metal-organic compounds
Ferrocenylphosphonic acid
aInstitute of Molecular Engineering and Applied Chemsitry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn
In the title compound, [Fe(C5H5)(C5H6O3P)], the phosphate group is bonded to the ferrocene unit with a P—C bond length of 1.749 (3) Å. In the crystal, six ferrocenylphosphonic acid molecules are connected by 12 strong intermolecular O—H⋯O hydrogen bonds, leading to the formation of a highly distorted octahedral cage. The volume of the octahedral cage is about 270 Å3.
Related literature
For background to ferrocenylphosphonates and ferrocenyl derivatives, see: Alley & Henderson (2001); Henderson & Alley (2001); Oms et al. (2004a,b, 2005).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811027206/hy2442sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811027206/hy2442Isup2.hkl
Ferrocenylphosphonic acid was prepared according to literature (Oms et al., 2004b). All synthesis was taken in oven-dried glassware under a nitrogen atmosphere using standard Schlenk techniques. Me3SiBr (4.5 g, 30 mmol) was dropwise added to a solution of diethyl ferrocenylphosphonate (3.18 g, 10 mmol) in 20 ml CH2Cl2 at room temperature. After the mixture was stirred for 12 h, the solvent was removed under low pressure and the oil residues was dissolved in 20 ml MeCN and then treated with 5 ml H2O to precipitate the title compound. The precipitate was collected and washed with CH2Cl2 and Et2O (yield: 2.05 g, 80%). Single crystals suitable for X-ray analysis were obtained by recrystallization from methanol/Et2O. Analysis, calculated, for C10H11FeO3P: C 45.1, H 4.16%; found: C 45.0, H 4.04%.
H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(C,O).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Fe(C5H5)(C5H6O3P)] | Dx = 1.600 Mg m−3 |
Mr = 266.01 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 5069 reflections |
Hall symbol: -R 3 | θ = 2.8–22.9° |
a = 19.7329 (9) Å | µ = 1.49 mm−1 |
c = 14.7338 (4) Å | T = 296 K |
V = 4968.5 (5) Å3 | Block, red |
Z = 18 | 0.20 × 0.16 × 0.11 mm |
F(000) = 2448 |
Bruker APEX CCD diffractometer | 2500 independent reflections |
Radiation source: fine-focus sealed tube | 1956 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −25→25 |
Tmin = 0.755, Tmax = 0.853 | k = −25→25 |
26557 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.041P)2 + 9.0107P] where P = (Fo2 + 2Fc2)/3 |
2500 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
[Fe(C5H5)(C5H6O3P)] | Z = 18 |
Mr = 266.01 | Mo Kα radiation |
Trigonal, R3 | µ = 1.49 mm−1 |
a = 19.7329 (9) Å | T = 296 K |
c = 14.7338 (4) Å | 0.20 × 0.16 × 0.11 mm |
V = 4968.5 (5) Å3 |
Bruker APEX CCD diffractometer | 2500 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1956 reflections with I > 2σ(I) |
Tmin = 0.755, Tmax = 0.853 | Rint = 0.044 |
26557 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.65 e Å−3 |
2500 reflections | Δρmin = −0.51 e Å−3 |
136 parameters |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.62280 (2) | 0.51797 (2) | 0.15180 (3) | 0.05726 (16) | |
P1 | 0.69358 (4) | 0.48371 (4) | −0.03885 (4) | 0.04430 (18) | |
O1 | 0.61726 (12) | 0.41531 (10) | −0.06806 (12) | 0.0603 (5) | |
O2 | 0.74425 (14) | 0.45939 (14) | 0.01591 (14) | 0.0750 (7) | |
H2 | 0.7540 | 0.4309 | −0.0152 | 0.113* | |
O3 | 0.73972 (13) | 0.53301 (11) | −0.12206 (14) | 0.0659 (6) | |
H3 | 0.7485 | 0.5058 | −0.1567 | 0.099* | |
C1 | 0.68160 (15) | 0.54767 (14) | 0.03269 (19) | 0.0503 (6) | |
C2 | 0.73203 (19) | 0.59400 (17) | 0.1052 (2) | 0.0733 (9) | |
H2A | 0.7784 | 0.5961 | 0.1224 | 0.088* | |
C3 | 0.6995 (3) | 0.6354 (2) | 0.1457 (3) | 0.1043 (17) | |
H3A | 0.7200 | 0.6690 | 0.1952 | 0.125* | |
C4 | 0.6307 (3) | 0.6176 (2) | 0.0989 (3) | 0.1058 (17) | |
H4 | 0.5984 | 0.6381 | 0.1118 | 0.127* | |
C5 | 0.6182 (2) | 0.5633 (2) | 0.0289 (3) | 0.0745 (9) | |
H5 | 0.5766 | 0.5418 | −0.0118 | 0.089* | |
C6 | 0.6355 (3) | 0.4572 (3) | 0.2550 (3) | 0.0955 (12) | |
H6 | 0.6831 | 0.4657 | 0.2776 | 0.115* | |
C7 | 0.5957 (4) | 0.4929 (3) | 0.2849 (3) | 0.121 (2) | |
H7 | 0.6112 | 0.5296 | 0.3314 | 0.145* | |
C8 | 0.5269 (3) | 0.4645 (3) | 0.2330 (4) | 0.120 (2) | |
H8 | 0.4888 | 0.4788 | 0.2387 | 0.144* | |
C9 | 0.5268 (2) | 0.4100 (2) | 0.1706 (3) | 0.0803 (10) | |
H9 | 0.4887 | 0.3818 | 0.1273 | 0.096* | |
C10 | 0.5939 (2) | 0.40671 (18) | 0.1861 (2) | 0.0677 (8) | |
H10 | 0.6086 | 0.3752 | 0.1548 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0606 (3) | 0.0423 (2) | 0.0670 (3) | 0.02441 (19) | 0.0177 (2) | −0.00354 (18) |
P1 | 0.0532 (4) | 0.0378 (3) | 0.0442 (4) | 0.0245 (3) | −0.0017 (3) | −0.0026 (3) |
O1 | 0.0731 (13) | 0.0404 (10) | 0.0487 (10) | 0.0143 (9) | −0.0092 (9) | −0.0005 (8) |
O2 | 0.1037 (17) | 0.1009 (17) | 0.0606 (12) | 0.0813 (15) | −0.0152 (12) | −0.0171 (12) |
O3 | 0.0780 (14) | 0.0469 (11) | 0.0628 (12) | 0.0238 (10) | 0.0178 (10) | 0.0001 (9) |
C1 | 0.0497 (14) | 0.0372 (13) | 0.0620 (16) | 0.0202 (11) | 0.0101 (12) | 0.0008 (11) |
C2 | 0.0607 (18) | 0.0508 (17) | 0.081 (2) | 0.0074 (14) | 0.0152 (16) | −0.0202 (15) |
C3 | 0.118 (3) | 0.0473 (19) | 0.119 (3) | 0.020 (2) | 0.057 (3) | −0.019 (2) |
C4 | 0.138 (4) | 0.061 (2) | 0.146 (4) | 0.070 (3) | 0.084 (3) | 0.035 (2) |
C5 | 0.079 (2) | 0.068 (2) | 0.096 (2) | 0.0522 (18) | 0.0258 (19) | 0.0260 (18) |
C6 | 0.107 (3) | 0.098 (3) | 0.065 (2) | 0.039 (3) | −0.011 (2) | 0.005 (2) |
C7 | 0.180 (6) | 0.080 (3) | 0.076 (3) | 0.045 (3) | 0.052 (3) | −0.007 (2) |
C8 | 0.120 (4) | 0.098 (3) | 0.173 (5) | 0.076 (3) | 0.103 (4) | 0.068 (3) |
C9 | 0.060 (2) | 0.0574 (19) | 0.103 (3) | 0.0144 (16) | 0.0086 (18) | 0.0191 (19) |
C10 | 0.092 (2) | 0.0541 (17) | 0.0598 (18) | 0.0391 (17) | 0.0121 (17) | 0.0068 (14) |
Fe1—C1 | 2.022 (3) | C2—C3 | 1.400 (5) |
Fe1—C7 | 2.028 (4) | C2—H2A | 0.9300 |
Fe1—C6 | 2.028 (4) | C3—C4 | 1.401 (7) |
Fe1—C8 | 2.032 (4) | C3—H3A | 0.9300 |
Fe1—C2 | 2.033 (3) | C4—C5 | 1.417 (6) |
Fe1—C10 | 2.037 (3) | C4—H4 | 0.9300 |
Fe1—C3 | 2.040 (4) | C5—H5 | 0.9300 |
Fe1—C9 | 2.041 (3) | C6—C7 | 1.366 (7) |
Fe1—C5 | 2.042 (4) | C6—C10 | 1.371 (5) |
Fe1—C4 | 2.046 (4) | C6—H6 | 0.9300 |
P1—O1 | 1.4975 (19) | C7—C8 | 1.407 (7) |
P1—O2 | 1.537 (2) | C7—H7 | 0.9300 |
P1—O3 | 1.547 (2) | C8—C9 | 1.414 (6) |
P1—C1 | 1.749 (3) | C8—H8 | 0.9300 |
O2—H2 | 0.8200 | C9—C10 | 1.377 (5) |
O3—H3 | 0.8200 | C9—H9 | 0.9300 |
C1—C5 | 1.432 (4) | C10—H10 | 0.9300 |
C1—C2 | 1.435 (4) | ||
C1—Fe1—C7 | 162.4 (2) | C2—C1—Fe1 | 69.69 (17) |
C1—Fe1—C6 | 126.80 (16) | P1—C1—Fe1 | 125.37 (14) |
C7—Fe1—C6 | 39.4 (2) | C3—C2—C1 | 108.4 (4) |
C1—Fe1—C8 | 155.8 (2) | C3—C2—Fe1 | 70.2 (2) |
C7—Fe1—C8 | 40.5 (2) | C1—C2—Fe1 | 68.87 (16) |
C6—Fe1—C8 | 67.0 (2) | C3—C2—H2A | 125.8 |
C1—Fe1—C2 | 41.44 (12) | C1—C2—H2A | 125.8 |
C7—Fe1—C2 | 124.0 (2) | Fe1—C2—H2A | 126.7 |
C6—Fe1—C2 | 106.88 (18) | C2—C3—C4 | 108.2 (4) |
C8—Fe1—C2 | 161.9 (2) | C2—C3—Fe1 | 69.62 (18) |
C1—Fe1—C10 | 109.79 (11) | C4—C3—Fe1 | 70.2 (2) |
C7—Fe1—C10 | 66.42 (16) | C2—C3—H3A | 125.9 |
C6—Fe1—C10 | 39.41 (15) | C4—C3—H3A | 125.9 |
C8—Fe1—C10 | 66.91 (15) | Fe1—C3—H3A | 125.9 |
C2—Fe1—C10 | 120.09 (15) | C3—C4—C5 | 109.3 (3) |
C1—Fe1—C3 | 68.93 (13) | C3—C4—Fe1 | 69.7 (2) |
C7—Fe1—C3 | 105.94 (19) | C5—C4—Fe1 | 69.55 (18) |
C6—Fe1—C3 | 117.6 (2) | C3—C4—H4 | 125.4 |
C8—Fe1—C3 | 125.81 (19) | C5—C4—H4 | 125.4 |
C2—Fe1—C3 | 40.21 (14) | Fe1—C4—H4 | 126.9 |
C10—Fe1—C3 | 152.2 (2) | C4—C5—C1 | 107.0 (4) |
C1—Fe1—C9 | 121.25 (14) | C4—C5—Fe1 | 69.9 (2) |
C7—Fe1—C9 | 67.7 (2) | C1—C5—Fe1 | 68.65 (17) |
C6—Fe1—C9 | 66.79 (17) | C4—C5—H5 | 126.5 |
C8—Fe1—C9 | 40.61 (19) | C1—C5—H5 | 126.5 |
C2—Fe1—C9 | 154.70 (15) | Fe1—C5—H5 | 126.5 |
C10—Fe1—C9 | 39.46 (15) | C7—C6—C10 | 108.9 (4) |
C3—Fe1—C9 | 164.92 (17) | C7—C6—Fe1 | 70.3 (3) |
C1—Fe1—C5 | 41.25 (12) | C10—C6—Fe1 | 70.6 (2) |
C7—Fe1—C5 | 154.2 (2) | C7—C6—H6 | 125.6 |
C6—Fe1—C5 | 165.83 (17) | C10—C6—H6 | 125.6 |
C8—Fe1—C5 | 121.1 (2) | Fe1—C6—H6 | 125.1 |
C2—Fe1—C5 | 68.93 (15) | C6—C7—C8 | 107.9 (4) |
C10—Fe1—C5 | 129.96 (14) | C6—C7—Fe1 | 70.3 (2) |
C3—Fe1—C5 | 68.53 (19) | C8—C7—Fe1 | 69.9 (3) |
C9—Fe1—C5 | 110.85 (16) | C6—C7—H7 | 126.0 |
C1—Fe1—C4 | 68.53 (12) | C8—C7—H7 | 126.0 |
C7—Fe1—C4 | 119.1 (2) | Fe1—C7—H7 | 125.3 |
C6—Fe1—C4 | 151.7 (2) | C7—C8—C9 | 106.9 (4) |
C8—Fe1—C4 | 109.11 (17) | C7—C8—Fe1 | 69.6 (2) |
C2—Fe1—C4 | 67.60 (18) | C9—C8—Fe1 | 70.0 (2) |
C10—Fe1—C4 | 167.3 (2) | C7—C8—H8 | 126.5 |
C3—Fe1—C4 | 40.11 (19) | C9—C8—H8 | 126.5 |
C9—Fe1—C4 | 129.7 (2) | Fe1—C8—H8 | 125.5 |
C5—Fe1—C4 | 40.57 (17) | C10—C9—C8 | 107.0 (4) |
O1—P1—O2 | 112.81 (13) | C10—C9—Fe1 | 70.09 (19) |
O1—P1—O3 | 110.46 (11) | C8—C9—Fe1 | 69.4 (2) |
O2—P1—O3 | 110.01 (13) | C10—C9—H9 | 126.5 |
O1—P1—C1 | 112.69 (13) | C8—C9—H9 | 126.5 |
O2—P1—C1 | 104.65 (13) | Fe1—C9—H9 | 125.6 |
O3—P1—C1 | 105.86 (12) | C6—C10—C9 | 109.2 (4) |
P1—O2—H2 | 109.5 | C6—C10—Fe1 | 70.0 (2) |
P1—O3—H3 | 109.5 | C9—C10—Fe1 | 70.44 (19) |
C5—C1—C2 | 107.1 (3) | C6—C10—H10 | 125.4 |
C5—C1—P1 | 125.4 (2) | C9—C10—H10 | 125.4 |
C2—C1—P1 | 127.4 (2) | Fe1—C10—H10 | 125.8 |
C5—C1—Fe1 | 70.10 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.76 | 2.559 (3) | 165 |
O3—H3···O1ii | 0.82 | 1.79 | 2.557 (3) | 154 |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) y+1/3, −x+y+2/3, −z−1/3. |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C5H6O3P)] |
Mr | 266.01 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 296 |
a, c (Å) | 19.7329 (9), 14.7338 (4) |
V (Å3) | 4968.5 (5) |
Z | 18 |
Radiation type | Mo Kα |
µ (mm−1) | 1.49 |
Crystal size (mm) | 0.20 × 0.16 × 0.11 |
Data collection | |
Diffractometer | Bruker APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.755, 0.853 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26557, 2500, 1956 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.098, 1.03 |
No. of reflections | 2500 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.51 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.76 | 2.559 (3) | 165 |
O3—H3···O1ii | 0.82 | 1.79 | 2.557 (3) | 154 |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) y+1/3, −x+y+2/3, −z−1/3. |
Acknowledgements
This work was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).
References
Alley, S. R. & Henderson, W. (2001). J. Organomet. Chem. 637, 216–229. Web of Science CSD CrossRef Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Henderson, W. & Alley, S. R. (2001). Inorg. Chim. Acta, 322, 106–112. Web of Science CSD CrossRef CAS Google Scholar
Oms, O., Le Bideau, J., Leroux, F., van der Lee, A., Leclercq, D. & Vioux, A. (2004a). J. Am. Chem. Soc. 126, 12090–12096. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oms, O., Maurel, F., Carré, F., Le Bideau, J., Vioux, A. & Leclercq, D. (2004b). J. Organomet. Chem. 689, 2654–2661. Web of Science CSD CrossRef CAS Google Scholar
Oms, O., van der Lee, A., Le Bideau, J. & Leclercq, D. (2005). Dalton Trans. pp. 1903–1909. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ferrocene and ferrocenyl derivatives are well known for their redox activities and immobilization behaviors with metal ions (Alley & Henderson, 2001; Oms et al., 2004a). Ferrocenylphosphonates are ideal building block candidates for incorporation with transition metal ions due to the strong coordination behavior of P═O groups and the high stability of the formed P—O—M (M = metal ion) bonds (Henderson & Alley, 2001; Oms et al., 2005). However, only a few metal ferrocenylphosphonate compounds have been reported from related literature, probably due to the low yield of ferrocenylphosphonic acid in its synthesis (Oms et al., 2004b). In this paper, we reported the preparation of the crystalline ferrocenylphosphonic acid in a relatively high yield and its crystal structure.
The molecular structure of the title compound is depicted in Fig. 1. The Fe atom lies between two cyclopentadiene (Cp) planes, with an average Fe—Cp(centroid) of 1.649 (2) Å. The [PO(OH)2] group is bonded to the ferrocene molecule via a P—C bond with a bond length of 1.749 (3) Å. The average bond length of P—O [1.543 (2) Å] is obviously longer than that of P═O [1.498 (2) Å]. The P atom is located in a slightly distorted tetrahedral environment, with the O—P—O and C—P—O bond angles in the ranges of 110.01 (13)–112.81 (13)° and 104.65 (13)—112.69 (13)°, respectively. The bond lengths and angles in the title compound are similar to those found in [FcCH2P(O)(OH)2] [Fc = (η5-C5H4)Fe(η5-C5H5)] (Oms et al., 2004b). It is interesting to note that six ferrocenylphosphonic acid molecules are connected by twelve strong intermolecular O—H···O hydrogen bonds (Table 1), leading to the formation of a highly distorted octahedral cage, as shown in Fig. 2. The volume of the cavity of the octahedral cage is about 270 Å3. The crystal packing is stabilized by these intermolecular hydrogen-bonding interactions.