metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-bis­­[(1,3-benzo­thia­zole)copper(II)](CuCu)

aDepartment für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, 50939 Köln, Germany
*Correspondence e-mail: Gerd.Meyer@uni-koeln.de

(Received 24 May 2011; accepted 6 July 2011; online 13 July 2011)

The title compound, [Cu2(CH3CO2)4(C7H5NS)2] or [(C7H5NS)Cu]2(μ-O2CCH3)4, crystallizes with one mol­ecule per unit cell. The coordination number of copper is six with four basal O atoms, one axial N atom and one axial Cu atom. Four acetate ligands act as bidentate linker and connect two Cu atoms, with a crystallographic inversion center located at the mid-point of the Cu—Cu bond. The acetate ligands form slightly distorted square planes around each metal ion, while the copper ions are displaced by 0.2089 (4) Å from these planes towards the N atoms. Thus, the Cu—Cu distance is elongated to 2.6378 (7) Å, compared with the 2.2180 (7) Å distance between the two basal planes. The angle between the basal plane and the Cu—N bond is 4.84 (6)°.

Related literature

The structural prototype of (LCu)2(μ-O2CCH3)4 complexes is the crystal structure of cupric acetate monohydrate (L = water), see: Van Niekerk & Schoening (1953[Van Niekerk, J. N. & Schoening, F. R. L. (1953). Nature (London), 171, 36-37.]); Ferguson & Glidewell (2003[Ferguson, G. & Glidewell, C. (2003). Acta Cryst. E59, m710-m712.]). For similar structures with L = benzimidazole, see: Bukowska-Strzyżewska et al. (1982)[Bukowska-Strzyżewska, M., Skoweranda, J. & Tosik, A. (1982). Acta Cryst. B38, 2904-2906.] and L = 2-amino-benzothia­zole, see: Sun et al. (2007[Sun, Y.-F., Lu, J.-R. & Zheng, Z.-B. (2007). Acta Cryst. E63, m1881.]). For theoretical studies see: Rodríguez-Fortea et al. (2001)[Rodríguez-Fortea, A., Alemany, P., Alvarez, S. & Ruiz, E. (2001). Chem. Eur. J. 7, 627-637.] and for magnetic properties of dinuclear copper complexes, see: Tokii & Muto (1983[Tokii, T. & Muto, Y. (1983). Bull. Chem. Soc. Jpn, 56, 1549-1550.]). For FIR spectroscopic data and the magnetic moment of the complex with L = benzothia­zole, see: Ford et al. (1968[Ford, R. A., Halkyard, G. & Underhill, A. E. (1968). Inorg. Nucl. Chem. Lett. 4, 507-512.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C7H5NS)2]

  • Mr = 633.66

  • Triclinic, [P \overline 1]

  • a = 7.185 (1) Å

  • b = 8.1918 (12) Å

  • c = 11.8265 (16) Å

  • α = 106.516 (16)°

  • β = 106.429 (16)°

  • γ = 97.344 (17)°

  • V = 623.49 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Stoe IPDS I diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.575, Tmax = 0.840

  • 7525 measured reflections

  • 2784 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.075

  • S = 0.97

  • 2784 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Copper(II) acetate complexes of the general formula [LCu]2(µ2-OAc)4, where L is a ligand with an oxygen or nitrogen ligator atom have been well explored. The structural evidence of a copper-copper bond was given by van Niekerk & Schoening in 1953. The title compound is a dinuclear complex disposed around an inversion center located at the mid-point of the Cu—Cu bond. The coordination environment of Cu(II) ions can be described as a slightly distorted octahedron, with each copper atom being surrounded by four µ2-bridging bidentate acetate ligands in the basal plane and one benzothiazole ligand in one axial position (Fig. 1). The sixth coordination site is occupied by the neighbouring copper(II) atom. The Cu—Cu distance is about 0.02 Å longer as in Cu(II) acetate monohydrate [(H2O)Cu]22-OAc)4 with 2.6157 (8) Å (Ferguson & Glidewell 2003) and 0.03 Å shorter than in the benzimidazole complex 2.663 (1) Å (Bukowska-Strzyzewska et al. 1982). To our knowledge there is only one more dinuclear complex with acetate ligands and a benzothiazole derivative known (Sun et al. 2007). The magnetic moment of [(C7H5NS)Cu]2(µ2-OAc)4 of µ = 1.42 µB at room temperature is an evidence for Cu—Cu interactions with coupling of the electron spins, Ford et al. 1968. Magnetic susceptibilities of benzothiazole, thiazole and thiazole derivatives have been measured by Tokii & Muto 1983. Theoretical studies on intramolecular antiferromagnetic coupling in carboxylato-bridged dinuclear copper(II) complexes have been performed by Rodríguez-Fortea et al. 2001.

Related literature top

For structural prototypes of (LCu)2(µ2-OAc)4 complexes with L = water is the crystal structure of cupric acetate monohydrate, see: Van Niekerk & Schoening (1953); Ferguson & Glidewell (2003). For similar structures with L = benzimidazole, see: Bukowska-Strzyżewska et al. (1982) and L = 2-amino-benzothiazole, see: Sun et al. (2007). For theoretical studies see: Rodríguez-Fortea et al. (2001) and for magnetic properties of dinuclear copper complexes, see: Tokii & Muto (1983). For FIR spectroscopic data and the magnetic moment of the complex with L = benzothiazole, see: Ford et al. (1968).

Experimental top

Green platelets of [(C7H5NS)Cu]2(µ2-OAc)4 were obtained by the reaction of 0.20 g cupric acetate monohydrate (1 mmol, Merck) with 0.22 ml benzothiazole (0.27 g, 2 mmol, Acros) in 20 ml of ethanol at ambient temperature by slow evaporation of the solvent within two weeks. Yield: 0.59 g (93%). Mp: 206 °C (Decomp.). UV/VIS: (chloroform) λ max 358, 690 nm. IR: 3080(w), 3057(w), 2995(w), 2927(w), 1612(s), 1562(m), 1468(m), 1454(m), 1431(s), 1348(m), 1321(w), 1304(m), 1273(w), 1205(w), 1155(w), 1066(w), 1049(w), 1030(w), 1016(w), 949(w), 897(m), 870(w), 856(w), 810(w), 762(m), 733(m), 681(m), 627(m), 534(w), 507(w), 424(w) cm-1. Elem. Anal. calcd for C22H22Cu2N2O8S2: C, 41.70; H, 3.50; N, 4.42; S, 10.12; found: C, 41.30; H, 3.30; N, 4.17; S, 10.14.

Refinement top

Hydrogen atoms were placed in idealized positions and constrained riding on their parent atoms [C–H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(C)]. The last cycles of refinement included atomic positions for all atoms, anisotropic thermal parameters for all non-hydrogen atoms and isotropic thermal parameters for all hydrogen atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry code: (i) -x + 1, -y + 1, -z + 1]
[Figure 2] Fig. 2. The packing of (I), viewed along the b axis, H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The packing of (I), viewed along the a axis, H atoms have been omitted for clarity.
Tetra-µ-acetato-bis[(1,3-benzothiazole)copper(II)](CuCu) top
Crystal data top
[Cu2(C2H3O2)4(C7H5NS)2]Z = 1
Mr = 633.66F(000) = 322
Triclinic, P1Dx = 1.688 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.185 (1) ÅCell parameters from 1512 reflections
b = 8.1918 (12) Åθ = 3.8–56.3°
c = 11.8265 (16) ŵ = 1.92 mm1
α = 106.516 (16)°T = 293 K
β = 106.429 (16)°Plate, green
γ = 97.344 (17)°0.3 × 0.2 × 0.1 mm
V = 623.49 (18) Å3
Data collection top
Stoe IPDS I
diffractometer
2784 independent reflections
Radiation source: fine-focus sealed tube2092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 28.1°, θmin = 2.7°
Oscillation scansh = 88
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
k = 1010
Tmin = 0.575, Tmax = 0.840l = 1515
7525 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
2784 reflections(Δ/σ)max = 0.013
165 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu2(C2H3O2)4(C7H5NS)2]γ = 97.344 (17)°
Mr = 633.66V = 623.49 (18) Å3
Triclinic, P1Z = 1
a = 7.185 (1) ÅMo Kα radiation
b = 8.1918 (12) ŵ = 1.92 mm1
c = 11.8265 (16) ÅT = 293 K
α = 106.516 (16)°0.3 × 0.2 × 0.1 mm
β = 106.429 (16)°
Data collection top
Stoe IPDS I
diffractometer
2784 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
2092 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.840Rint = 0.038
7525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.97Δρmax = 0.45 e Å3
2784 reflectionsΔρmin = 0.45 e Å3
165 parameters
Special details top

Experimental. A single crystal suitable for X-ray diffraction was selected under a polarization microscope and sealed in a capillary tube. Complete scattering intensities data sets were collected with an imaging plate diffractometer (IPDS I, Stoe & Cie). The data were corrected for Lorentz and polarization effects. A numerical absorption correction based on crystal-shape optimization was applied for all data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen atoms were placed in idealized positions and constrained riding on their parent atoms [C–H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(C)]. The last cycles of refinement included atomic positions for all atoms, anisotropic thermal parameters for all non-hydrogen atoms and isotropic thermal parameters for all hydrogen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.43471 (5)0.46234 (4)0.58527 (3)0.02316 (11)
S10.04719 (13)0.43274 (11)0.83857 (7)0.0430 (2)
N10.2932 (4)0.4019 (3)0.71570 (19)0.0265 (5)
O30.6747 (3)0.6371 (3)0.70893 (18)0.0428 (5)
O40.7826 (3)0.7015 (3)0.56499 (17)0.0390 (5)
O10.5911 (3)0.2831 (3)0.56937 (19)0.0374 (5)
C20.3612 (4)0.3329 (3)0.8112 (2)0.0259 (6)
O20.6990 (4)0.3443 (3)0.4247 (2)0.0427 (6)
C60.3008 (5)0.2858 (4)0.9930 (3)0.0411 (8)
H60.22710.29531.04680.049*
C40.5758 (5)0.2012 (4)0.9319 (3)0.0458 (8)
H40.68480.15030.94620.055*
C50.4659 (6)0.2169 (4)1.0127 (3)0.0462 (9)
H50.50550.17981.08130.055*
C110.9534 (6)0.8715 (4)0.7759 (3)0.0542 (10)
H11A0.94990.87160.85640.081*
H11B0.93370.98120.76630.081*
H11C1.08030.85500.76930.081*
C90.7821 (5)0.1025 (4)0.4827 (3)0.0415 (7)
H9A0.91970.14150.49310.062*
H9C0.71660.01460.40180.062*
H9B0.77330.05420.54660.062*
C10.1335 (5)0.4564 (4)0.7205 (3)0.0344 (7)
H10.06850.50580.66330.041*
C30.5264 (5)0.2595 (4)0.8310 (3)0.0359 (7)
H30.60150.25010.77800.043*
C70.2462 (5)0.3417 (3)0.8892 (2)0.0307 (6)
C100.7917 (4)0.7261 (3)0.6755 (2)0.0288 (6)
C80.6835 (4)0.2542 (3)0.4930 (2)0.0278 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0256 (2)0.02769 (17)0.02156 (16)0.00738 (12)0.01074 (12)0.01282 (12)
S10.0358 (5)0.0654 (5)0.0383 (4)0.0139 (4)0.0222 (4)0.0223 (4)
N10.0267 (14)0.0329 (12)0.0228 (11)0.0055 (9)0.0097 (9)0.0127 (9)
O30.0453 (15)0.0499 (12)0.0239 (10)0.0096 (10)0.0076 (9)0.0115 (9)
O40.0353 (13)0.0522 (13)0.0247 (10)0.0037 (10)0.0095 (9)0.0124 (9)
O10.0467 (14)0.0429 (11)0.0437 (12)0.0252 (10)0.0268 (10)0.0275 (10)
C20.0283 (16)0.0263 (12)0.0203 (12)0.0001 (10)0.0065 (10)0.0082 (10)
O20.0588 (16)0.0442 (12)0.0552 (13)0.0307 (11)0.0389 (12)0.0338 (11)
C60.061 (2)0.0362 (16)0.0259 (14)0.0033 (14)0.0177 (14)0.0124 (13)
C40.056 (2)0.0381 (16)0.0425 (18)0.0160 (15)0.0071 (16)0.0191 (15)
C50.073 (3)0.0337 (16)0.0285 (15)0.0051 (15)0.0081 (15)0.0182 (13)
C110.055 (2)0.050 (2)0.0364 (18)0.0127 (16)0.0009 (16)0.0081 (15)
C90.045 (2)0.0338 (15)0.056 (2)0.0195 (14)0.0224 (16)0.0201 (15)
C10.0300 (18)0.0488 (17)0.0292 (14)0.0109 (13)0.0104 (12)0.0188 (13)
C30.040 (2)0.0374 (15)0.0337 (15)0.0099 (13)0.0121 (13)0.0175 (13)
C70.0354 (18)0.0305 (14)0.0236 (13)0.0010 (11)0.0114 (11)0.0074 (11)
C100.0269 (17)0.0295 (14)0.0261 (13)0.0053 (11)0.0031 (11)0.0102 (11)
C80.0253 (16)0.0263 (13)0.0327 (14)0.0073 (11)0.0087 (11)0.0115 (11)
Geometric parameters (Å, º) top
Cu1—O11.9589 (19)C6—C51.367 (5)
Cu1—O2i1.9689 (19)C6—C71.401 (3)
Cu1—O31.978 (2)C6—H60.9300
Cu1—O4i1.984 (2)C4—C31.381 (4)
Cu1—N12.203 (2)C4—C51.391 (5)
Cu1—Cu1i2.6378 (7)C4—H40.9300
S1—C11.727 (3)C5—H50.9300
S1—C71.732 (3)C11—C101.497 (4)
N1—C11.293 (4)C11—H11A0.9600
N1—C21.398 (3)C11—H11B0.9600
O3—C101.261 (3)C11—H11C0.9600
O4—C101.246 (3)C9—C81.500 (4)
O4—Cu1i1.984 (2)C9—H9A0.9600
O1—C81.253 (3)C9—H9C0.9600
C2—C31.390 (4)C9—H9B0.9600
C2—C71.396 (4)C1—H10.9300
O2—C81.256 (3)C3—H30.9300
O2—Cu1i1.9689 (19)
O1—Cu1—O2i167.71 (7)C5—C4—H4119.3
O1—Cu1—O390.12 (10)C6—C5—C4121.3 (2)
O2i—Cu1—O388.37 (10)C6—C5—H5119.4
O1—Cu1—O4i88.25 (10)C4—C5—H5119.4
O2i—Cu1—O4i90.67 (10)C10—C11—H11A109.5
O3—Cu1—O4i167.89 (8)C10—C11—H11B109.5
O1—Cu1—N1100.05 (8)H11A—C11—H11B109.5
O2i—Cu1—N192.24 (8)C10—C11—H11C109.5
O3—Cu1—N198.77 (8)H11A—C11—H11C109.5
O4i—Cu1—N193.33 (8)H11B—C11—H11C109.5
O1—Cu1—Cu1i84.48 (6)C8—C9—H9A109.5
O2i—Cu1—Cu1i83.24 (6)C8—C9—H9C109.5
O3—Cu1—Cu1i85.57 (6)H9A—C9—H9C109.5
O4i—Cu1—Cu1i82.33 (6)C8—C9—H9B109.5
N1—Cu1—Cu1i173.67 (6)H9A—C9—H9B109.5
C1—S1—C788.85 (13)H9C—C9—H9B109.5
C1—N1—C2110.6 (2)N1—C1—S1116.61 (19)
C1—N1—Cu1118.25 (16)N1—C1—H1121.7
C2—N1—Cu1130.51 (18)S1—C1—H1121.7
C10—O3—Cu1121.50 (17)C4—C3—C2118.0 (3)
C10—O4—Cu1i125.44 (19)C4—C3—H3121.0
C8—O1—Cu1123.50 (15)C2—C3—H3121.0
C3—C2—C7120.5 (2)C2—C7—C6120.8 (3)
C3—C2—N1125.5 (2)C2—C7—S1109.93 (18)
C7—C2—N1114.0 (2)C6—C7—S1129.2 (2)
C8—O2—Cu1i124.42 (18)O4—C10—O3124.7 (3)
C5—C6—C7117.9 (3)O4—C10—C11117.7 (3)
C5—C6—H6121.0O3—C10—C11117.6 (2)
C7—C6—H6121.0O1—C8—O2124.2 (2)
C3—C4—C5121.4 (3)O1—C8—C9117.9 (2)
C3—C4—H4119.3O2—C8—C9118.0 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C7H5NS)2]
Mr633.66
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.185 (1), 8.1918 (12), 11.8265 (16)
α, β, γ (°)106.516 (16), 106.429 (16), 97.344 (17)
V3)623.49 (18)
Z1
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerStoe IPDS I
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1999)
Tmin, Tmax0.575, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
7525, 2784, 2092
Rint0.038
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 0.97
No. of reflections2784
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.45

Computer programs: X-AREA (Stoe & Cie, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are grateful to Universität zu Köln for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBukowska-Strzyżewska, M., Skoweranda, J. & Tosik, A. (1982). Acta Cryst. B38, 2904–2906.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. & Glidewell, C. (2003). Acta Cryst. E59, m710–m712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFord, R. A., Halkyard, G. & Underhill, A. E. (1968). Inorg. Nucl. Chem. Lett. 4, 507–512.  CrossRef CAS Google Scholar
First citationRodríguez-Fortea, A., Alemany, P., Alvarez, S. & Ruiz, E. (2001). Chem. Eur. J. 7, 627–637.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSun, Y.-F., Lu, J.-R. & Zheng, Z.-B. (2007). Acta Cryst. E63, m1881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTokii, T. & Muto, Y. (1983). Bull. Chem. Soc. Jpn, 56, 1549–1550.  CrossRef CAS Web of Science Google Scholar
First citationVan Niekerk, J. N. & Schoening, F. R. L. (1953). Nature (London), 171, 36–37.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds