metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A tetra­gonal polymorph of bis­­[hydro­tris­­(pyrazol-1-yl)borato]iron(II)

aSchool of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, People's Republic of China
*Correspondence e-mail: nizhonghai@cumt.edu.cn

(Received 22 June 2011; accepted 30 June 2011; online 6 July 2011)

The title compound, [Fe(C9H10BN6)2], is a polymorph of a compound reported previously [Oliver et al. (1980[Oliver, J. D., Mullica, D. F., Hutchinson, B. B. & Milligan, W. O. (1980). Inorg. Chem. 19, 165-168.]). Inorg. Chem. 19, 165–168]. In the previous report, the compound crystallized in the monoclinic space group P21/c (Z = 4), whereas the crystal symmetry of the compound reported here is tetra­gonal (P42/ncm, Z = 4). The mol­ecular structure is comprised of two hydro­tris­(1-pyrazol­yl)borate ligands (Tp) and a central FeII ion, which is coordinated by six pyrazole N atoms from two two Tp ligands, yielding a distorted bipyramidal FeN6 geometry. The complete molecule exhibits symmetry 2/m.

Related literature

For the crystal structure of the other polymorph measured at room temperature, see: Oliver et al. (1980[Oliver, J. D., Mullica, D. F., Hutchinson, B. B. & Milligan, W. O. (1980). Inorg. Chem. 19, 165-168.]). For iron(II) complexes with the Tp derivative ligands, see: Janiak et al. (2000[Janiak, C., Temizdemir, S., Dechert, S., Deck, W., Girgsdies, F., Heinze, J., Kolm, M., Scharmann, T. G. & Zipffel, O. M. (2000). Eur. J. Inorg. Chem. pp. 1229-1236.]); Reger et al. (2005[Reger, D. L., Gardinier, J. R., Smith, M. D., Shahin, A. M., Long, G. J., Rebbouh, L. & Grandjean, F. (2005). Inorg. Chem. 44, 1852-1856.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C9H10BN6)2]

  • Mr = 481.93

  • Tetragonal, P 42 /n c m

  • a = 17.017 (3) Å

  • c = 7.4099 (15) Å

  • V = 2145.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 123 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.867, Tmax = 0.916

  • 14091 measured reflections

  • 1099 independent reflections

  • 1095 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.123

  • S = 0.95

  • 1099 reflections

  • 87 parameters

  • H-atom parameters not refined

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XP.

Supporting information


Comment top

Recently, hydro-tris(1-pyrazolyl)-borate (Tp-)and its derivatives have been employed as tridentate ligands to assembly molecular functional materials such as cyanide-bridged magnetic complexes, spin cross-over compounds and optic materials. In these cases, some mononuclear iron(II) complexes with two such tridendate ligands have been synthesized and crystal structures characterized (Janiak et al., 2000; Reger et al., 2005). The crystal structure of the title compound has been reported previously (Oliver et al., 1980) which was measured at room temperature and crystallized in monoclinic space group of P21/c (Z = 4). Recently, we synthesized this compound and measured its crystal structure at temperature 123 K. The result indicated that the crystal structure of the compound is significantly from the previous report. Herein, we report the crystal structure of the title compound [FeII(C9H10N6B)2] (I).

The title compound in this paper crystallizes in a tetragonal space group P42/ncm, suggesting there is a fourfold rotation symmetry axis in the unit cell. In the molecular structure of the title compound, there is a pseudo C3 rotation axis. The geometry and labeling scheme for the crystal structure of the title complex are depicted in Figure 1. The molecular structure of title compound in this work comprises of two Tp- ligands and one central iron(II) ion. In the molecular structure, the cental metal iron(II) ion is coordinated by six pyrazole nitrogen atoms from the same two Tp- ligands, yielding a distorted bipyramidal FeN6 geometry.

The Fe—N bond length is 1.975 (2)Å for Fe1—N2 and 1.983 (2)Å for Fe1—N4, respectively. which are simiar to those in the polymorph of the title compound reported previously at room temperature (Oliver et al., 1980). The N—Fe—N bond angle is 89.05 (18)° for N2—Fe1—N4 and 88.33 (18)° for N2—Fe1—N2[+y, +x, +z.], respectively. These Fe—N bond lengthes suggest that the iron(II) center of the title compound is low spin state whether at low temperature or at room temperature (Oliver et al., 1980).

Related literature top

For the crystal structure of the other polymorph measured at room temperature, see: Oliver et al. (1980). For iron(II) complexes with the Tp- derivative ligands, see: Janiak et al. (2000); Reger et al. (2005).

Experimental top

The title complex was prepared as following: methanol solution (10 ml) of [FeII(BF4)2].4H2O (30 mg, 0.1 mmol) was added slowly into a MeOH and aqueous solution (20 ml, water and methanol with v/v = 1/1) containing the ligand KTp (50.4 mg, 0.2 mmol). Then, the mixture was carefully filtered and the resulting solution was kept at room temperature for about two days, producing block brown crystals of (I) with yield 50%.

Refinement top

The coordinates of the H atom bound to boron atom was found from difference Fourier maps and refined freely. H atoms bound to C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.93 Å. All H atoms were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: (A) -x, -y, -z; (B) -y, -x, -z; (C) +y, +x, +z.]
bis[hydrotris(pyrazol-1-yl)borato]iron(II) top
Crystal data top
[Fe(C9H10BN6)2]Dx = 1.492 Mg m3
Mr = 481.93Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/ncmCell parameters from 1210 reflections
Hall symbol: -P 4ac 2acθ = 2.4–27.1°
a = 17.017 (3) ŵ = 0.74 mm1
c = 7.4099 (15) ÅT = 123 K
V = 2145.7 (7) Å3Block, brown
Z = 40.2 × 0.15 × 0.12 mm
F(000) = 992
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1099 independent reflections
Radiation source: fine-focus sealed tube1095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2020
Tmin = 0.867, Tmax = 0.916k = 2016
14091 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters not refined
S = 0.95 w = 1/[σ2(Fo2) + (0.0908P)2 + 2.7074P]
where P = (Fo2 + 2Fc2)/3
1099 reflections(Δ/σ)max < 0.001
87 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Fe(C9H10BN6)2]Z = 4
Mr = 481.93Mo Kα radiation
Tetragonal, P42/ncmµ = 0.74 mm1
a = 17.017 (3) ÅT = 123 K
c = 7.4099 (15) Å0.2 × 0.15 × 0.12 mm
V = 2145.7 (7) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1095 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.916Rint = 0.034
14091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.123H-atom parameters not refined
S = 0.95Δρmax = 0.43 e Å3
1099 reflectionsΔρmin = 0.39 e Å3
87 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10000.0125 (3)
B10.11871 (13)0.11871 (13)0.1589 (4)0.0150 (6)
H1A0.1588 (14)0.1588 (14)0.211 (4)0.013 (7)*
C10.19598 (12)0.00348 (11)0.3210 (3)0.0173 (5)
H10.23650.03170.37490.021*
C20.18477 (12)0.07653 (13)0.3322 (3)0.0218 (5)
H20.21540.11270.39470.026*
C30.11737 (12)0.09163 (12)0.2293 (3)0.0201 (5)
H30.09540.14110.21170.024*
C40.08225 (9)0.08225 (9)0.3162 (3)0.0176 (6)
H40.05620.05620.40900.021*
C50.13997 (9)0.13996 (9)0.3405 (3)0.0196 (6)
H50.15940.15940.44910.024*
C60.16160 (12)0.16160 (12)0.1690 (4)0.0179 (6)
H60.19920.19920.14010.021*
N10.13791 (9)0.03379 (9)0.2180 (2)0.0157 (4)
N20.08928 (10)0.02509 (10)0.1603 (2)0.0162 (4)
N30.11954 (9)0.11954 (9)0.0499 (3)0.0148 (5)
N40.07002 (9)0.07002 (9)0.1405 (3)0.0152 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0106 (3)0.0106 (3)0.0163 (4)0.00276 (17)0.00002 (13)0.00002 (13)
B10.0120 (9)0.0120 (9)0.0212 (15)0.0015 (11)0.0007 (8)0.0007 (8)
C10.0121 (10)0.0198 (11)0.0201 (10)0.0007 (7)0.0028 (8)0.0015 (7)
C20.0177 (10)0.0192 (10)0.0283 (11)0.0014 (8)0.0013 (8)0.0071 (8)
C30.0198 (10)0.0135 (9)0.0270 (11)0.0020 (7)0.0006 (8)0.0030 (8)
C40.0183 (9)0.0183 (9)0.0162 (13)0.0024 (11)0.0005 (7)0.0005 (7)
C50.0194 (9)0.0194 (9)0.0201 (14)0.0011 (11)0.0032 (8)0.0032 (8)
C60.0136 (8)0.0136 (8)0.0266 (15)0.0008 (10)0.0027 (8)0.0027 (8)
N10.0144 (8)0.0131 (9)0.0197 (8)0.0031 (6)0.0012 (6)0.0007 (6)
N20.0144 (8)0.0128 (8)0.0216 (8)0.0034 (6)0.0004 (6)0.0009 (6)
N30.0111 (7)0.0111 (7)0.0223 (12)0.0020 (8)0.0001 (6)0.0001 (6)
N40.0134 (7)0.0134 (7)0.0190 (11)0.0024 (9)0.0006 (6)0.0006 (6)
Geometric parameters (Å, º) top
Fe1—N2i1.9751 (17)C2—C31.401 (3)
Fe1—N2ii1.9751 (17)C2—H20.9300
Fe1—N21.9751 (17)C3—N21.331 (3)
Fe1—N2iii1.9751 (17)C3—H30.9300
Fe1—N4iii1.981 (2)C4—N41.335 (3)
Fe1—N41.981 (2)C4—C51.4005
B1—N1ii1.545 (2)C4—H40.9300
B1—N11.545 (2)C5—C61.374 (4)
B1—N31.547 (4)C5—H50.9300
B1—H1A1.04 (3)C6—N31.343 (4)
C1—N11.351 (3)C6—H60.9300
C1—C21.377 (3)N1—N21.368 (2)
C1—H10.9300N3—N41.368 (3)
N2i—Fe1—N2ii180.00 (6)C3—C2—H2127.4
N2i—Fe1—N291.67 (10)N2—C3—C2110.30 (18)
N2ii—Fe1—N288.33 (10)N2—C3—H3124.9
N2i—Fe1—N2iii88.33 (10)C2—C3—H3124.9
N2ii—Fe1—N2iii91.67 (10)N4—C4—C5110.13 (13)
N2—Fe1—N2iii180.00 (14)N4—C4—H4124.9
N2i—Fe1—N4iii89.05 (7)C5—C4—H4124.9
N2ii—Fe1—N4iii90.95 (7)C6—C5—C4104.89 (14)
N2—Fe1—N4iii90.95 (7)C6—C5—H5127.6
N2iii—Fe1—N4iii89.05 (7)C4—C5—H5127.6
N2i—Fe1—N490.95 (7)N3—C6—C5108.8 (2)
N2ii—Fe1—N489.05 (7)N3—C6—H6125.6
N2—Fe1—N489.05 (7)C5—C6—H6125.6
N2iii—Fe1—N490.95 (7)C1—N1—N2109.85 (16)
N4iii—Fe1—N4180.00 (18)C1—N1—B1132.23 (18)
N1ii—B1—N1108.4 (2)N2—N1—B1117.93 (17)
N1ii—B1—N3106.87 (15)C3—N2—N1106.59 (16)
N1—B1—N3106.87 (15)C3—N2—Fe1133.71 (14)
N1ii—B1—H1A111.6 (9)N1—N2—Fe1119.67 (13)
N1—B1—H1A111.6 (9)C6—N3—N4109.5 (2)
N3—B1—H1A111.2 (17)C6—N3—B1131.8 (2)
N1—C1—C2108.08 (18)N4—N3—B1118.6 (2)
N1—C1—H1126.0C4—N4—N3106.6 (2)
C2—C1—H1126.0C4—N4—Fe1134.45 (17)
C1—C2—C3105.17 (18)N3—N4—Fe1118.91 (18)
C1—C2—H2127.4
N1—C1—C2—C30.4 (2)N4iii—Fe1—N2—N1136.67 (14)
C1—C2—C3—N20.2 (2)N4—Fe1—N2—N143.33 (14)
N4—C4—C5—C60.0C5—C6—N3—N40.0
C4—C5—C6—N30.0C5—C6—N3—B1180.0
C2—C1—N1—N20.6 (2)N1ii—B1—N3—C6122.08 (15)
C2—C1—N1—B1179.4 (2)N1—B1—N3—C6122.08 (15)
N1ii—B1—N1—C1124.0 (2)N1ii—B1—N3—N457.92 (15)
N3—B1—N1—C1121.1 (2)N1—B1—N3—N457.92 (15)
N1ii—B1—N1—N255.9 (3)C5—C4—N4—N30.0
N3—B1—N1—N258.9 (2)C5—C4—N4—Fe1180.0
C2—C3—N2—N10.2 (2)C6—N3—N4—C40.0
C2—C3—N2—Fe1178.11 (14)B1—N3—N4—C4180.0
C1—N1—N2—C30.4 (2)C6—N3—N4—Fe1180.0
B1—N1—N2—C3179.50 (18)B1—N3—N4—Fe10.0
C1—N1—N2—Fe1178.13 (13)N2i—Fe1—N4—C444.17 (5)
B1—N1—N2—Fe11.9 (2)N2ii—Fe1—N4—C4135.83 (5)
N2i—Fe1—N2—C343.85 (17)N2—Fe1—N4—C4135.83 (5)
N2ii—Fe1—N2—C3136.15 (17)N2iii—Fe1—N4—C444.17 (5)
N2iii—Fe1—N2—C339 (32)N4iii—Fe1—N4—C40 (100)
N4iii—Fe1—N2—C345.2 (2)N2i—Fe1—N4—N3135.83 (5)
N4—Fe1—N2—C3134.8 (2)N2ii—Fe1—N4—N344.17 (5)
N2i—Fe1—N2—N1134.26 (16)N2—Fe1—N4—N344.17 (5)
N2ii—Fe1—N2—N145.74 (16)N2iii—Fe1—N4—N3135.83 (5)
N2iii—Fe1—N2—N1143 (32)N4iii—Fe1—N4—N3180.00 (3)
Symmetry codes: (i) y, x, z; (ii) y, x, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C9H10BN6)2]
Mr481.93
Crystal system, space groupTetragonal, P42/ncm
Temperature (K)123
a, c (Å)17.017 (3), 7.4099 (15)
V3)2145.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.2 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.867, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
14091, 1099, 1095
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.123, 0.95
No. of reflections1099
No. of parameters87
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.43, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SAINT-Plus (Bruker, 2001, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

 

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (China University of Mining and Technology). The authors thank Professors Hui-Zhong Kou and Seik Weng Ng for helpful comments and assistance in the preparation of this paper.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJaniak, C., Temizdemir, S., Dechert, S., Deck, W., Girgsdies, F., Heinze, J., Kolm, M., Scharmann, T. G. & Zipffel, O. M. (2000). Eur. J. Inorg. Chem. pp. 1229–1236.  CrossRef Google Scholar
First citationOliver, J. D., Mullica, D. F., Hutchinson, B. B. & Milligan, W. O. (1980). Inorg. Chem. 19, 165–168.  CSD CrossRef CAS Web of Science Google Scholar
First citationReger, D. L., Gardinier, J. R., Smith, M. D., Shahin, A. M., Long, G. J., Rebbouh, L. & Grandjean, F. (2005). Inorg. Chem. 44, 1852–1856.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds