organic compounds
2-Hydroxymethyl-1,3-dimethylimidazolium iodide
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The crystal packing of the title compound, C6H11N2O+·I−, can be described as intercalated layers lying parallel to (010), with the iodide ions located between the cations. A weak intramolecular C—H⋯O hydrogen bond occurs within the cation. In the crystal, intermolecular O—H⋯I hydrogen bonds result in the formation of a three-dimensional network and reinforce the cohesion of the ionic structure.
Related literature
For related ionic liquids, see: Welton (1999); Kubisa (2004); Corma & Garcia (2003); Sheldon (2001); Wasserscheid & Kerm (2000). For synthetic appilications of ionic liquids, see: Varma & Namboodiri (2001).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811025700/hg5062sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811025700/hg5062Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811025700/hg5062Isup3.cml
The title compound I was synthesized by treating 1eq of (1-methyl-1H-imidazol-2-yl)methanol by 3 eq of methyl iodide in refluxing THF during two days. The solid is filtered off and washed with boiling THF. Suitable crystals of I were obtained by crystallization from a CH3CN/THF solution.
All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or O atom. (with C—H = 0.95Å 0.98Å 0.99 Å, O—H = 84 Å and Uiso(H) =1.2 or 1.5(carrier atom)).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C6H11N2O+·I− | F(000) = 488 |
Mr = 254.07 | Dx = 1.888 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1935 reflections |
a = 7.3428 (3) Å | θ = 2.4–27.4° |
b = 7.2186 (3) Å | µ = 3.53 mm−1 |
c = 16.8870 (8) Å | T = 150 K |
β = 93.093 (2)° | Prism, colourless |
V = 893.79 (7) Å3 | 0.3 × 0.13 × 0.01 mm |
Z = 4 |
Bruker APEXII diffractometer | 1463 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
CCD rotation images, thin slices scans | θmax = 27.4°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −5→9 |
Tmin = 0.718, Tmax = 0.965 | k = −6→9 |
4200 measured reflections | l = −21→21 |
2035 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0289P)2 + 0.3175P] where P = (Fo2 + 2Fc2)/3 |
2035 reflections | (Δ/σ)max = 0.001 |
94 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
C6H11N2O+·I− | V = 893.79 (7) Å3 |
Mr = 254.07 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.3428 (3) Å | µ = 3.53 mm−1 |
b = 7.2186 (3) Å | T = 150 K |
c = 16.8870 (8) Å | 0.3 × 0.13 × 0.01 mm |
β = 93.093 (2)° |
Bruker APEXII diffractometer | 2035 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1463 reflections with I > 2σ(I) |
Tmin = 0.718, Tmax = 0.965 | Rint = 0.019 |
4200 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.66 e Å−3 |
2035 reflections | Δρmin = −0.54 e Å−3 |
94 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.80624 (2) | 0.74882 (2) | 0.413580 (10) | 0.02430 (8) | |
C1 | 0.6996 (5) | 0.2724 (3) | 0.20049 (17) | 0.0284 (6) | |
H1A | 0.8326 | 0.2864 | 0.2033 | 0.043* | |
H1B | 0.6438 | 0.3775 | 0.1716 | 0.043* | |
H1C | 0.6663 | 0.157 | 0.1728 | 0.043* | |
N2 | 0.6343 (3) | 0.2668 (2) | 0.28084 (14) | 0.0204 (5) | |
C3 | 0.4551 (4) | 0.2855 (3) | 0.29967 (18) | 0.0251 (6) | |
H3 | 0.3528 | 0.3011 | 0.2634 | 0.03* | |
C4 | 0.4528 (4) | 0.2773 (3) | 0.37988 (17) | 0.0232 (6) | |
H4 | 0.3482 | 0.2865 | 0.4104 | 0.028* | |
N5 | 0.6304 (3) | 0.2533 (2) | 0.40871 (13) | 0.0195 (5) | |
C6 | 0.6882 (4) | 0.2431 (3) | 0.49319 (18) | 0.0271 (6) | |
H6A | 0.7534 | 0.1265 | 0.5038 | 0.041* | |
H6B | 0.5807 | 0.2483 | 0.5251 | 0.041* | |
H6C | 0.7689 | 0.3475 | 0.5071 | 0.041* | |
C7 | 0.7404 (4) | 0.2472 (3) | 0.34775 (16) | 0.0192 (5) | |
C8 | 0.9437 (4) | 0.2288 (3) | 0.35238 (19) | 0.0254 (6) | |
H8A | 0.9867 | 0.2055 | 0.4081 | 0.03* | |
H8B | 0.9789 | 0.1212 | 0.3202 | 0.03* | |
O9 | 1.0295 (3) | 0.3905 (2) | 0.32453 (12) | 0.0305 (4) | |
H9 | 0.9902 | 0.4838 | 0.348 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01963 (12) | 0.02953 (13) | 0.02391 (12) | 0.00057 (7) | 0.00275 (8) | −0.00027 (6) |
C1 | 0.0296 (16) | 0.0386 (16) | 0.0173 (14) | −0.0004 (12) | 0.0043 (12) | −0.0005 (11) |
N2 | 0.0192 (11) | 0.0243 (11) | 0.0179 (11) | 0.0006 (8) | 0.0020 (9) | −0.0003 (8) |
C3 | 0.0170 (14) | 0.0308 (15) | 0.0277 (15) | 0.0020 (11) | 0.0027 (11) | 0.0000 (11) |
C4 | 0.0147 (13) | 0.0310 (14) | 0.0242 (14) | 0.0011 (10) | 0.0029 (11) | 0.0007 (10) |
N5 | 0.0154 (11) | 0.0256 (11) | 0.0176 (11) | 0.0004 (8) | 0.0017 (9) | −0.0005 (8) |
C6 | 0.0209 (14) | 0.0408 (17) | 0.0196 (14) | 0.0001 (11) | 0.0011 (11) | 0.0017 (10) |
C7 | 0.0161 (12) | 0.0217 (13) | 0.0200 (13) | −0.0007 (10) | 0.0026 (10) | 0.0003 (9) |
C8 | 0.0172 (14) | 0.0315 (15) | 0.0276 (15) | 0.0006 (11) | 0.0026 (12) | 0.0005 (11) |
O9 | 0.0217 (10) | 0.0301 (10) | 0.0410 (11) | −0.0052 (9) | 0.0133 (8) | −0.0041 (9) |
C1—N2 | 1.464 (4) | N5—C7 | 1.343 (3) |
C1—H1A | 0.98 | N5—C6 | 1.468 (4) |
C1—H1B | 0.98 | C6—H6A | 0.98 |
C1—H1C | 0.98 | C6—H6B | 0.98 |
N2—C7 | 1.345 (3) | C6—H6C | 0.98 |
N2—C3 | 1.376 (4) | C7—C8 | 1.497 (4) |
C3—C4 | 1.357 (4) | C8—O9 | 1.419 (3) |
C3—H3 | 0.95 | C8—H8A | 0.99 |
C4—N5 | 1.379 (4) | C8—H8B | 0.99 |
C4—H4 | 0.95 | O9—H9 | 0.84 |
N2—C1—H1A | 109.5 | C4—N5—C6 | 124.6 (2) |
N2—C1—H1B | 109.5 | N5—C6—H6A | 109.5 |
H1A—C1—H1B | 109.5 | N5—C6—H6B | 109.5 |
N2—C1—H1C | 109.5 | H6A—C6—H6B | 109.5 |
H1A—C1—H1C | 109.5 | N5—C6—H6C | 109.5 |
H1B—C1—H1C | 109.5 | H6A—C6—H6C | 109.5 |
C7—N2—C3 | 109.5 (2) | H6B—C6—H6C | 109.5 |
C7—N2—C1 | 125.3 (3) | N5—C7—N2 | 107.2 (3) |
C3—N2—C1 | 125.2 (3) | N5—C7—C8 | 127.0 (3) |
C4—C3—N2 | 106.9 (3) | N2—C7—C8 | 125.7 (3) |
C4—C3—H3 | 126.6 | O9—C8—C7 | 111.6 (2) |
N2—C3—H3 | 126.6 | O9—C8—H8A | 109.3 |
C3—C4—N5 | 107.2 (3) | C7—C8—H8A | 109.3 |
C3—C4—H4 | 126.4 | O9—C8—H8B | 109.3 |
N5—C4—H4 | 126.4 | C7—C8—H8B | 109.3 |
C7—N5—C4 | 109.3 (2) | H8A—C8—H8B | 108 |
C7—N5—C6 | 126.1 (3) | C8—O9—H9 | 109.5 |
C7—N2—C3—C4 | 0.1 (3) | C6—N5—C7—C8 | 0.1 (3) |
C1—N2—C3—C4 | −178.4 (2) | C3—N2—C7—N5 | 0.0 (2) |
N2—C3—C4—N5 | −0.2 (3) | C1—N2—C7—N5 | 178.48 (18) |
C3—C4—N5—C7 | 0.2 (2) | C3—N2—C7—C8 | −178.1 (2) |
C3—C4—N5—C6 | 178.15 (19) | C1—N2—C7—C8 | 0.3 (3) |
C4—N5—C7—N2 | −0.1 (2) | N5—C7—C8—O9 | −113.9 (3) |
C6—N5—C7—N2 | −178.06 (18) | N2—C7—C8—O9 | 63.8 (3) |
C4—N5—C7—C8 | 178.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···I1 | 0.84 | 2.62 | 3.4504 (18) | 169 |
C1—H1A···O9 | 0.98 | 2.55 | 3.230 (4) | 126 |
Experimental details
Crystal data | |
Chemical formula | C6H11N2O+·I− |
Mr | 254.07 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 7.3428 (3), 7.2186 (3), 16.8870 (8) |
β (°) | 93.093 (2) |
V (Å3) | 893.79 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.53 |
Crystal size (mm) | 0.3 × 0.13 × 0.01 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.718, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4200, 2035, 1463 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.063, 1.03 |
No. of reflections | 2035 |
No. of parameters | 94 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.66, −0.54 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···I1 | 0.84 | 2.62 | 3.4504 (18) | 169 |
C1—H1A···O9 | 0.98 | 2.55 | 3.230 (4) | 126 |
Acknowledgements
We are grateful to all personal of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.
References
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Corma, A. & Garcia, H. (2003). Chem. Rev. 103, 4307–4366. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kubisa, P. (2004). Progr. Polym. Sci. 29, 3–12. Web of Science CrossRef CAS Google Scholar
Sheldon, R. (2001). Chem. Commun. pp. 2399–2407. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Varma, R. S. & Namboodiri, V. V. (2001). Pure Appl. Chem. 73, 1309–1313. Web of Science CrossRef CAS Google Scholar
Wasserscheid, P. & Kerm, W. (2000). Angew. Chem. Int. Ed. 39, 3772–3781. CrossRef CAS Google Scholar
Welton, T. (1999). Chem. Rev. 99, 2701–2784. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The development of cleaner technologies is a major emphasis in green chemistry. Among the several aspects of green chemistry, the reduction/replacement of volatile organic solvents from the reaction medium is of utmost importance. The use of a large excess of conventional volatile solvents required to conduct a chemical reaction creates ecological and economic concerns. The search for a nonvolatile and recyclable alternative is thus holding a key role in this field of research. The use of fused organic salts, consisting of ions, is now emerging as a possible alternative. A proper choice of cations and anions is required to achieve ionic salts that are liquids at room temperature and are appropriately termed room temperature ionic liquids (RTILs) (Welton, 1999; Kubisa 2004; Corma & Garcia 2003; Sheldon, 2001; Wasserscheid & Kerm, 2000). The ionic liquids based on 1,3-dialkylimidazolium are becoming more important for several synthetic applications (Varma & Namboodiri 2001).
In this work, we report synthesis and the structure determination of an ionic compound obtained from the quaternization reaction of 1-methyl-2-hydroxymethylimidazole using methyl iodide (I).
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymetric unit of title molecule, C6H11N2O+, I-, contains a 2-hydroxymethyl-1,3-dimethylimidazolium cation and iodide anion.
The crystal packing can be described as intercalated layers parallel to the (010) plane, wich iodide ions are located between cations (Fig. 2). It is stabilized by weak intra and intermolecular hydrogen bonds [O—H···I and C—H···O] (Fig. 3). These interaction bonds link the molecules within the layers and also link the layers together, forming a three dimensional network and reinforcing the cohesion of the ionic structure. Hydrogen-bonding parameters are listed in table 1.