organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-3-(4-Chloro­anilino)-1-(5-hy­dr­oxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)but-2-en-1-one

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 July 2011; accepted 21 July 2011; online 30 July 2011)

With the exception of the terminal benzene rings, the atoms in the title compound, C20H18ClN3O2, are approximately coplanar (r.m.s. deviation = 0.0495 Å). The benzene/chloro­benzene rings form dihedral angles of 3.02 (4) and 41.59 (5)°, respectively, with this plane. The hy­droxy, amino and carbonyl groups all lie to the same side of the mol­ecule, enabling the formation of intra­molecular O—H⋯O and N—H⋯O hydrogen bonds that close S(6) rings. The configuration about the 2-butene bond is Z. Supra­molecular chains mediated by C—H⋯Cl inter­actions and aligned along the c axis are found in the crystal packing. These assemble into layers that are connected by weak ππ inter­actions between centrosymmetrically related chloro­benzene rings [3.8156 (9) Å].

Related literature

For background to the synthesis, see: Gelin et al. (1983[Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082.]); Bendaas et al. (1999[Bendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291-1294.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18ClN3O2

  • Mr = 367.82

  • Monoclinic, P 21 /n

  • a = 10.7782 (3) Å

  • b = 12.6349 (4) Å

  • c = 12.9071 (4) Å

  • β = 100.956 (3)°

  • V = 1725.67 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.931, Tmax = 0.953

  • 8785 measured reflections

  • 3860 independent reflections

  • 3199 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.01

  • 3860 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.96 (3) 1.64 (3) 2.5283 (16) 153 (3)
N3—H3⋯O2 0.91 (2) 1.93 (2) 2.6678 (18) 136.9 (18)
C4—H4⋯Cl1i 0.95 2.81 3.6217 (18) 144
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) was isolated during an investigation of reactions between pyrazoles and aniline derivatives following literature precedents (Gelin et al., 1983; Bendaas et al., 1999). The molecular structure of (I), Fig. 1, features a Z configuration about the C12—C13 [1.376 (2) Å] bond. The hydroxy and amino groups are syn to the central carbonyl group and each forms a hydrogen bond to close a S(6) ring (Table 1). A result of this feature of the structure is that the central residue is planar; the values of the C10—C9—C11–O2, C9—C11—C12—C13 and C11—C12—C13—N3 torsion angles are 2.5 (2), -177.93 (14) and -0.4 (2) °, respectively. Indeed, the r.m.s. deviation for the non-hydrogen atoms comprising the entire molecule excluding the terminal benzene rings is 0.0495 Å. The benzene and chlorobenzene rings form dihedral angles of 3.02 (4) and 41.59 (5) °, respectively, with the central plane.

The most prominent feature of the crystal packing is the formation of supramolecular chains mediated by C—H···Cl interactions, Table 1. The chains assemble into layers in the bc plane, Fig. 2. The closest interactions between layers stacking along the a direction are weak ππ contacts between centrosymmetrically related chlorobenzene rings [3.8156 (9) Å for symmetry operation: 2 - x, 1 - y, 2 - z].

Related literature top

For background to the synthesis, see: Gelin et al. (1983); Bendaas et al. (1999).

Experimental top

A solution of 4-acetoacetyl-5-hydroxy-3-methyl-1-p-sulfamylphenypyrazole (1.7 g, 0.005 mol) and 4-chloroaniline (0.63 g, 0.005 mole) in ethanol (25 ml) was refluxed for 2 h. The precipitate, obtained from the hot solution, was collected, washed with methanol, and recrystallized from ethanol-benzene as orange crystals; M.pt 505–507 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy- and amino- H-atoms were located in a difference Fourier map, and subsequently refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Assembly of supramolecular chains aligned along the c axis in (I) mediated by C—H···Cl interactions shown as orange dashed lines.
(2Z)-3-(4-Chloroanilino)-1-(5-hydroxy-3- methyl-1-phenyl-1H-pyrazol-4-yl)but-2-en-1-one top
Crystal data top
C20H18ClN3O2F(000) = 768
Mr = 367.82Dx = 1.416 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4068 reflections
a = 10.7782 (3) Åθ = 2.5–29.3°
b = 12.6349 (4) ŵ = 0.24 mm1
c = 12.9071 (4) ÅT = 100 K
β = 100.956 (3)°Block, orange
V = 1725.67 (9) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3860 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3199 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1311
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1316
Tmin = 0.931, Tmax = 0.953l = 1516
8785 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.5858P]
where P = (Fo2 + 2Fc2)/3
3860 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H18ClN3O2V = 1725.67 (9) Å3
Mr = 367.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7782 (3) ŵ = 0.24 mm1
b = 12.6349 (4) ÅT = 100 K
c = 12.9071 (4) Å0.30 × 0.25 × 0.20 mm
β = 100.956 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3860 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3199 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.953Rint = 0.025
8785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.27 e Å3
3860 reflectionsΔρmin = 0.30 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.91036 (4)0.59737 (3)1.20821 (3)0.02517 (13)
O10.69340 (10)0.75724 (9)0.38953 (9)0.0208 (3)
O20.73186 (10)0.65748 (9)0.56249 (9)0.0216 (3)
N10.59886 (11)0.64664 (11)0.24798 (10)0.0184 (3)
N20.56236 (12)0.54063 (11)0.23365 (10)0.0201 (3)
N30.77747 (12)0.55053 (12)0.74398 (11)0.0200 (3)
C10.57853 (13)0.71508 (14)0.15919 (12)0.0195 (3)
C20.60600 (15)0.82241 (14)0.17012 (13)0.0238 (4)
H20.63770.85180.23770.029*
C30.58657 (16)0.88614 (15)0.08098 (14)0.0290 (4)
H3A0.60560.95950.08780.035*
C40.53986 (16)0.84422 (16)0.01787 (14)0.0291 (4)
H40.52760.88850.07850.035*
C50.51121 (15)0.73772 (16)0.02783 (13)0.0282 (4)
H50.47800.70900.09540.034*
C60.53058 (14)0.67263 (15)0.06000 (13)0.0236 (4)
H60.51130.59930.05270.028*
C70.56011 (16)0.38241 (13)0.33884 (14)0.0241 (4)
H7A0.51450.35550.27100.036*
H7B0.50700.37490.39220.036*
H7C0.63830.34200.36060.036*
C80.59131 (13)0.49623 (13)0.32786 (12)0.0193 (3)
C90.64770 (14)0.57033 (13)0.40580 (12)0.0185 (3)
C100.64989 (13)0.66471 (13)0.35046 (12)0.0175 (3)
C110.69441 (14)0.56817 (13)0.51866 (12)0.0189 (3)
C120.69884 (14)0.47308 (13)0.57726 (13)0.0210 (3)
H120.67260.41000.53930.025*
C130.73809 (14)0.46454 (13)0.68479 (13)0.0196 (3)
C140.74065 (15)0.35747 (13)0.73563 (13)0.0223 (4)
H14A0.75390.30300.68480.033*
H14B0.66010.34480.75810.033*
H14C0.80970.35480.79710.033*
C150.80969 (14)0.55777 (13)0.85538 (12)0.0187 (3)
C160.73868 (14)0.50806 (14)0.92039 (13)0.0223 (4)
H160.66750.46650.89020.027*
C170.77113 (14)0.51871 (14)1.02897 (13)0.0220 (4)
H170.72440.48271.07360.026*
C180.87226 (14)0.58229 (13)1.07155 (12)0.0192 (3)
C190.94267 (14)0.63411 (13)1.00821 (13)0.0199 (3)
H191.01150.67811.03860.024*
C200.91164 (14)0.62108 (13)0.89951 (13)0.0192 (3)
H200.96010.65550.85520.023*
H10.721 (3)0.739 (2)0.462 (2)0.077 (9)*
H30.7859 (18)0.6100 (17)0.7060 (17)0.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0307 (2)0.0284 (2)0.0149 (2)0.00130 (16)0.00068 (15)0.00084 (17)
O10.0259 (6)0.0178 (6)0.0170 (6)0.0017 (4)0.0000 (4)0.0009 (5)
O20.0283 (6)0.0188 (6)0.0167 (6)0.0025 (5)0.0019 (4)0.0017 (5)
N10.0190 (6)0.0191 (7)0.0162 (7)0.0017 (5)0.0013 (5)0.0003 (6)
N20.0225 (7)0.0184 (7)0.0186 (7)0.0019 (5)0.0019 (5)0.0015 (6)
N30.0245 (7)0.0193 (7)0.0150 (7)0.0012 (5)0.0009 (5)0.0018 (6)
C10.0151 (7)0.0269 (9)0.0164 (8)0.0016 (6)0.0031 (6)0.0032 (7)
C20.0229 (8)0.0279 (10)0.0200 (8)0.0024 (7)0.0029 (6)0.0012 (7)
C30.0313 (9)0.0291 (10)0.0264 (9)0.0025 (7)0.0051 (7)0.0066 (8)
C40.0290 (9)0.0385 (11)0.0195 (9)0.0003 (8)0.0039 (7)0.0096 (8)
C50.0255 (8)0.0433 (12)0.0152 (8)0.0010 (8)0.0021 (6)0.0013 (8)
C60.0226 (8)0.0293 (10)0.0187 (8)0.0006 (7)0.0037 (6)0.0018 (7)
C70.0285 (8)0.0201 (9)0.0226 (9)0.0031 (7)0.0019 (7)0.0038 (7)
C80.0187 (7)0.0207 (9)0.0185 (8)0.0010 (6)0.0033 (6)0.0015 (7)
C90.0195 (7)0.0190 (8)0.0169 (8)0.0004 (6)0.0030 (6)0.0008 (7)
C100.0152 (7)0.0204 (8)0.0167 (8)0.0003 (6)0.0023 (6)0.0022 (7)
C110.0187 (7)0.0215 (8)0.0166 (8)0.0008 (6)0.0043 (6)0.0016 (7)
C120.0236 (8)0.0200 (9)0.0190 (8)0.0001 (6)0.0032 (6)0.0017 (7)
C130.0173 (7)0.0202 (8)0.0214 (8)0.0005 (6)0.0037 (6)0.0007 (7)
C140.0244 (8)0.0200 (9)0.0210 (9)0.0009 (6)0.0009 (6)0.0010 (7)
C150.0206 (7)0.0187 (8)0.0156 (8)0.0036 (6)0.0006 (6)0.0001 (6)
C160.0189 (7)0.0261 (9)0.0209 (8)0.0038 (6)0.0012 (6)0.0004 (7)
C170.0229 (8)0.0239 (9)0.0198 (8)0.0002 (6)0.0052 (6)0.0016 (7)
C180.0221 (7)0.0195 (8)0.0145 (8)0.0052 (6)0.0002 (6)0.0007 (6)
C190.0212 (8)0.0164 (8)0.0204 (8)0.0008 (6)0.0000 (6)0.0015 (7)
C200.0225 (8)0.0155 (8)0.0196 (8)0.0018 (6)0.0041 (6)0.0016 (6)
Geometric parameters (Å, º) top
Cl1—C181.7438 (16)C7—H7A0.9800
O1—C101.3233 (19)C7—H7B0.9800
O1—H10.96 (3)C7—H7C0.9800
O2—C111.2921 (19)C8—C91.423 (2)
N1—C101.3519 (19)C9—C101.392 (2)
N1—N21.3984 (19)C9—C111.448 (2)
N1—C11.419 (2)C11—C121.416 (2)
N2—C81.321 (2)C12—C131.376 (2)
N3—C131.349 (2)C12—H120.9500
N3—C151.417 (2)C13—C141.502 (2)
N3—H30.91 (2)C14—H14A0.9800
C1—C21.389 (2)C14—H14B0.9800
C1—C61.394 (2)C14—H14C0.9800
C2—C31.387 (2)C15—C201.391 (2)
C2—H20.9500C15—C161.389 (2)
C3—C41.385 (3)C16—C171.385 (2)
C3—H3A0.9500C16—H160.9500
C4—C51.381 (3)C17—C181.381 (2)
C4—H40.9500C17—H170.9500
C5—C61.384 (2)C18—C191.382 (2)
C5—H50.9500C19—C201.389 (2)
C6—H60.9500C19—H190.9500
C7—C81.490 (2)C20—H200.9500
C10—O1—H1100.3 (17)C8—C9—C11135.94 (15)
C10—N1—N2110.06 (13)O1—C10—N1124.81 (14)
C10—N1—C1131.22 (14)O1—C10—C9126.90 (14)
N2—N1—C1118.72 (13)N1—C10—C9108.29 (14)
C8—N2—N1105.88 (12)O2—C11—C12122.09 (14)
C13—N3—C15128.07 (15)O2—C11—C9116.35 (14)
C13—N3—H3114.3 (13)C12—C11—C9121.56 (15)
C15—N3—H3117.6 (13)C13—C12—C11125.31 (16)
C2—C1—C6120.24 (15)C13—C12—H12117.3
C2—C1—N1121.03 (15)C11—C12—H12117.3
C6—C1—N1118.73 (15)N3—C13—C12120.74 (15)
C1—C2—C3119.12 (16)N3—C13—C14120.02 (14)
C1—C2—H2120.4C12—C13—C14119.21 (15)
C3—C2—H2120.4C13—C14—H14A109.5
C4—C3—C2120.88 (18)C13—C14—H14B109.5
C4—C3—H3A119.6H14A—C14—H14B109.5
C2—C3—H3A119.6C13—C14—H14C109.5
C5—C4—C3119.61 (17)H14A—C14—H14C109.5
C5—C4—H4120.2H14B—C14—H14C109.5
C3—C4—H4120.2C20—C15—C16119.74 (15)
C4—C5—C6120.43 (17)C20—C15—N3118.36 (14)
C4—C5—H5119.8C16—C15—N3121.82 (14)
C6—C5—H5119.8C17—C16—C15120.35 (15)
C5—C6—C1119.71 (17)C17—C16—H16119.8
C5—C6—H6120.1C15—C16—H16119.8
C1—C6—H6120.1C18—C17—C16119.18 (15)
C8—C7—H7A109.5C18—C17—H17120.4
C8—C7—H7B109.5C16—C17—H17120.4
H7A—C7—H7B109.5C19—C18—C17121.39 (15)
C8—C7—H7C109.5C19—C18—Cl1119.77 (12)
H7A—C7—H7C109.5C17—C18—Cl1118.84 (13)
H7B—C7—H7C109.5C18—C19—C20119.19 (15)
N2—C8—C9111.44 (14)C18—C19—H19120.4
N2—C8—C7118.63 (14)C20—C19—H19120.4
C9—C8—C7129.91 (15)C19—C20—C15120.12 (15)
C10—C9—C8104.32 (14)C19—C20—H20119.9
C10—C9—C11119.70 (15)C15—C20—H20119.9
C10—N1—N2—C80.30 (16)C11—C9—C10—O11.3 (2)
C1—N1—N2—C8179.71 (12)C8—C9—C10—N10.15 (16)
C10—N1—C1—C23.9 (2)C11—C9—C10—N1178.50 (13)
N2—N1—C1—C2176.08 (13)C10—C9—C11—O22.5 (2)
C10—N1—C1—C6175.87 (14)C8—C9—C11—O2175.18 (16)
N2—N1—C1—C64.1 (2)C10—C9—C11—C12177.32 (14)
C6—C1—C2—C30.8 (2)C8—C9—C11—C125.0 (3)
N1—C1—C2—C3178.97 (14)O2—C11—C12—C132.2 (2)
C1—C2—C3—C40.3 (2)C9—C11—C12—C13177.93 (14)
C2—C3—C4—C50.5 (3)C15—N3—C13—C12173.70 (14)
C3—C4—C5—C60.9 (3)C15—N3—C13—C148.2 (2)
C4—C5—C6—C10.4 (2)C11—C12—C13—N30.4 (2)
C2—C1—C6—C50.4 (2)C11—C12—C13—C14178.47 (14)
N1—C1—C6—C5179.35 (14)C13—N3—C15—C20141.37 (16)
N1—N2—C8—C90.40 (16)C13—N3—C15—C1642.0 (2)
N1—N2—C8—C7178.35 (13)C20—C15—C16—C171.9 (2)
N2—C8—C9—C100.35 (17)N3—C15—C16—C17178.53 (15)
C7—C8—C9—C10178.22 (15)C15—C16—C17—C182.2 (2)
N2—C8—C9—C11178.29 (16)C16—C17—C18—C191.0 (2)
C7—C8—C9—C110.3 (3)C16—C17—C18—Cl1178.69 (12)
N2—N1—C10—O1179.86 (13)C17—C18—C19—C200.6 (2)
C1—N1—C10—O10.1 (2)Cl1—C18—C19—C20179.74 (12)
N2—N1—C10—C90.08 (16)C18—C19—C20—C150.9 (2)
C1—N1—C10—C9179.92 (14)C16—C15—C20—C190.3 (2)
C8—C9—C10—O1179.62 (14)N3—C15—C20—C19177.05 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.96 (3)1.64 (3)2.5283 (16)153 (3)
N3—H3···O20.91 (2)1.93 (2)2.6678 (18)136.9 (18)
C4—H4···Cl1i0.952.813.6217 (18)144
Symmetry code: (i) x1/2, y+3/2, z3/2.

Experimental details

Crystal data
Chemical formulaC20H18ClN3O2
Mr367.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.7782 (3), 12.6349 (4), 12.9071 (4)
β (°) 100.956 (3)
V3)1725.67 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.931, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
8785, 3860, 3199
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.01
No. of reflections3860
No. of parameters245
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.96 (3)1.64 (3)2.5283 (16)153 (3)
N3—H3···O20.91 (2)1.93 (2)2.6678 (18)136.9 (18)
C4—H4···Cl1i0.952.813.6217 (18)144
Symmetry code: (i) x1/2, y+3/2, z3/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. They also thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem. 36, 1291–1294.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds