metal-organic compounds
Tetra-μ-acetato-bis[(1,3-benzothiazole)copper(II)](Cu—Cu)
aDepartment für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, 50939 Köln, Germany
*Correspondence e-mail: Gerd.Meyer@uni-koeln.de
The title compound, [Cu2(CH3CO2)4(C7H5NS)2] or [(C7H5NS)Cu]2(μ-O2CCH3)4, crystallizes with one molecule per The of copper is six with four basal O atoms, one axial N atom and one axial Cu atom. Four acetate ligands act as bidentate linker and connect two Cu atoms, with a crystallographic inversion center located at the mid-point of the Cu—Cu bond. The acetate ligands form slightly distorted square planes around each metal ion, while the copper ions are displaced by 0.2089 (4) Å from these planes towards the N atoms. Thus, the Cu—Cu distance is elongated to 2.6378 (7) Å, compared with the 2.2180 (7) Å distance between the two basal planes. The angle between the basal plane and the Cu—N bond is 4.84 (6)°.
Related literature
The structural prototype of (LCu)2(μ-O2CCH3)4 complexes is the of cupric acetate monohydrate (L = water), see: Van Niekerk & Schoening (1953); Ferguson & Glidewell (2003). For similar structures with L = benzimidazole, see: Bukowska-Strzyżewska et al. (1982) and L = 2-amino-benzothiazole, see: Sun et al. (2007). For theoretical studies see: Rodríguez-Fortea et al. (2001) and for magnetic properties of dinuclear copper complexes, see: Tokii & Muto (1983). For FIR spectroscopic data and the of the complex with L = benzothiazole, see: Ford et al. (1968).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811027140/hg5042sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811027140/hg5042Isup2.hkl
Green platelets of [(C7H5NS)Cu]2(µ2-OAc)4 were obtained by the reaction of 0.20 g cupric acetate monohydrate (1 mmol, Merck) with 0.22 ml benzothiazole (0.27 g, 2 mmol, Acros) in 20 ml of ethanol at ambient temperature by slow evaporation of the solvent within two weeks. Yield: 0.59 g (93%). Mp: 206 °C (Decomp.). UV/VIS: (chloroform) λ max 358, 690 nm. IR: 3080(w), 3057(w), 2995(w), 2927(w), 1612(s), 1562(m), 1468(m), 1454(m), 1431(s), 1348(m), 1321(w), 1304(m), 1273(w), 1205(w), 1155(w), 1066(w), 1049(w), 1030(w), 1016(w), 949(w), 897(m), 870(w), 856(w), 810(w), 762(m), 733(m), 681(m), 627(m), 534(w), 507(w), 424(w) cm-1. Elem. Anal. calcd for C22H22Cu2N2O8S2: C, 41.70; H, 3.50; N, 4.42; S, 10.12; found: C, 41.30; H, 3.30; N, 4.17; S, 10.14.
Hydrogen atoms were placed in idealized positions and constrained riding on their parent atoms [C–H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(C)]. The last cycles of
included atomic positions for all atoms, anisotropic thermal parameters for all non-hydrogen atoms and isotropic thermal parameters for all hydrogen atoms.Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu2(C2H3O2)4(C7H5NS)2] | Z = 1 |
Mr = 633.66 | F(000) = 322 |
Triclinic, P1 | Dx = 1.688 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.185 (1) Å | Cell parameters from 1512 reflections |
b = 8.1918 (12) Å | θ = 3.8–56.3° |
c = 11.8265 (16) Å | µ = 1.92 mm−1 |
α = 106.516 (16)° | T = 293 K |
β = 106.429 (16)° | Plate, green |
γ = 97.344 (17)° | 0.3 × 0.2 × 0.1 mm |
V = 623.49 (18) Å3 |
Stoe IPDS I diffractometer | 2784 independent reflections |
Radiation source: fine-focus sealed tube | 2092 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 0 pixels mm-1 | θmax = 28.1°, θmin = 2.7° |
Oscillation scans | h = −8→8 |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) | k = −10→10 |
Tmin = 0.575, Tmax = 0.840 | l = −15→15 |
7525 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0379P)2] where P = (Fo2 + 2Fc2)/3 |
2784 reflections | (Δ/σ)max = 0.013 |
165 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
[Cu2(C2H3O2)4(C7H5NS)2] | γ = 97.344 (17)° |
Mr = 633.66 | V = 623.49 (18) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.185 (1) Å | Mo Kα radiation |
b = 8.1918 (12) Å | µ = 1.92 mm−1 |
c = 11.8265 (16) Å | T = 293 K |
α = 106.516 (16)° | 0.3 × 0.2 × 0.1 mm |
β = 106.429 (16)° |
Stoe IPDS I diffractometer | 2784 independent reflections |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999) | 2092 reflections with I > 2σ(I) |
Tmin = 0.575, Tmax = 0.840 | Rint = 0.038 |
7525 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.45 e Å−3 |
2784 reflections | Δρmin = −0.45 e Å−3 |
165 parameters |
Experimental. A single crystal suitable for X-ray diffraction was selected under a polarization microscope and sealed in a capillary tube. Complete scattering intensities data sets were collected with an imaging plate diffractometer (IPDS I, Stoe & Cie). The data were corrected for Lorentz and polarization effects. A numerical absorption correction based on crystal-shape optimization was applied for all data. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen atoms were placed in idealized positions and constrained riding on their parent atoms [C–H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(C)]. The last cycles of refinement included atomic positions for all atoms, anisotropic thermal parameters for all non-hydrogen atoms and isotropic thermal parameters for all hydrogen atoms. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.43471 (5) | 0.46234 (4) | 0.58527 (3) | 0.02316 (11) | |
S1 | 0.04719 (13) | 0.43274 (11) | 0.83857 (7) | 0.0430 (2) | |
N1 | 0.2932 (4) | 0.4019 (3) | 0.71570 (19) | 0.0265 (5) | |
O3 | 0.6747 (3) | 0.6371 (3) | 0.70893 (18) | 0.0428 (5) | |
O4 | 0.7826 (3) | 0.7015 (3) | 0.56499 (17) | 0.0390 (5) | |
O1 | 0.5911 (3) | 0.2831 (3) | 0.56937 (19) | 0.0374 (5) | |
C2 | 0.3612 (4) | 0.3329 (3) | 0.8112 (2) | 0.0259 (6) | |
O2 | 0.6990 (4) | 0.3443 (3) | 0.4247 (2) | 0.0427 (6) | |
C6 | 0.3008 (5) | 0.2858 (4) | 0.9930 (3) | 0.0411 (8) | |
H6 | 0.2271 | 0.2953 | 1.0468 | 0.049* | |
C4 | 0.5758 (5) | 0.2012 (4) | 0.9319 (3) | 0.0458 (8) | |
H4 | 0.6848 | 0.1503 | 0.9462 | 0.055* | |
C5 | 0.4659 (6) | 0.2169 (4) | 1.0127 (3) | 0.0462 (9) | |
H5 | 0.5055 | 0.1798 | 1.0813 | 0.055* | |
C11 | 0.9534 (6) | 0.8715 (4) | 0.7759 (3) | 0.0542 (10) | |
H11A | 0.9499 | 0.8716 | 0.8564 | 0.081* | |
H11B | 0.9337 | 0.9812 | 0.7663 | 0.081* | |
H11C | 1.0803 | 0.8550 | 0.7693 | 0.081* | |
C9 | 0.7821 (5) | 0.1025 (4) | 0.4827 (3) | 0.0415 (7) | |
H9A | 0.9197 | 0.1415 | 0.4931 | 0.062* | |
H9C | 0.7166 | 0.0146 | 0.4018 | 0.062* | |
H9B | 0.7733 | 0.0542 | 0.5466 | 0.062* | |
C1 | 0.1335 (5) | 0.4564 (4) | 0.7205 (3) | 0.0344 (7) | |
H1 | 0.0685 | 0.5058 | 0.6633 | 0.041* | |
C3 | 0.5264 (5) | 0.2595 (4) | 0.8310 (3) | 0.0359 (7) | |
H3 | 0.6015 | 0.2501 | 0.7780 | 0.043* | |
C7 | 0.2462 (5) | 0.3417 (3) | 0.8892 (2) | 0.0307 (6) | |
C10 | 0.7917 (4) | 0.7261 (3) | 0.6755 (2) | 0.0288 (6) | |
C8 | 0.6835 (4) | 0.2542 (3) | 0.4930 (2) | 0.0278 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0256 (2) | 0.02769 (17) | 0.02156 (16) | 0.00738 (12) | 0.01074 (12) | 0.01282 (12) |
S1 | 0.0358 (5) | 0.0654 (5) | 0.0383 (4) | 0.0139 (4) | 0.0222 (4) | 0.0223 (4) |
N1 | 0.0267 (14) | 0.0329 (12) | 0.0228 (11) | 0.0055 (9) | 0.0097 (9) | 0.0127 (9) |
O3 | 0.0453 (15) | 0.0499 (12) | 0.0239 (10) | −0.0096 (10) | 0.0076 (9) | 0.0115 (9) |
O4 | 0.0353 (13) | 0.0522 (13) | 0.0247 (10) | −0.0037 (10) | 0.0095 (9) | 0.0124 (9) |
O1 | 0.0467 (14) | 0.0429 (11) | 0.0437 (12) | 0.0252 (10) | 0.0268 (10) | 0.0275 (10) |
C2 | 0.0283 (16) | 0.0263 (12) | 0.0203 (12) | −0.0001 (10) | 0.0065 (10) | 0.0082 (10) |
O2 | 0.0588 (16) | 0.0442 (12) | 0.0552 (13) | 0.0307 (11) | 0.0389 (12) | 0.0338 (11) |
C6 | 0.061 (2) | 0.0362 (16) | 0.0259 (14) | −0.0033 (14) | 0.0177 (14) | 0.0124 (13) |
C4 | 0.056 (2) | 0.0381 (16) | 0.0425 (18) | 0.0160 (15) | 0.0071 (16) | 0.0191 (15) |
C5 | 0.073 (3) | 0.0337 (16) | 0.0285 (15) | 0.0051 (15) | 0.0081 (15) | 0.0182 (13) |
C11 | 0.055 (2) | 0.050 (2) | 0.0364 (18) | −0.0127 (16) | 0.0009 (16) | 0.0081 (15) |
C9 | 0.045 (2) | 0.0338 (15) | 0.056 (2) | 0.0195 (14) | 0.0224 (16) | 0.0201 (15) |
C1 | 0.0300 (18) | 0.0488 (17) | 0.0292 (14) | 0.0109 (13) | 0.0104 (12) | 0.0188 (13) |
C3 | 0.040 (2) | 0.0374 (15) | 0.0337 (15) | 0.0099 (13) | 0.0121 (13) | 0.0175 (13) |
C7 | 0.0354 (18) | 0.0305 (14) | 0.0236 (13) | −0.0010 (11) | 0.0114 (11) | 0.0074 (11) |
C10 | 0.0269 (17) | 0.0295 (14) | 0.0261 (13) | 0.0053 (11) | 0.0031 (11) | 0.0102 (11) |
C8 | 0.0253 (16) | 0.0263 (13) | 0.0327 (14) | 0.0073 (11) | 0.0087 (11) | 0.0115 (11) |
Cu1—O1 | 1.9589 (19) | C6—C5 | 1.367 (5) |
Cu1—O2i | 1.9689 (19) | C6—C7 | 1.401 (3) |
Cu1—O3 | 1.978 (2) | C6—H6 | 0.9300 |
Cu1—O4i | 1.984 (2) | C4—C3 | 1.381 (4) |
Cu1—N1 | 2.203 (2) | C4—C5 | 1.391 (5) |
Cu1—Cu1i | 2.6378 (7) | C4—H4 | 0.9300 |
S1—C1 | 1.727 (3) | C5—H5 | 0.9300 |
S1—C7 | 1.732 (3) | C11—C10 | 1.497 (4) |
N1—C1 | 1.293 (4) | C11—H11A | 0.9600 |
N1—C2 | 1.398 (3) | C11—H11B | 0.9600 |
O3—C10 | 1.261 (3) | C11—H11C | 0.9600 |
O4—C10 | 1.246 (3) | C9—C8 | 1.500 (4) |
O4—Cu1i | 1.984 (2) | C9—H9A | 0.9600 |
O1—C8 | 1.253 (3) | C9—H9C | 0.9600 |
C2—C3 | 1.390 (4) | C9—H9B | 0.9600 |
C2—C7 | 1.396 (4) | C1—H1 | 0.9300 |
O2—C8 | 1.256 (3) | C3—H3 | 0.9300 |
O2—Cu1i | 1.9689 (19) | ||
O1—Cu1—O2i | 167.71 (7) | C5—C4—H4 | 119.3 |
O1—Cu1—O3 | 90.12 (10) | C6—C5—C4 | 121.3 (2) |
O2i—Cu1—O3 | 88.37 (10) | C6—C5—H5 | 119.4 |
O1—Cu1—O4i | 88.25 (10) | C4—C5—H5 | 119.4 |
O2i—Cu1—O4i | 90.67 (10) | C10—C11—H11A | 109.5 |
O3—Cu1—O4i | 167.89 (8) | C10—C11—H11B | 109.5 |
O1—Cu1—N1 | 100.05 (8) | H11A—C11—H11B | 109.5 |
O2i—Cu1—N1 | 92.24 (8) | C10—C11—H11C | 109.5 |
O3—Cu1—N1 | 98.77 (8) | H11A—C11—H11C | 109.5 |
O4i—Cu1—N1 | 93.33 (8) | H11B—C11—H11C | 109.5 |
O1—Cu1—Cu1i | 84.48 (6) | C8—C9—H9A | 109.5 |
O2i—Cu1—Cu1i | 83.24 (6) | C8—C9—H9C | 109.5 |
O3—Cu1—Cu1i | 85.57 (6) | H9A—C9—H9C | 109.5 |
O4i—Cu1—Cu1i | 82.33 (6) | C8—C9—H9B | 109.5 |
N1—Cu1—Cu1i | 173.67 (6) | H9A—C9—H9B | 109.5 |
C1—S1—C7 | 88.85 (13) | H9C—C9—H9B | 109.5 |
C1—N1—C2 | 110.6 (2) | N1—C1—S1 | 116.61 (19) |
C1—N1—Cu1 | 118.25 (16) | N1—C1—H1 | 121.7 |
C2—N1—Cu1 | 130.51 (18) | S1—C1—H1 | 121.7 |
C10—O3—Cu1 | 121.50 (17) | C4—C3—C2 | 118.0 (3) |
C10—O4—Cu1i | 125.44 (19) | C4—C3—H3 | 121.0 |
C8—O1—Cu1 | 123.50 (15) | C2—C3—H3 | 121.0 |
C3—C2—C7 | 120.5 (2) | C2—C7—C6 | 120.8 (3) |
C3—C2—N1 | 125.5 (2) | C2—C7—S1 | 109.93 (18) |
C7—C2—N1 | 114.0 (2) | C6—C7—S1 | 129.2 (2) |
C8—O2—Cu1i | 124.42 (18) | O4—C10—O3 | 124.7 (3) |
C5—C6—C7 | 117.9 (3) | O4—C10—C11 | 117.7 (3) |
C5—C6—H6 | 121.0 | O3—C10—C11 | 117.6 (2) |
C7—C6—H6 | 121.0 | O1—C8—O2 | 124.2 (2) |
C3—C4—C5 | 121.4 (3) | O1—C8—C9 | 117.9 (2) |
C3—C4—H4 | 119.3 | O2—C8—C9 | 118.0 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C2H3O2)4(C7H5NS)2] |
Mr | 633.66 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.185 (1), 8.1918 (12), 11.8265 (16) |
α, β, γ (°) | 106.516 (16), 106.429 (16), 97.344 (17) |
V (Å3) | 623.49 (18) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.92 |
Crystal size (mm) | 0.3 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Stoe IPDS I diffractometer |
Absorption correction | Numerical (X-SHAPE; Stoe & Cie, 1999) |
Tmin, Tmax | 0.575, 0.840 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7525, 2784, 2092 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.663 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.075, 0.97 |
No. of reflections | 2784 |
No. of parameters | 165 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.45 |
Computer programs: X-AREA (Stoe & Cie, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), WinGX (Farrugia, 1999).
Acknowledgements
The authors are grateful to Universität zu Köln for financial support.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bukowska-Strzyżewska, M., Skoweranda, J. & Tosik, A. (1982). Acta Cryst. B38, 2904–2906. CSD CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferguson, G. & Glidewell, C. (2003). Acta Cryst. E59, m710–m712. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ford, R. A., Halkyard, G. & Underhill, A. E. (1968). Inorg. Nucl. Chem. Lett. 4, 507–512. CrossRef CAS Google Scholar
Rodríguez-Fortea, A., Alemany, P., Alvarez, S. & Ruiz, E. (2001). Chem. Eur. J. 7, 627–637. PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Sun, Y.-F., Lu, J.-R. & Zheng, Z.-B. (2007). Acta Cryst. E63, m1881. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tokii, T. & Muto, Y. (1983). Bull. Chem. Soc. Jpn, 56, 1549–1550. CrossRef CAS Web of Science Google Scholar
Van Niekerk, J. N. & Schoening, F. R. L. (1953). Nature (London), 171, 36–37. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Copper(II) acetate complexes of the general formula [LCu]2(µ2-OAc)4, where L is a ligand with an oxygen or nitrogen ligator atom have been well explored. The structural evidence of a copper-copper bond was given by van Niekerk & Schoening in 1953. The title compound is a dinuclear complex disposed around an inversion center located at the mid-point of the Cu—Cu bond. The coordination environment of Cu(II) ions can be described as a slightly distorted octahedron, with each copper atom being surrounded by four µ2-bridging bidentate acetate ligands in the basal plane and one benzothiazole ligand in one axial position (Fig. 1). The sixth coordination site is occupied by the neighbouring copper(II) atom. The Cu—Cu distance is about 0.02 Å longer as in Cu(II) acetate monohydrate [(H2O)Cu]2(µ2-OAc)4 with 2.6157 (8) Å (Ferguson & Glidewell 2003) and 0.03 Å shorter than in the benzimidazole complex 2.663 (1) Å (Bukowska-Strzyzewska et al. 1982). To our knowledge there is only one more dinuclear complex with acetate ligands and a benzothiazole derivative known (Sun et al. 2007). The magnetic moment of [(C7H5NS)Cu]2(µ2-OAc)4 of µ = 1.42 µB at room temperature is an evidence for Cu—Cu interactions with coupling of the electron spins, Ford et al. 1968. Magnetic susceptibilities of benzothiazole, thiazole and thiazole derivatives have been measured by Tokii & Muto 1983. Theoretical studies on intramolecular antiferromagnetic coupling in carboxylato-bridged dinuclear copper(II) complexes have been performed by Rodríguez-Fortea et al. 2001.