethyl-2,6,13,17-tetra­aza­tri­cyclo­[16.4.0.07,12]docosan-2-ium nitrate

aDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 July 2011; accepted 22 July 2011; online 30 July 2011)

One of the tertiary amine atoms has been protonated in the title salt, C36H57N4+·NO3. The four N atoms of the macrocycle are almost coplanar (r.m.s. deviation = 0.0053 Å), a result correlated with the formation of intra­molecular N—H⋯N and N—H⋯(N,N) hydrogen bonds. With respect to this plane, the benzyl groups lie to either side; a similar arrangement pertains for the cyclo­hexyl rings (each with a chair conformation). Helical supra­molecular chains are evident in the crystal, whereby alternating cations and anions are linked by C—H⋯O inter­actions. The chains are consolidated into supra­molecular arrays in the ab plane via C—H⋯π contacts involving both benzene rings.

Related literature

For the synthesis of the precursor macrocycle, see: Lim et al. (2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]); For related structures, see: Choi et al. (2006[Choi, J.-H., Clegg, W., Harrington, R. W., Yoon, H.-M. & Hong, Y. P. (2006). Acta Cryst. E62, o644-o646.], 2010a[Choi, J.-H., Clegg, W. & Harrington, R. W. (2010a). J. Chem. Crystallogr. 40, 80-84.],b[Choi, J.-H., Clegg, W. & Nichol, G. S. (2010b). Z. Anorg. Allg. Chem. 636, 1612-1616.]).

[Scheme 1]

Experimental

Crystal data
  • C36H57N4+·NO3

  • Mr = 607.87

  • Monoclinic, P 21 /n

  • a = 10.7882 (1) Å

  • b = 16.2785 (1) Å

  • c = 19.0962 (1) Å

  • β = 98.2461 (6)°

  • V = 3318.92 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.839, Tmax = 0.942

  • 24730 measured reflections

  • 6689 independent reflections

  • 6289 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.120

  • S = 1.06

  • 6689 reflections

  • 409 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C20–C25 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2 0.90 (1) 2.32 (1) 2.7400 (11) 108 (1)
N1—H1⋯N4 0.90 (1) 2.12 (1) 2.8156 (11) 134 (1)
N2—H2⋯N3 0.88 (1) 2.19 (1) 2.9293 (11) 142 (1)
N4—H4⋯N3 0.88 (1) 2.33 (1) 2.7992 (11) 113 (1)
C1—H1a⋯O1 0.99 2.36 3.2096 (13) 143
C9—H9a⋯O3i 0.99 2.40 3.3620 (12) 165
C34—H34a⋯O3i 0.99 2.50 3.3876 (13) 150
C8—H8a⋯Cg3ii 0.99 2.53 3.4008 (11) 146
C26—H26b⋯Cg1iii 0.99 2.71 3.5899 (11) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title salt, (I), was isolated unexpectedly during the course of studies of partially N-substituted tetraazamacrocycles of interest owing to their various applications (Choi et al., 2006; Choi et al., 2010a; Choi, et al., 2010b). As seen in Fig. 1, one of the tertiary amine-N atoms, i.e. N1, has been protonated with the charge balance provided by the nitrate anion. The four nitrogen atoms lie in a plane with a r.m.s. deviation = 0.0053 Å; the maximum deviation from the least-squares plane is 0.0055 (4) Å for atom N1. This observation is readily explained in terms of the intramolecular N—H···N hydrogen bonds with the N1—H1 atom being bifurcated, Table 1 and Fig. 2. With reference to this plane, the benzyl groups lie to either side and are twisted with respect to the N4 plane as seen in the values of the dihedral angles of 63.62 (3) and 66.25 (3) ° formed with rings (C2—C7) and (C20—C25), respectively. Similarly, the cyclohexyl rings, each with a chair conformation, lie to either side of the N4 plane.

The anion is associated with the cation via C—H···O contacts, Table 1, so that the nitrate-O1 forms a contact with a benzyl-methylene-H, and the nitrate-O3 atom bridges a methylene-H derived from a cyclohexyl ring and a methylene-H from the macrocyclic framework. The result is the formation of a helical supramolecular chain along the b-axis, Fig. 2. Chains are consolidated into layers in the ab-plane via C—H···π interactions involving benzene rings, Table 1 and Fig. 3.

Related literature top

For the synthesis of the precursor macrocycle, see: Lim et al. (2006); For related structures, see: Choi et al. (2006, 2010a,b).

Experimental top

The macrocycle, 5,16-diethyl-2,6,13,17-tetraazatricyclo[14.4.01,18.07,12]docosane, was prepared according to a published procedure (Lim et al., 2006). To a solution of this macrocycle (0.61 g, 2.0 mmol) in methanol (10 ml) was added benzyl bromide (0.68 g, 4.0 mmol) and a solution containing sodium carbonate (0.42 g, 4.0 mmol) in water (5 ml). The mixture was refluxed for 24 h. The solution was cooled, the white solid collected and washed with water. The title di-benzyl substituted macrocyclic nitrate was the unexpected colourless by-product that was obtained when copper nitrate trihydrate (0.06 g, 0.25 mmol) and the dibenzyl-substituted macrocycle (0.16 g, 0.29 mmol) was reacted in THF (10 ml). The compound was recrystallized from acetonitrile-water (1:1) in the form of colourless prisms.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their Uiso values were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the ions in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Helical supramolecular chain aligned along the b-axis in (I) mediated by C—H···O interactions shown as orange dashed lines. Intramolecular N—H···N hydrogen bonds are shown as blue dashed lines.
[Figure 3] Fig. 3. A view of the crystal packing of (I) in projection down the a-axis. The C—H···O and C—H···π interactions shown as orange and purple dashed lines, respectively.
2,13-Dibenzyl-5,16-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosan-2- ium nitrate top
Crystal data top
C36H57N4+·NO3F(000) = 1328
Mr = 607.87Dx = 1.217 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 15422 reflections
a = 10.7882 (1) Åθ = 2.7–74.2°
b = 16.2785 (1) ŵ = 0.61 mm1
c = 19.0962 (1) ÅT = 100 K
β = 98.2461 (6)°Prism, colorless
V = 3318.92 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6689 independent reflections
Radiation source: SuperNova (Cu) X-ray Source6289 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4041 pixels mm-1θmax = 74.4°, θmin = 3.6°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2020
Tmin = 0.839, Tmax = 0.942l = 2323
24730 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.9655P]
where P = (Fo2 + 2Fc2)/3
6689 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
C36H57N4+·NO3V = 3318.92 (4) Å3
Mr = 607.87Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.7882 (1) ŵ = 0.61 mm1
b = 16.2785 (1) ÅT = 100 K
c = 19.0962 (1) Å0.30 × 0.20 × 0.10 mm
β = 98.2461 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6689 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
6289 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.942Rint = 0.040
24730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
6689 reflectionsΔρmin = 0.25 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50228 (8)0.10547 (5)0.24392 (5)0.0332 (2)
O20.56328 (8)0.01583 (6)0.28070 (5)0.0327 (2)
O30.39115 (8)0.00135 (5)0.20754 (4)0.02779 (19)
N10.43505 (7)0.37105 (5)0.22433 (4)0.01185 (17)
N20.57885 (7)0.45766 (5)0.32911 (4)0.01289 (18)
N30.56192 (7)0.62777 (5)0.27861 (4)0.01193 (17)
N40.41868 (7)0.53381 (5)0.17396 (4)0.01209 (17)
N50.48585 (8)0.02911 (6)0.24405 (5)0.0209 (2)
C10.52521 (9)0.30042 (6)0.22417 (5)0.0158 (2)
H1A0.47850.24790.22210.019*
H1B0.58530.30110.26850.019*
C20.59572 (9)0.30616 (6)0.16165 (5)0.0148 (2)
C30.69049 (9)0.36427 (6)0.16127 (5)0.0176 (2)
H3A0.71070.40000.20060.021*
C40.75561 (10)0.37032 (7)0.10379 (6)0.0207 (2)
H4A0.82000.41010.10370.025*
C50.72593 (10)0.31770 (7)0.04624 (5)0.0212 (2)
H50.77000.32180.00670.025*
C60.63240 (10)0.25951 (7)0.04648 (5)0.0205 (2)
H60.61270.22360.00720.025*
C70.56721 (9)0.25352 (7)0.10399 (5)0.0175 (2)
H70.50310.21350.10400.021*
C80.33318 (9)0.36493 (6)0.16142 (5)0.0138 (2)
H8A0.28480.31400.16590.017*
H8B0.37290.36010.11800.017*
C90.24291 (9)0.43716 (6)0.15289 (5)0.0135 (2)
H9A0.21320.44750.19880.016*
H9B0.16910.42200.11830.016*
C100.29874 (9)0.51689 (6)0.12824 (5)0.0129 (2)
H100.31720.50800.07900.015*
C110.20492 (9)0.58771 (6)0.12639 (5)0.0171 (2)
H11A0.18530.59680.17490.020*
H11B0.24480.63830.11160.020*
C120.08247 (10)0.57368 (8)0.07684 (6)0.0254 (3)
H12A0.02770.62150.07850.038*
H12B0.04070.52460.09190.038*
H12C0.10040.56600.02840.038*
C130.49956 (9)0.59796 (6)0.14997 (5)0.0125 (2)
H130.45000.64960.14000.015*
C140.55226 (9)0.57130 (6)0.08313 (5)0.0162 (2)
H14A0.48240.56360.04400.019*
H14B0.59590.51800.09190.019*
C150.64389 (10)0.63526 (7)0.06136 (5)0.0192 (2)
H15A0.68040.61460.02010.023*
H15B0.59790.68660.04710.023*
C160.74889 (9)0.65372 (7)0.12163 (5)0.0184 (2)
H16A0.80270.69790.10700.022*
H16B0.80130.60410.13220.022*
C170.69583 (9)0.68032 (6)0.18819 (5)0.0163 (2)
H17A0.64920.73250.17890.020*
H17B0.76530.68980.22720.020*
C180.60803 (9)0.61374 (6)0.21000 (5)0.0120 (2)
H180.65810.56190.21560.014*
C190.48660 (9)0.70312 (6)0.27985 (5)0.0147 (2)
H19A0.42860.70790.23490.018*
H19B0.54260.75160.28410.018*
C200.41211 (9)0.70173 (6)0.34134 (5)0.0145 (2)
C210.44026 (9)0.75553 (6)0.39824 (5)0.0171 (2)
H210.50650.79400.39840.020*
C220.37204 (10)0.75333 (7)0.45488 (5)0.0196 (2)
H220.39170.79040.49330.023*
C230.27563 (10)0.69726 (7)0.45545 (5)0.0196 (2)
H230.22960.69560.49430.024*
C240.24625 (10)0.64323 (7)0.39889 (6)0.0197 (2)
H240.18010.60470.39900.024*
C250.31418 (9)0.64595 (7)0.34239 (5)0.0172 (2)
H250.29360.60920.30380.021*
C260.66397 (9)0.63019 (6)0.33960 (5)0.0141 (2)
H26A0.62560.63640.38340.017*
H26B0.71520.67980.33500.017*
C270.75144 (9)0.55589 (6)0.34862 (5)0.0141 (2)
H27A0.82690.57090.38200.017*
H27B0.77890.54390.30240.017*
C280.69645 (9)0.47719 (6)0.37546 (5)0.0137 (2)
H280.67800.48640.42470.016*
C290.78903 (9)0.40598 (7)0.37584 (5)0.0182 (2)
H29A0.74830.35510.38950.022*
H29B0.80880.39820.32720.022*
C300.91137 (10)0.41840 (8)0.42597 (6)0.0260 (3)
H30A0.96570.37060.42350.039*
H30B0.89310.42480.47450.039*
H30C0.95370.46780.41210.039*
C310.49519 (9)0.39720 (6)0.35440 (5)0.0128 (2)
H310.54240.34460.36380.015*
C320.43876 (9)0.42032 (7)0.42130 (5)0.0171 (2)
H32A0.50700.42890.46110.021*
H32B0.39160.47240.41310.021*
C330.35099 (10)0.35262 (7)0.44074 (5)0.0196 (2)
H33A0.40000.30210.45360.023*
H33B0.31280.37010.48250.023*
C340.24755 (9)0.33400 (7)0.37957 (5)0.0179 (2)
H34A0.19210.38240.37070.021*
H34B0.19650.28740.39270.021*
C350.30172 (9)0.31249 (6)0.31183 (5)0.0169 (2)
H35A0.35020.26080.31870.020*
H35B0.23290.30450.27220.020*
C360.38655 (9)0.38224 (6)0.29457 (5)0.0123 (2)
H360.33450.43330.29030.015*
H10.4755 (12)0.4183 (6)0.2191 (7)0.030 (4)*
H20.5374 (12)0.5033 (6)0.3183 (7)0.029 (4)*
H40.4029 (12)0.5486 (8)0.2162 (5)0.023 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (4)0.0194 (4)0.0498 (5)0.0036 (3)0.0049 (4)0.0009 (4)
O20.0298 (5)0.0338 (5)0.0338 (5)0.0102 (4)0.0020 (4)0.0097 (4)
O30.0268 (4)0.0291 (4)0.0266 (4)0.0065 (3)0.0007 (3)0.0020 (3)
N10.0122 (4)0.0118 (4)0.0116 (4)0.0002 (3)0.0018 (3)0.0005 (3)
N20.0117 (4)0.0136 (4)0.0129 (4)0.0015 (3)0.0001 (3)0.0025 (3)
N30.0116 (4)0.0130 (4)0.0110 (4)0.0007 (3)0.0010 (3)0.0007 (3)
N40.0119 (4)0.0143 (4)0.0099 (4)0.0016 (3)0.0010 (3)0.0004 (3)
N50.0194 (4)0.0223 (5)0.0225 (4)0.0007 (3)0.0078 (3)0.0010 (3)
C10.0175 (5)0.0145 (5)0.0156 (5)0.0049 (4)0.0037 (4)0.0013 (4)
C20.0135 (4)0.0169 (5)0.0140 (4)0.0048 (4)0.0014 (3)0.0009 (4)
C30.0174 (5)0.0174 (5)0.0176 (5)0.0029 (4)0.0013 (4)0.0021 (4)
C40.0170 (5)0.0209 (5)0.0249 (5)0.0017 (4)0.0054 (4)0.0034 (4)
C50.0194 (5)0.0294 (6)0.0158 (5)0.0079 (4)0.0059 (4)0.0038 (4)
C60.0179 (5)0.0285 (6)0.0142 (5)0.0060 (4)0.0006 (4)0.0040 (4)
C70.0132 (4)0.0206 (5)0.0180 (5)0.0031 (4)0.0005 (4)0.0026 (4)
C80.0137 (4)0.0142 (5)0.0127 (4)0.0004 (4)0.0004 (3)0.0015 (3)
C90.0118 (4)0.0142 (5)0.0142 (4)0.0002 (3)0.0003 (3)0.0001 (3)
C100.0122 (4)0.0149 (5)0.0109 (4)0.0008 (4)0.0003 (3)0.0004 (3)
C110.0149 (5)0.0163 (5)0.0193 (5)0.0017 (4)0.0005 (4)0.0029 (4)
C120.0156 (5)0.0270 (6)0.0316 (6)0.0006 (4)0.0037 (4)0.0086 (5)
C130.0125 (4)0.0125 (5)0.0124 (4)0.0008 (3)0.0017 (3)0.0013 (3)
C140.0171 (5)0.0196 (5)0.0122 (4)0.0008 (4)0.0034 (4)0.0003 (4)
C150.0193 (5)0.0249 (6)0.0145 (5)0.0019 (4)0.0059 (4)0.0031 (4)
C160.0154 (5)0.0223 (5)0.0186 (5)0.0024 (4)0.0064 (4)0.0015 (4)
C170.0149 (5)0.0173 (5)0.0172 (5)0.0039 (4)0.0044 (4)0.0002 (4)
C180.0113 (4)0.0133 (5)0.0116 (4)0.0002 (3)0.0024 (3)0.0002 (3)
C190.0156 (4)0.0136 (5)0.0150 (5)0.0020 (4)0.0030 (4)0.0006 (3)
C200.0138 (4)0.0158 (5)0.0138 (4)0.0041 (4)0.0012 (3)0.0006 (4)
C210.0133 (4)0.0195 (5)0.0178 (5)0.0018 (4)0.0001 (4)0.0022 (4)
C220.0189 (5)0.0253 (6)0.0134 (5)0.0056 (4)0.0014 (4)0.0043 (4)
C230.0194 (5)0.0258 (6)0.0145 (5)0.0067 (4)0.0052 (4)0.0035 (4)
C240.0181 (5)0.0194 (5)0.0223 (5)0.0015 (4)0.0057 (4)0.0021 (4)
C250.0171 (5)0.0176 (5)0.0172 (5)0.0014 (4)0.0028 (4)0.0020 (4)
C260.0134 (4)0.0147 (5)0.0135 (4)0.0012 (4)0.0004 (4)0.0011 (3)
C270.0115 (4)0.0159 (5)0.0145 (4)0.0012 (4)0.0001 (3)0.0009 (4)
C280.0125 (4)0.0167 (5)0.0111 (4)0.0004 (4)0.0004 (3)0.0006 (3)
C290.0163 (5)0.0186 (5)0.0191 (5)0.0024 (4)0.0004 (4)0.0033 (4)
C300.0157 (5)0.0284 (6)0.0322 (6)0.0014 (4)0.0028 (4)0.0095 (5)
C310.0130 (4)0.0134 (5)0.0120 (4)0.0008 (3)0.0018 (3)0.0009 (3)
C320.0187 (5)0.0204 (5)0.0125 (4)0.0027 (4)0.0036 (4)0.0008 (4)
C330.0206 (5)0.0249 (5)0.0141 (5)0.0022 (4)0.0056 (4)0.0031 (4)
C340.0165 (5)0.0203 (5)0.0182 (5)0.0025 (4)0.0069 (4)0.0022 (4)
C350.0171 (5)0.0173 (5)0.0168 (5)0.0052 (4)0.0046 (4)0.0011 (4)
C360.0124 (4)0.0138 (5)0.0112 (4)0.0004 (3)0.0030 (3)0.0001 (3)
Geometric parameters (Å, º) top
O1—N51.2557 (13)C15—H15B0.9900
O2—N51.2470 (13)C16—C171.5297 (13)
O3—N51.2536 (12)C16—H16A0.9900
N1—C11.5063 (12)C16—H16B0.9900
N1—C81.5107 (12)C17—C181.5357 (13)
N1—C361.5189 (11)C17—H17A0.9900
N1—H10.896 (9)C17—H17B0.9900
N2—C311.4634 (12)C18—H181.0000
N2—C281.4737 (12)C19—C201.5152 (13)
N2—H20.877 (9)C19—H19A0.9900
N3—C191.4734 (12)C19—H19B0.9900
N3—C261.4840 (12)C20—C211.3947 (14)
N3—C181.4842 (11)C20—C251.3954 (14)
N4—C131.4753 (12)C21—C221.3933 (14)
N4—C101.4793 (11)C21—H210.9500
N4—H40.881 (8)C22—C231.3850 (16)
C1—C21.5077 (13)C22—H220.9500
C1—H1A0.9900C23—C241.3937 (15)
C1—H1B0.9900C23—H230.9500
C2—C31.3935 (14)C24—C251.3892 (14)
C2—C71.3943 (14)C24—H240.9500
C3—C41.3890 (14)C25—H250.9500
C3—H3A0.9500C26—C271.5286 (13)
C4—C51.3940 (16)C26—H26A0.9900
C4—H4A0.9500C26—H26B0.9900
C5—C61.3844 (16)C27—C281.5308 (13)
C5—H50.9500C27—H27A0.9900
C6—C71.3898 (14)C27—H27B0.9900
C6—H60.9500C28—C291.5295 (14)
C7—H70.9500C28—H281.0000
C8—C91.5204 (13)C29—C301.5287 (14)
C8—H8A0.9900C29—H29A0.9900
C8—H8B0.9900C29—H29B0.9900
C9—C101.5331 (13)C30—H30A0.9800
C9—H9A0.9900C30—H30B0.9800
C9—H9B0.9900C30—H30C0.9800
C10—C111.5312 (13)C31—C361.5344 (12)
C10—H101.0000C31—C321.5387 (13)
C11—C121.5277 (14)C31—H311.0000
C11—H11A0.9900C32—C331.5328 (14)
C11—H11B0.9900C32—H32A0.9900
C12—H12A0.9800C32—H32B0.9900
C12—H12B0.9800C33—C341.5256 (14)
C12—H12C0.9800C33—H33A0.9900
C13—C141.5326 (13)C33—H33B0.9900
C13—C181.5378 (12)C34—C351.5344 (13)
C13—H131.0000C34—H34A0.9900
C14—C151.5336 (14)C34—H34B0.9900
C14—H14A0.9900C35—C361.5238 (13)
C14—H14B0.9900C35—H35A0.9900
C15—C161.5245 (14)C35—H35B0.9900
C15—H15A0.9900C36—H361.0000
C1—N1—C8110.14 (7)C16—C17—H17B109.6
C1—N1—C36113.44 (7)C18—C17—H17B109.6
C8—N1—C36114.00 (7)H17A—C17—H17B108.1
C1—N1—H1109.2 (9)N3—C18—C17115.38 (8)
C8—N1—H1106.1 (9)N3—C18—C13111.61 (7)
C36—N1—H1103.4 (9)C17—C18—C13110.41 (8)
C31—N2—C28117.74 (7)N3—C18—H18106.3
C31—N2—H2109.3 (9)C17—C18—H18106.3
C28—N2—H2108.9 (9)C13—C18—H18106.3
C19—N3—C26108.30 (7)N3—C19—C20110.80 (8)
C19—N3—C18113.43 (7)N3—C19—H19A109.5
C26—N3—C18113.09 (7)C20—C19—H19A109.5
C13—N4—C10117.05 (7)N3—C19—H19B109.5
C13—N4—H4106.9 (9)C20—C19—H19B109.5
C10—N4—H4108.9 (9)H19A—C19—H19B108.1
O2—N5—O3120.46 (10)C21—C20—C25118.57 (9)
O2—N5—O1119.90 (9)C21—C20—C19120.93 (9)
O3—N5—O1119.64 (9)C25—C20—C19120.51 (9)
N1—C1—C2110.71 (8)C22—C21—C20120.56 (10)
N1—C1—H1A109.5C22—C21—H21119.7
C2—C1—H1A109.5C20—C21—H21119.7
N1—C1—H1B109.5C23—C22—C21120.26 (9)
C2—C1—H1B109.5C23—C22—H22119.9
H1A—C1—H1B108.1C21—C22—H22119.9
C3—C2—C7119.47 (9)C22—C23—C24119.83 (9)
C3—C2—C1120.00 (9)C22—C23—H23120.1
C7—C2—C1120.53 (9)C24—C23—H23120.1
C4—C3—C2120.45 (9)C25—C24—C23119.68 (10)
C4—C3—H3A119.8C25—C24—H24120.2
C2—C3—H3A119.8C23—C24—H24120.2
C3—C4—C5119.63 (10)C24—C25—C20121.11 (9)
C3—C4—H4A120.2C24—C25—H25119.4
C5—C4—H4A120.2C20—C25—H25119.4
C6—C5—C4120.20 (9)N3—C26—C27116.35 (8)
C6—C5—H5119.9N3—C26—H26A108.2
C4—C5—H5119.9C27—C26—H26A108.2
C5—C6—C7120.15 (10)N3—C26—H26B108.2
C5—C6—H6119.9C27—C26—H26B108.2
C7—C6—H6119.9H26A—C26—H26B107.4
C6—C7—C2120.10 (10)C26—C27—C28115.93 (8)
C6—C7—H7120.0C26—C27—H27A108.3
C2—C7—H7120.0C28—C27—H27A108.3
N1—C8—C9114.58 (8)C26—C27—H27B108.3
N1—C8—H8A108.6C28—C27—H27B108.3
C9—C8—H8A108.6H27A—C27—H27B107.4
N1—C8—H8B108.6N2—C28—C29110.17 (8)
C9—C8—H8B108.6N2—C28—C27108.73 (7)
H8A—C8—H8B107.6C29—C28—C27110.59 (8)
C8—C9—C10114.44 (8)N2—C28—H28109.1
C8—C9—H9A108.7C29—C28—H28109.1
C10—C9—H9A108.7C27—C28—H28109.1
C8—C9—H9B108.7C30—C29—C28114.03 (9)
C10—C9—H9B108.7C30—C29—H29A108.7
H9A—C9—H9B107.6C28—C29—H29A108.7
N4—C10—C11113.13 (8)C30—C29—H29B108.7
N4—C10—C9108.99 (7)C28—C29—H29B108.7
C11—C10—C9110.91 (8)H29A—C29—H29B107.6
N4—C10—H10107.9C29—C30—H30A109.5
C11—C10—H10107.9C29—C30—H30B109.5
C9—C10—H10107.9H30A—C30—H30B109.5
C12—C11—C10114.31 (9)C29—C30—H30C109.5
C12—C11—H11A108.7H30A—C30—H30C109.5
C10—C11—H11A108.7H30B—C30—H30C109.5
C12—C11—H11B108.7N2—C31—C36107.60 (7)
C10—C11—H11B108.7N2—C31—C32116.47 (8)
H11A—C11—H11B107.6C36—C31—C32107.83 (8)
C11—C12—H12A109.5N2—C31—H31108.2
C11—C12—H12B109.5C36—C31—H31108.2
H12A—C12—H12B109.5C32—C31—H31108.2
C11—C12—H12C109.5C33—C32—C31110.91 (8)
H12A—C12—H12C109.5C33—C32—H32A109.5
H12B—C12—H12C109.5C31—C32—H32A109.5
N4—C13—C14111.39 (8)C33—C32—H32B109.5
N4—C13—C18107.91 (7)C31—C32—H32B109.5
C14—C13—C18109.56 (8)H32A—C32—H32B108.0
N4—C13—H13109.3C34—C33—C32111.53 (8)
C14—C13—H13109.3C34—C33—H33A109.3
C18—C13—H13109.3C32—C33—H33A109.3
C13—C14—C15111.35 (8)C34—C33—H33B109.3
C13—C14—H14A109.4C32—C33—H33B109.3
C15—C14—H14A109.4H33A—C33—H33B108.0
C13—C14—H14B109.4C33—C34—C35111.45 (8)
C15—C14—H14B109.4C33—C34—H34A109.3
H14A—C14—H14B108.0C35—C34—H34A109.3
C16—C15—C14111.55 (8)C33—C34—H34B109.3
C16—C15—H15A109.3C35—C34—H34B109.3
C14—C15—H15A109.3H34A—C34—H34B108.0
C16—C15—H15B109.3C36—C35—C34109.00 (8)
C14—C15—H15B109.3C36—C35—H35A109.9
H15A—C15—H15B108.0C34—C35—H35A109.9
C15—C16—C17110.92 (8)C36—C35—H35B109.9
C15—C16—H16A109.5C34—C35—H35B109.9
C17—C16—H16A109.5H35A—C35—H35B108.3
C15—C16—H16B109.5N1—C36—C35113.28 (8)
C17—C16—H16B109.5N1—C36—C31110.70 (7)
H16A—C16—H16B108.0C35—C36—C31112.06 (8)
C16—C17—C18110.15 (8)N1—C36—H36106.8
C16—C17—H17A109.6C35—C36—H36106.8
C18—C17—H17A109.6C31—C36—H36106.8
C8—N1—C1—C266.13 (10)C26—N3—C19—C2070.03 (9)
C36—N1—C1—C2164.73 (8)C18—N3—C19—C20163.57 (8)
N1—C1—C2—C374.22 (11)N3—C19—C20—C21111.49 (10)
N1—C1—C2—C7105.98 (10)N3—C19—C20—C2568.03 (11)
C7—C2—C3—C40.50 (15)C25—C20—C21—C220.13 (15)
C1—C2—C3—C4179.69 (9)C19—C20—C21—C22179.40 (9)
C2—C3—C4—C50.15 (15)C20—C21—C22—C230.30 (15)
C3—C4—C5—C60.24 (16)C21—C22—C23—C240.43 (15)
C4—C5—C6—C70.29 (16)C22—C23—C24—C250.12 (15)
C5—C6—C7—C20.05 (15)C23—C24—C25—C200.32 (15)
C3—C2—C7—C60.45 (15)C21—C20—C25—C240.44 (15)
C1—C2—C7—C6179.74 (9)C19—C20—C25—C24179.09 (9)
C1—N1—C8—C9175.10 (8)C19—N3—C26—C27178.66 (8)
C36—N1—C8—C956.07 (10)C18—N3—C26—C2754.73 (11)
N1—C8—C9—C1071.93 (10)N3—C26—C27—C2873.19 (10)
C13—N4—C10—C1168.49 (10)C31—N2—C28—C2973.32 (10)
C13—N4—C10—C9167.63 (8)C31—N2—C28—C27165.34 (8)
C8—C9—C10—N450.59 (10)C26—C27—C28—N253.90 (10)
C8—C9—C10—C11175.77 (8)C26—C27—C28—C29174.98 (8)
N4—C10—C11—C12177.23 (8)N2—C28—C29—C30176.58 (8)
C9—C10—C11—C1259.95 (11)C27—C28—C29—C3063.19 (11)
C10—N4—C13—C1467.86 (10)C28—N2—C31—C36175.09 (8)
C10—N4—C13—C18171.85 (7)C28—N2—C31—C3263.80 (11)
N4—C13—C14—C15175.82 (8)N2—C31—C32—C33178.67 (8)
C18—C13—C14—C1556.50 (10)C36—C31—C32—C3357.68 (10)
C13—C14—C15—C1655.23 (11)C31—C32—C33—C3456.30 (11)
C14—C15—C16—C1755.12 (12)C32—C33—C34—C3554.94 (12)
C15—C16—C17—C1856.98 (11)C33—C34—C35—C3655.57 (11)
C19—N3—C18—C1761.89 (10)C1—N1—C36—C3567.88 (10)
C26—N3—C18—C1761.94 (10)C8—N1—C36—C3559.27 (10)
C19—N3—C18—C1365.20 (10)C1—N1—C36—C3158.97 (10)
C26—N3—C18—C13170.97 (8)C8—N1—C36—C31173.89 (8)
C16—C17—C18—N3173.18 (8)C34—C35—C36—N1174.29 (8)
C16—C17—C18—C1359.12 (10)C34—C35—C36—C3159.58 (10)
N4—C13—C18—N350.19 (10)N2—C31—C36—N145.54 (10)
C14—C13—C18—N3171.62 (8)C32—C31—C36—N1171.92 (8)
N4—C13—C18—C17179.93 (7)N2—C31—C36—C35173.06 (7)
C14—C13—C18—C1758.63 (10)C32—C31—C36—C3560.55 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C20–C25 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.90 (1)2.32 (1)2.7400 (11)108 (1)
N1—H1···N40.90 (1)2.12 (1)2.8156 (11)134 (1)
N2—H2···N30.88 (1)2.19 (1)2.9293 (11)142 (1)
N4—H4···N30.88 (1)2.33 (1)2.7992 (11)113 (1)
C1—H1a···O10.992.363.2096 (13)143
C9—H9a···O3i0.992.403.3620 (12)165
C34—H34a···O3i0.992.503.3876 (13)150
C8—H8a···Cg3ii0.992.533.4008 (11)146
C26—H26b···Cg1iii0.992.713.5899 (11)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC36H57N4+·NO3
Mr607.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.7882 (1), 16.2785 (1), 19.0962 (1)
β (°) 98.2461 (6)
V3)3318.92 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.839, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
24730, 6689, 6289
Rint0.040
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.120, 1.06
No. of reflections6689
No. of parameters409
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C20–C25 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···N20.897 (11)2.323 (13)2.7400 (11)108.3 (10)
N1—H1···N40.897 (11)2.122 (11)2.8156 (11)133.5 (11)
N2—H2···N30.876 (11)2.193 (10)2.9293 (11)141.5 (11)
N4—H4···N30.882 (10)2.332 (12)2.7992 (11)113.2 (10)
C1—H1a···O10.992.363.2096 (13)143
C9—H9a···O3i0.992.403.3620 (12)165
C34—H34a···O3i0.992.503.3876 (13)150
C8—H8a···Cg3ii0.992.533.4008 (11)146
C26—H26b···Cg1iii0.992.713.5899 (11)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: jhchoi@andong.ac.kr.

Acknowledgements

We thank Andong National University and the University of Malaya for supporting this study. MAS thanks the National Research Foundation of Korea for a postdoctoral fellowship grant.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChoi, J.-H., Clegg, W. & Harrington, R. W. (2010a). J. Chem. Crystallogr. 40, 80–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Clegg, W., Harrington, R. W., Yoon, H.-M. & Hong, Y. P. (2006). Acta Cryst. E62, o644–o646.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Clegg, W. & Nichol, G. S. (2010b). Z. Anorg. Allg. Chem. 636, 1612–1616.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821–7827.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2173-o2174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds