organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy­methyl-1,3-di­methyl­imidazolium iodide

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 28 June 2011; accepted 29 June 2011; online 2 July 2011)

The crystal packing of the title compound, C6H11N2O+·I, can be described as inter­calated layers lying parallel to (010), with the iodide ions located between the cations. A weak intra­molecular C—H⋯O hydrogen bond occurs within the cation. In the crystal, inter­molecular O—H⋯I hydrogen bonds result in the formation of a three-dimensional network and reinforce the cohesion of the ionic structure.

Related literature

For related ionic liquids, see: Welton (1999[Welton, T. (1999). Chem. Rev. 99, 2701-2784.]); Kubisa (2004[Kubisa, P. (2004). Progr. Polym. Sci. 29, 3-12.]); Corma & Garcia (2003[Corma, A. & Garcia, H. (2003). Chem. Rev. 103, 4307-4366.]); Sheldon (2001[Sheldon, R. (2001). Chem. Commun. pp. 2399-2407.]); Wasserscheid & Kerm (2000[Wasserscheid, P. & Kerm, W. (2000). Angew. Chem. Int. Ed. 39, 3772-3781.]). For synthetic appilications of ionic liquids, see: Varma & Namboodiri (2001[Varma, R. S. & Namboodiri, V. V. (2001). Pure Appl. Chem. 73, 1309-1313.]).

[Scheme 1]

Experimental

Crystal data
  • C6H11N2O+·I

  • Mr = 254.07

  • Monoclinic, P 21 /c

  • a = 7.3428 (3) Å

  • b = 7.2186 (3) Å

  • c = 16.8870 (8) Å

  • β = 93.093 (2)°

  • V = 893.79 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.53 mm−1

  • T = 150 K

  • 0.3 × 0.13 × 0.01 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.718, Tmax = 0.965

  • 4200 measured reflections

  • 2035 independent reflections

  • 1463 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.063

  • S = 1.03

  • 2035 reflections

  • 94 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯I1 0.84 2.62 3.4504 (18) 169
C1—H1A⋯O9 0.98 2.55 3.230 (4) 126

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The development of cleaner technologies is a major emphasis in green chemistry. Among the several aspects of green chemistry, the reduction/replacement of volatile organic solvents from the reaction medium is of utmost importance. The use of a large excess of conventional volatile solvents required to conduct a chemical reaction creates ecological and economic concerns. The search for a nonvolatile and recyclable alternative is thus holding a key role in this field of research. The use of fused organic salts, consisting of ions, is now emerging as a possible alternative. A proper choice of cations and anions is required to achieve ionic salts that are liquids at room temperature and are appropriately termed room temperature ionic liquids (RTILs) (Welton, 1999; Kubisa 2004; Corma & Garcia 2003; Sheldon, 2001; Wasserscheid & Kerm, 2000). The ionic liquids based on 1,3-dialkylimidazolium are becoming more important for several synthetic applications (Varma & Namboodiri 2001).

In this work, we report synthesis and the structure determination of an ionic compound obtained from the quaternization reaction of 1-methyl-2-hydroxymethylimidazole using methyl iodide (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymetric unit of title molecule, C6H11N2O+, I-, contains a 2-hydroxymethyl-1,3-dimethylimidazolium cation and iodide anion.

The crystal packing can be described as intercalated layers parallel to the (010) plane, wich iodide ions are located between cations (Fig. 2). It is stabilized by weak intra and intermolecular hydrogen bonds [O—H···I and C—H···O] (Fig. 3). These interaction bonds link the molecules within the layers and also link the layers together, forming a three dimensional network and reinforcing the cohesion of the ionic structure. Hydrogen-bonding parameters are listed in table 1.

Related literature top

For related ionic liquids, see: Welton (1999); Kubisa (2004); Corma & Garcia (2003); Sheldon (2001); Wasserscheid & Kerm (2000). For synthetic appilications of ionic liquids, see: Varma & Namboodiri (2001).

Experimental top

The title compound I was synthesized by treating 1eq of (1-methyl-1H-imidazol-2-yl)methanol by 3 eq of methyl iodide in refluxing THF during two days. The solid is filtered off and washed with boiling THF. Suitable crystals of I were obtained by crystallization from a CH3CN/THF solution.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C or O atom. (with C—H = 0.95Å 0.98Å 0.99 Å, O—H = 84 Å and Uiso(H) =1.2 or 1.5(carrier atom)).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) the structure of the title compound with the atomic labelling scheme.Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the a axis.
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001)Part of crystal packing of (I) showing hydrogen bond [C—H···O, O—H···I] as dashed line.
2-Hydroxymethyl-1,3-dimethylimidazolium iodide top
Crystal data top
C6H11N2O+·IF(000) = 488
Mr = 254.07Dx = 1.888 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1935 reflections
a = 7.3428 (3) Åθ = 2.4–27.4°
b = 7.2186 (3) ŵ = 3.53 mm1
c = 16.8870 (8) ÅT = 150 K
β = 93.093 (2)°Prism, colourless
V = 893.79 (7) Å30.3 × 0.13 × 0.01 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
CCD rotation images, thin slices scansθmax = 27.4°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 59
Tmin = 0.718, Tmax = 0.965k = 69
4200 measured reflectionsl = 2121
2035 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.3175P]
where P = (Fo2 + 2Fc2)/3
2035 reflections(Δ/σ)max = 0.001
94 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C6H11N2O+·IV = 893.79 (7) Å3
Mr = 254.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3428 (3) ŵ = 3.53 mm1
b = 7.2186 (3) ÅT = 150 K
c = 16.8870 (8) Å0.3 × 0.13 × 0.01 mm
β = 93.093 (2)°
Data collection top
Bruker APEXII
diffractometer
2035 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1463 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.965Rint = 0.019
4200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.03Δρmax = 0.66 e Å3
2035 reflectionsΔρmin = 0.54 e Å3
94 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.80624 (2)0.74882 (2)0.413580 (10)0.02430 (8)
C10.6996 (5)0.2724 (3)0.20049 (17)0.0284 (6)
H1A0.83260.28640.20330.043*
H1B0.64380.37750.17160.043*
H1C0.66630.1570.17280.043*
N20.6343 (3)0.2668 (2)0.28084 (14)0.0204 (5)
C30.4551 (4)0.2855 (3)0.29967 (18)0.0251 (6)
H30.35280.30110.26340.03*
C40.4528 (4)0.2773 (3)0.37988 (17)0.0232 (6)
H40.34820.28650.41040.028*
N50.6304 (3)0.2533 (2)0.40871 (13)0.0195 (5)
C60.6882 (4)0.2431 (3)0.49319 (18)0.0271 (6)
H6A0.75340.12650.50380.041*
H6B0.58070.24830.52510.041*
H6C0.76890.34750.50710.041*
C70.7404 (4)0.2472 (3)0.34775 (16)0.0192 (5)
C80.9437 (4)0.2288 (3)0.35238 (19)0.0254 (6)
H8A0.98670.20550.40810.03*
H8B0.97890.12120.32020.03*
O91.0295 (3)0.3905 (2)0.32453 (12)0.0305 (4)
H90.99020.48380.3480.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01963 (12)0.02953 (13)0.02391 (12)0.00057 (7)0.00275 (8)0.00027 (6)
C10.0296 (16)0.0386 (16)0.0173 (14)0.0004 (12)0.0043 (12)0.0005 (11)
N20.0192 (11)0.0243 (11)0.0179 (11)0.0006 (8)0.0020 (9)0.0003 (8)
C30.0170 (14)0.0308 (15)0.0277 (15)0.0020 (11)0.0027 (11)0.0000 (11)
C40.0147 (13)0.0310 (14)0.0242 (14)0.0011 (10)0.0029 (11)0.0007 (10)
N50.0154 (11)0.0256 (11)0.0176 (11)0.0004 (8)0.0017 (9)0.0005 (8)
C60.0209 (14)0.0408 (17)0.0196 (14)0.0001 (11)0.0011 (11)0.0017 (10)
C70.0161 (12)0.0217 (13)0.0200 (13)0.0007 (10)0.0026 (10)0.0003 (9)
C80.0172 (14)0.0315 (15)0.0276 (15)0.0006 (11)0.0026 (12)0.0005 (11)
O90.0217 (10)0.0301 (10)0.0410 (11)0.0052 (9)0.0133 (8)0.0041 (9)
Geometric parameters (Å, º) top
C1—N21.464 (4)N5—C71.343 (3)
C1—H1A0.98N5—C61.468 (4)
C1—H1B0.98C6—H6A0.98
C1—H1C0.98C6—H6B0.98
N2—C71.345 (3)C6—H6C0.98
N2—C31.376 (4)C7—C81.497 (4)
C3—C41.357 (4)C8—O91.419 (3)
C3—H30.95C8—H8A0.99
C4—N51.379 (4)C8—H8B0.99
C4—H40.95O9—H90.84
N2—C1—H1A109.5C4—N5—C6124.6 (2)
N2—C1—H1B109.5N5—C6—H6A109.5
H1A—C1—H1B109.5N5—C6—H6B109.5
N2—C1—H1C109.5H6A—C6—H6B109.5
H1A—C1—H1C109.5N5—C6—H6C109.5
H1B—C1—H1C109.5H6A—C6—H6C109.5
C7—N2—C3109.5 (2)H6B—C6—H6C109.5
C7—N2—C1125.3 (3)N5—C7—N2107.2 (3)
C3—N2—C1125.2 (3)N5—C7—C8127.0 (3)
C4—C3—N2106.9 (3)N2—C7—C8125.7 (3)
C4—C3—H3126.6O9—C8—C7111.6 (2)
N2—C3—H3126.6O9—C8—H8A109.3
C3—C4—N5107.2 (3)C7—C8—H8A109.3
C3—C4—H4126.4O9—C8—H8B109.3
N5—C4—H4126.4C7—C8—H8B109.3
C7—N5—C4109.3 (2)H8A—C8—H8B108
C7—N5—C6126.1 (3)C8—O9—H9109.5
C7—N2—C3—C40.1 (3)C6—N5—C7—C80.1 (3)
C1—N2—C3—C4178.4 (2)C3—N2—C7—N50.0 (2)
N2—C3—C4—N50.2 (3)C1—N2—C7—N5178.48 (18)
C3—C4—N5—C70.2 (2)C3—N2—C7—C8178.1 (2)
C3—C4—N5—C6178.15 (19)C1—N2—C7—C80.3 (3)
C4—N5—C7—N20.1 (2)N5—C7—C8—O9113.9 (3)
C6—N5—C7—N2178.06 (18)N2—C7—C8—O963.8 (3)
C4—N5—C7—C8178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···I10.842.623.4504 (18)169
C1—H1A···O90.982.553.230 (4)126

Experimental details

Crystal data
Chemical formulaC6H11N2O+·I
Mr254.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)7.3428 (3), 7.2186 (3), 16.8870 (8)
β (°) 93.093 (2)
V3)893.79 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.53
Crystal size (mm)0.3 × 0.13 × 0.01
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.718, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4200, 2035, 1463
Rint0.019
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.063, 1.03
No. of reflections2035
No. of parameters94
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.54

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···I10.842.623.4504 (18)169
C1—H1A···O90.982.553.230 (4)126
 

Acknowledgements

We are grateful to all personal of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCorma, A. & Garcia, H. (2003). Chem. Rev. 103, 4307–4366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKubisa, P. (2004). Progr. Polym. Sci. 29, 3–12.  Web of Science CrossRef CAS Google Scholar
First citationSheldon, R. (2001). Chem. Commun. pp. 2399–2407.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarma, R. S. & Namboodiri, V. V. (2001). Pure Appl. Chem. 73, 1309–1313.  Web of Science CrossRef CAS Google Scholar
First citationWasserscheid, P. & Kerm, W. (2000). Angew. Chem. Int. Ed. 39, 3772–3781.  CrossRef CAS Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2701–2784.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds