organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­bromo­naphthalen-1-ol

aUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 25 July 2011; accepted 26 July 2011; online 30 July 2011)

In the essentially planar (r.m.s. deviation = 0.023 Å) title compound, C10H6Br2O, an intra­molecular O—H⋯Br hydrogen bond generates an S(5) ring. In the crystal, mol­ecules are linked by an ⋯O—H⋯O—H⋯O— C(2) chain extending along [100], which involves the same H atom that participates in the intra­molecular hydrogen bond. Aromatic ππ inter­actions [centroid–centroid separation = 3.737 (4) Å] help to consolidate the packing.

Related literature

For a related structure, see: Chanh et al. (1973[Chanh, N. B., Haget, Y., Leroy, F. & Hannoteaux, F. (1973). Acta Cryst. B29, 1469-1473.]): For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6Br2O

  • Mr = 301.97

  • Orthorhombic, P 21 21 21

  • a = 4.1225 (3) Å

  • b = 14.4441 (11) Å

  • c = 16.0490 (14) Å

  • V = 955.65 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.44 mm−1

  • T = 296 K

  • 0.32 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.254, Tmax = 0.365

  • 5060 measured reflections

  • 2239 independent reflections

  • 1410 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.089

  • S = 0.96

  • 2239 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 863 Friedel pairs

  • Flack parameter: −0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br1 0.82 2.60 3.107 (5) 122
O1—H1⋯O1i 0.82 2.21 2.893 (6) 141
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structure of 2-bromonaphthalene (Chanh, et al., 1973) has been published which is related to the title compound (Fig. 1).

The molecule of the title compound is planar with r.m.s. deviation of 0.0234 Å. The Br2 atom has maximum deviation from the mean plane and its value is 0.0574 (27) Å. There exists an intra-molecular hydrogen bond of O—H···Br type (Table 1, Fig. 1) and complete S(5) ring motif (Bernstein et al., 1995). The molecules are stabilized in the form of polymeric chains due to intermolecular H-bonding of O—H···O type (Table 1, Fig. 2). Due to these hydrogen bonds a chain of ···O—H···O—H···O— exists. The ππ interactions between the benzene rings (C1—C6) and (C1/C6—C10) of the naphthalen group at a distance of 3.737 (4) Å help to consolidate the packing.

Related literature top

For a related crystal structure, see: Chanh et al. (1973): For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Bromine (2.9 ml, 9.2 g, 30 mmol, 2 eq) was added as drops to an ice-chilled solution of α,β-unsaturated-1-tetralone (2.2 g, 15 mmol, 1 eq) in CHCl3 (50 ml) and was stirred for 1 h. Et3N (3 ml, 2.2 g, 22 mmol, 1.5 eq) was added to the reaction mixture followed by 2 h stirring at room temperature. After the commencement of reaction, the reaction mixture was neutralized with aq HCl (15 ml). The organic layer was washed with H2O (3 × 25 ml), dried over anhydrous Na2SO4 and concentrated under reduced pressure to afford the colorless needles of (I).

Yield: 2.4 g, 52%, m.p. 499 K.

Refinement top

The H-atoms were positioned geometrically with (O–H = 0.82, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy and x = 1.2 for aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line indicates the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form polymeric chains.
2,4-Dibromonaphthalen-1-ol top
Crystal data top
C10H6Br2OF(000) = 576
Mr = 301.97Dx = 2.099 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1410 reflections
a = 4.1225 (3) Åθ = 2.8–27.9°
b = 14.4441 (11) ŵ = 8.44 mm1
c = 16.0490 (14) ÅT = 296 K
V = 955.65 (13) Å3Needle, colorless
Z = 40.32 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2239 independent reflections
Radiation source: fine-focus sealed tube1410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 7.60 pixels mm-1θmax = 27.9°, θmin = 2.8°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1519
Tmin = 0.254, Tmax = 0.365l = 2020
5060 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0309P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2239 reflectionsΔρmax = 0.47 e Å3
119 parametersΔρmin = 0.41 e Å3
0 restraintsAbsolute structure: Flack (1983), 863 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C10H6Br2OV = 955.65 (13) Å3
Mr = 301.97Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.1225 (3) ŵ = 8.44 mm1
b = 14.4441 (11) ÅT = 296 K
c = 16.0490 (14) Å0.32 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2239 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1410 reflections with I > 2σ(I)
Tmin = 0.254, Tmax = 0.365Rint = 0.045
5060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.47 e Å3
S = 0.96Δρmin = 0.41 e Å3
2239 reflectionsAbsolute structure: Flack (1983), 863 Friedel pairs
119 parametersAbsolute structure parameter: 0.01 (3)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45967 (15)0.18900 (4)0.18041 (4)0.0493 (2)
Br21.06884 (18)0.15734 (4)0.19773 (5)0.0624 (3)
O10.6998 (11)0.1798 (3)0.0029 (3)0.0463 (16)
C10.9478 (14)0.0326 (3)0.0024 (3)0.0333 (17)
C20.7730 (14)0.1034 (4)0.0449 (4)0.0343 (19)
C30.6882 (14)0.0934 (4)0.1244 (4)0.036 (2)
C40.7718 (13)0.0149 (4)0.1698 (4)0.039 (2)
C50.9399 (15)0.0536 (4)0.1318 (4)0.0417 (19)
C61.0379 (14)0.0490 (4)0.0474 (3)0.0377 (19)
C71.2132 (16)0.1172 (4)0.0024 (5)0.048 (3)
C81.2958 (16)0.1080 (5)0.0777 (4)0.058 (3)
C91.2149 (16)0.0287 (5)0.1202 (5)0.059 (3)
C101.0428 (15)0.0408 (4)0.0816 (3)0.045 (2)
H10.577170.213910.023040.0692*
H40.712930.009470.225520.0471*
H71.273750.171120.030100.0583*
H81.407910.155150.104600.0694*
H91.276950.021900.175590.0702*
H100.988500.093840.111320.0537*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0513 (4)0.0432 (3)0.0535 (4)0.0002 (3)0.0022 (4)0.0087 (3)
Br20.0679 (5)0.0465 (4)0.0727 (5)0.0007 (3)0.0084 (4)0.0200 (4)
O10.049 (3)0.034 (2)0.056 (3)0.002 (2)0.002 (2)0.007 (2)
C10.030 (3)0.036 (3)0.034 (3)0.005 (3)0.008 (3)0.005 (3)
C20.034 (3)0.030 (3)0.039 (4)0.008 (3)0.009 (3)0.003 (3)
C30.033 (3)0.036 (4)0.038 (4)0.008 (3)0.000 (3)0.006 (3)
C40.041 (4)0.039 (3)0.038 (4)0.008 (3)0.006 (3)0.005 (3)
C50.039 (3)0.037 (3)0.049 (4)0.006 (3)0.014 (3)0.008 (3)
C60.033 (3)0.031 (3)0.049 (4)0.007 (3)0.012 (3)0.002 (3)
C70.047 (4)0.042 (4)0.056 (5)0.004 (3)0.017 (4)0.012 (4)
C80.052 (4)0.063 (5)0.059 (6)0.011 (4)0.004 (4)0.026 (5)
C90.052 (5)0.081 (6)0.043 (5)0.001 (4)0.003 (4)0.006 (4)
C100.042 (4)0.049 (3)0.044 (4)0.002 (3)0.012 (3)0.001 (3)
Geometric parameters (Å, º) top
Br1—C31.898 (6)C5—C61.415 (8)
Br2—C51.910 (6)C6—C71.419 (9)
O1—C21.377 (7)C7—C81.337 (10)
O1—H10.8200C8—C91.374 (10)
C1—C21.425 (8)C9—C101.377 (9)
C1—C101.409 (7)C4—H40.9300
C1—C61.431 (7)C7—H70.9300
C2—C31.331 (9)C8—H80.9300
C3—C41.391 (8)C9—H90.9300
C4—C51.353 (8)C10—H100.9300
C2—O1—H1110.00C1—C6—C5116.6 (5)
C2—C1—C6118.7 (5)C6—C7—C8123.4 (6)
C2—C1—C10122.6 (5)C7—C8—C9119.9 (7)
C6—C1—C10118.7 (5)C8—C9—C10120.6 (7)
O1—C2—C1114.8 (5)C1—C10—C9120.8 (5)
O1—C2—C3124.3 (5)C3—C4—H4121.00
C1—C2—C3120.9 (5)C5—C4—H4120.00
Br1—C3—C4117.9 (5)C6—C7—H7118.00
C2—C3—C4121.7 (6)C8—C7—H7118.00
Br1—C3—C2120.4 (5)C7—C8—H8120.00
C3—C4—C5119.1 (6)C9—C8—H8120.00
Br2—C5—C6119.2 (4)C8—C9—H9120.00
C4—C5—C6122.9 (6)C10—C9—H9120.00
Br2—C5—C4117.8 (5)C1—C10—H10120.00
C1—C6—C7116.6 (5)C9—C10—H10120.00
C5—C6—C7126.9 (6)
C6—C1—C2—O1179.3 (5)Br1—C3—C4—C5178.8 (4)
C6—C1—C2—C31.5 (8)C2—C3—C4—C50.9 (9)
C10—C1—C2—O11.0 (8)C3—C4—C5—Br2176.9 (4)
C10—C1—C2—C3179.8 (6)C3—C4—C5—C60.5 (9)
C2—C1—C6—C51.0 (8)Br2—C5—C6—C1176.9 (4)
C2—C1—C6—C7179.7 (5)Br2—C5—C6—C73.8 (9)
C10—C1—C6—C5179.4 (5)C4—C5—C6—C10.5 (9)
C10—C1—C6—C71.3 (8)C4—C5—C6—C7179.8 (6)
C2—C1—C10—C9179.2 (6)C1—C6—C7—C80.4 (9)
C6—C1—C10—C90.9 (9)C5—C6—C7—C8179.6 (6)
O1—C2—C3—Br11.5 (8)C6—C7—C8—C91.0 (10)
O1—C2—C3—C4179.4 (5)C7—C8—C9—C101.5 (10)
C1—C2—C3—Br1179.3 (4)C8—C9—C10—C10.5 (10)
C1—C2—C3—C41.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br10.822.603.107 (5)122
O1—H1···O1i0.822.212.893 (6)141
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H6Br2O
Mr301.97
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.1225 (3), 14.4441 (11), 16.0490 (14)
V3)955.65 (13)
Z4
Radiation typeMo Kα
µ (mm1)8.44
Crystal size (mm)0.32 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.254, 0.365
No. of measured, independent and
observed [I > 2σ(I)] reflections
5060, 2239, 1410
Rint0.045
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.089, 0.96
No. of reflections2239
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.41
Absolute structureFlack (1983), 863 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br10.822.603.107 (5)122
O1—H1···O1i0.822.212.893 (6)141
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Ex-Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of this research project (No. 20-819).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanh, N. B., Haget, Y., Leroy, F. & Hannoteaux, F. (1973). Acta Cryst. B29, 1469–1473.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds