metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ferrocenyl­phospho­nic acid

aInstitute of Molecular Engineering and Applied Chemsitry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 10 June 2011; accepted 7 July 2011; online 13 July 2011)

In the title compound, [Fe(C5H5)(C5H6O3P)], the phosphate group is bonded to the ferrocene unit with a P—C bond length of 1.749 (3) Å. In the crystal, six ferrocenyl­phospho­nic acid mol­ecules are connected by 12 strong inter­molecular O—H⋯O hydrogen bonds, leading to the formation of a highly distorted octa­hedral cage. The volume of the octa­hedral cage is about 270 Å3.

Related literature

For background to ferrocenyl­phospho­nates and ferrocenyl derivatives, see: Alley & Henderson (2001[Alley, S. R. & Henderson, W. (2001). J. Organomet. Chem. 637, 216-229.]); Henderson & Alley (2001[Henderson, W. & Alley, S. R. (2001). Inorg. Chim. Acta, 322, 106-112.]); Oms et al. (2004a[Oms, O., Le Bideau, J., Leroux, F., van der Lee, A., Leclercq, D. & Vioux, A. (2004a). J. Am. Chem. Soc. 126, 12090-12096.],b[Oms, O., Maurel, F., Carré, F., Le Bideau, J., Vioux, A. & Leclercq, D. (2004b). J. Organomet. Chem. 689, 2654-2661.], 2005[Oms, O., van der Lee, A., Le Bideau, J. & Leclercq, D. (2005). Dalton Trans. pp. 1903-1909.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C5H6O3P)]

  • Mr = 266.01

  • Trigonal, [R \overline 3]

  • a = 19.7329 (9) Å

  • c = 14.7338 (4) Å

  • V = 4968.5 (5) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 296 K

  • 0.20 × 0.16 × 0.11 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.755, Tmax = 0.853

  • 26557 measured reflections

  • 2500 independent reflections

  • 1956 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.03

  • 2500 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.76 2.559 (3) 165
O3—H3⋯O1ii 0.82 1.79 2.557 (3) 154
Symmetry codes: (i) -x+y+1, -x+1, z; (ii) [y+{\script{1\over 3}}, -x+y+{\script{2\over 3}}, -z-{\script{1\over 3}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ferrocene and ferrocenyl derivatives are well known for their redox activities and immobilization behaviors with metal ions (Alley & Henderson, 2001; Oms et al., 2004a). Ferrocenylphosphonates are ideal building block candidates for incorporation with transition metal ions due to the strong coordination behavior of PO groups and the high stability of the formed P—O—M (M = metal ion) bonds (Henderson & Alley, 2001; Oms et al., 2005). However, only a few metal ferrocenylphosphonate compounds have been reported from related literature, probably due to the low yield of ferrocenylphosphonic acid in its synthesis (Oms et al., 2004b). In this paper, we reported the preparation of the crystalline ferrocenylphosphonic acid in a relatively high yield and its crystal structure.

The molecular structure of the title compound is depicted in Fig. 1. The Fe atom lies between two cyclopentadiene (Cp) planes, with an average Fe—Cp(centroid) of 1.649 (2) Å. The [PO(OH)2] group is bonded to the ferrocene molecule via a P—C bond with a bond length of 1.749 (3) Å. The average bond length of P—O [1.543 (2) Å] is obviously longer than that of PO [1.498 (2) Å]. The P atom is located in a slightly distorted tetrahedral environment, with the O—P—O and C—P—O bond angles in the ranges of 110.01 (13)–112.81 (13)° and 104.65 (13)—112.69 (13)°, respectively. The bond lengths and angles in the title compound are similar to those found in [FcCH2P(O)(OH)2] [Fc = (η5-C5H4)Fe(η5-C5H5)] (Oms et al., 2004b). It is interesting to note that six ferrocenylphosphonic acid molecules are connected by twelve strong intermolecular O—H···O hydrogen bonds (Table 1), leading to the formation of a highly distorted octahedral cage, as shown in Fig. 2. The volume of the cavity of the octahedral cage is about 270 Å3. The crystal packing is stabilized by these intermolecular hydrogen-bonding interactions.

Related literature top

For background to ferrocenylphosphonates and ferrocenyl derivatives, see: Alley & Henderson (2001); Henderson & Alley (2001); Oms et al. (2004a,b, 2005).

Experimental top

Ferrocenylphosphonic acid was prepared according to literature (Oms et al., 2004b). All synthesis was taken in oven-dried glassware under a nitrogen atmosphere using standard Schlenk techniques. Me3SiBr (4.5 g, 30 mmol) was dropwise added to a solution of diethyl ferrocenylphosphonate (3.18 g, 10 mmol) in 20 ml CH2Cl2 at room temperature. After the mixture was stirred for 12 h, the solvent was removed under low pressure and the oil residues was dissolved in 20 ml MeCN and then treated with 5 ml H2O to precipitate the title compound. The precipitate was collected and washed with CH2Cl2 and Et2O (yield: 2.05 g, 80%). Single crystals suitable for X-ray analysis were obtained by recrystallization from methanol/Et2O. Analysis, calculated, for C10H11FeO3P: C 45.1, H 4.16%; found: C 45.0, H 4.04%.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Six ferrocenylphosphonic acid molecules are connected by intermolecular O—H···O hydrogen bonds (dashed lines), forming a distorted octahedral cage. [Symmetry codes: (i) 1/3+y, 2/3-x+y, -1/3-z; (ii) 1/3+x-y, -1/3+x, -1/3-z; (iii) 3/4-x, 2/3-y, -1/3-z; (iv) 1-y, x-y, z; (v) 1-x+y, 1-x, z.]
Ferrocenylphosphonic acid top
Crystal data top
[Fe(C5H5)(C5H6O3P)]Dx = 1.600 Mg m3
Mr = 266.01Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 5069 reflections
Hall symbol: -R 3θ = 2.8–22.9°
a = 19.7329 (9) ŵ = 1.49 mm1
c = 14.7338 (4) ÅT = 296 K
V = 4968.5 (5) Å3Block, red
Z = 180.20 × 0.16 × 0.11 mm
F(000) = 2448
Data collection top
Bruker APEX CCD
diffractometer
2500 independent reflections
Radiation source: fine-focus sealed tube1956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.755, Tmax = 0.853k = 2525
26557 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.041P)2 + 9.0107P]
where P = (Fo2 + 2Fc2)/3
2500 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Fe(C5H5)(C5H6O3P)]Z = 18
Mr = 266.01Mo Kα radiation
Trigonal, R3µ = 1.49 mm1
a = 19.7329 (9) ÅT = 296 K
c = 14.7338 (4) Å0.20 × 0.16 × 0.11 mm
V = 4968.5 (5) Å3
Data collection top
Bruker APEX CCD
diffractometer
2500 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1956 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.853Rint = 0.044
26557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.65 e Å3
2500 reflectionsΔρmin = 0.51 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.62280 (2)0.51797 (2)0.15180 (3)0.05726 (16)
P10.69358 (4)0.48371 (4)0.03885 (4)0.04430 (18)
O10.61726 (12)0.41531 (10)0.06806 (12)0.0603 (5)
O20.74425 (14)0.45939 (14)0.01591 (14)0.0750 (7)
H20.75400.43090.01520.113*
O30.73972 (13)0.53301 (11)0.12206 (14)0.0659 (6)
H30.74850.50580.15670.099*
C10.68160 (15)0.54767 (14)0.03269 (19)0.0503 (6)
C20.73203 (19)0.59400 (17)0.1052 (2)0.0733 (9)
H2A0.77840.59610.12240.088*
C30.6995 (3)0.6354 (2)0.1457 (3)0.1043 (17)
H3A0.72000.66900.19520.125*
C40.6307 (3)0.6176 (2)0.0989 (3)0.1058 (17)
H40.59840.63810.11180.127*
C50.6182 (2)0.5633 (2)0.0289 (3)0.0745 (9)
H50.57660.54180.01180.089*
C60.6355 (3)0.4572 (3)0.2550 (3)0.0955 (12)
H60.68310.46570.27760.115*
C70.5957 (4)0.4929 (3)0.2849 (3)0.121 (2)
H70.61120.52960.33140.145*
C80.5269 (3)0.4645 (3)0.2330 (4)0.120 (2)
H80.48880.47880.23870.144*
C90.5268 (2)0.4100 (2)0.1706 (3)0.0803 (10)
H90.48870.38180.12730.096*
C100.5939 (2)0.40671 (18)0.1861 (2)0.0677 (8)
H100.60860.37520.15480.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0606 (3)0.0423 (2)0.0670 (3)0.02441 (19)0.0177 (2)0.00354 (18)
P10.0532 (4)0.0378 (3)0.0442 (4)0.0245 (3)0.0017 (3)0.0026 (3)
O10.0731 (13)0.0404 (10)0.0487 (10)0.0143 (9)0.0092 (9)0.0005 (8)
O20.1037 (17)0.1009 (17)0.0606 (12)0.0813 (15)0.0152 (12)0.0171 (12)
O30.0780 (14)0.0469 (11)0.0628 (12)0.0238 (10)0.0178 (10)0.0001 (9)
C10.0497 (14)0.0372 (13)0.0620 (16)0.0202 (11)0.0101 (12)0.0008 (11)
C20.0607 (18)0.0508 (17)0.081 (2)0.0074 (14)0.0152 (16)0.0202 (15)
C30.118 (3)0.0473 (19)0.119 (3)0.020 (2)0.057 (3)0.019 (2)
C40.138 (4)0.061 (2)0.146 (4)0.070 (3)0.084 (3)0.035 (2)
C50.079 (2)0.068 (2)0.096 (2)0.0522 (18)0.0258 (19)0.0260 (18)
C60.107 (3)0.098 (3)0.065 (2)0.039 (3)0.011 (2)0.005 (2)
C70.180 (6)0.080 (3)0.076 (3)0.045 (3)0.052 (3)0.007 (2)
C80.120 (4)0.098 (3)0.173 (5)0.076 (3)0.103 (4)0.068 (3)
C90.060 (2)0.0574 (19)0.103 (3)0.0144 (16)0.0086 (18)0.0191 (19)
C100.092 (2)0.0541 (17)0.0598 (18)0.0391 (17)0.0121 (17)0.0068 (14)
Geometric parameters (Å, º) top
Fe1—C12.022 (3)C2—C31.400 (5)
Fe1—C72.028 (4)C2—H2A0.9300
Fe1—C62.028 (4)C3—C41.401 (7)
Fe1—C82.032 (4)C3—H3A0.9300
Fe1—C22.033 (3)C4—C51.417 (6)
Fe1—C102.037 (3)C4—H40.9300
Fe1—C32.040 (4)C5—H50.9300
Fe1—C92.041 (3)C6—C71.366 (7)
Fe1—C52.042 (4)C6—C101.371 (5)
Fe1—C42.046 (4)C6—H60.9300
P1—O11.4975 (19)C7—C81.407 (7)
P1—O21.537 (2)C7—H70.9300
P1—O31.547 (2)C8—C91.414 (6)
P1—C11.749 (3)C8—H80.9300
O2—H20.8200C9—C101.377 (5)
O3—H30.8200C9—H90.9300
C1—C51.432 (4)C10—H100.9300
C1—C21.435 (4)
C1—Fe1—C7162.4 (2)C2—C1—Fe169.69 (17)
C1—Fe1—C6126.80 (16)P1—C1—Fe1125.37 (14)
C7—Fe1—C639.4 (2)C3—C2—C1108.4 (4)
C1—Fe1—C8155.8 (2)C3—C2—Fe170.2 (2)
C7—Fe1—C840.5 (2)C1—C2—Fe168.87 (16)
C6—Fe1—C867.0 (2)C3—C2—H2A125.8
C1—Fe1—C241.44 (12)C1—C2—H2A125.8
C7—Fe1—C2124.0 (2)Fe1—C2—H2A126.7
C6—Fe1—C2106.88 (18)C2—C3—C4108.2 (4)
C8—Fe1—C2161.9 (2)C2—C3—Fe169.62 (18)
C1—Fe1—C10109.79 (11)C4—C3—Fe170.2 (2)
C7—Fe1—C1066.42 (16)C2—C3—H3A125.9
C6—Fe1—C1039.41 (15)C4—C3—H3A125.9
C8—Fe1—C1066.91 (15)Fe1—C3—H3A125.9
C2—Fe1—C10120.09 (15)C3—C4—C5109.3 (3)
C1—Fe1—C368.93 (13)C3—C4—Fe169.7 (2)
C7—Fe1—C3105.94 (19)C5—C4—Fe169.55 (18)
C6—Fe1—C3117.6 (2)C3—C4—H4125.4
C8—Fe1—C3125.81 (19)C5—C4—H4125.4
C2—Fe1—C340.21 (14)Fe1—C4—H4126.9
C10—Fe1—C3152.2 (2)C4—C5—C1107.0 (4)
C1—Fe1—C9121.25 (14)C4—C5—Fe169.9 (2)
C7—Fe1—C967.7 (2)C1—C5—Fe168.65 (17)
C6—Fe1—C966.79 (17)C4—C5—H5126.5
C8—Fe1—C940.61 (19)C1—C5—H5126.5
C2—Fe1—C9154.70 (15)Fe1—C5—H5126.5
C10—Fe1—C939.46 (15)C7—C6—C10108.9 (4)
C3—Fe1—C9164.92 (17)C7—C6—Fe170.3 (3)
C1—Fe1—C541.25 (12)C10—C6—Fe170.6 (2)
C7—Fe1—C5154.2 (2)C7—C6—H6125.6
C6—Fe1—C5165.83 (17)C10—C6—H6125.6
C8—Fe1—C5121.1 (2)Fe1—C6—H6125.1
C2—Fe1—C568.93 (15)C6—C7—C8107.9 (4)
C10—Fe1—C5129.96 (14)C6—C7—Fe170.3 (2)
C3—Fe1—C568.53 (19)C8—C7—Fe169.9 (3)
C9—Fe1—C5110.85 (16)C6—C7—H7126.0
C1—Fe1—C468.53 (12)C8—C7—H7126.0
C7—Fe1—C4119.1 (2)Fe1—C7—H7125.3
C6—Fe1—C4151.7 (2)C7—C8—C9106.9 (4)
C8—Fe1—C4109.11 (17)C7—C8—Fe169.6 (2)
C2—Fe1—C467.60 (18)C9—C8—Fe170.0 (2)
C10—Fe1—C4167.3 (2)C7—C8—H8126.5
C3—Fe1—C440.11 (19)C9—C8—H8126.5
C9—Fe1—C4129.7 (2)Fe1—C8—H8125.5
C5—Fe1—C440.57 (17)C10—C9—C8107.0 (4)
O1—P1—O2112.81 (13)C10—C9—Fe170.09 (19)
O1—P1—O3110.46 (11)C8—C9—Fe169.4 (2)
O2—P1—O3110.01 (13)C10—C9—H9126.5
O1—P1—C1112.69 (13)C8—C9—H9126.5
O2—P1—C1104.65 (13)Fe1—C9—H9125.6
O3—P1—C1105.86 (12)C6—C10—C9109.2 (4)
P1—O2—H2109.5C6—C10—Fe170.0 (2)
P1—O3—H3109.5C9—C10—Fe170.44 (19)
C5—C1—C2107.1 (3)C6—C10—H10125.4
C5—C1—P1125.4 (2)C9—C10—H10125.4
C2—C1—P1127.4 (2)Fe1—C10—H10125.8
C5—C1—Fe170.10 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.762.559 (3)165
O3—H3···O1ii0.821.792.557 (3)154
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1/3, x+y+2/3, z1/3.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C5H6O3P)]
Mr266.01
Crystal system, space groupTrigonal, R3
Temperature (K)296
a, c (Å)19.7329 (9), 14.7338 (4)
V3)4968.5 (5)
Z18
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.20 × 0.16 × 0.11
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.755, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
26557, 2500, 1956
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.03
No. of reflections2500
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.51

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.762.559 (3)165
O3—H3···O1ii0.821.792.557 (3)154
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1/3, x+y+2/3, z1/3.
 

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

References

First citationAlley, S. R. & Henderson, W. (2001). J. Organomet. Chem. 637, 216–229.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHenderson, W. & Alley, S. R. (2001). Inorg. Chim. Acta, 322, 106–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationOms, O., Le Bideau, J., Leroux, F., van der Lee, A., Leclercq, D. & Vioux, A. (2004a). J. Am. Chem. Soc. 126, 12090–12096.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOms, O., Maurel, F., Carré, F., Le Bideau, J., Vioux, A. & Leclercq, D. (2004b). J. Organomet. Chem. 689, 2654–2661.  Web of Science CSD CrossRef CAS Google Scholar
First citationOms, O., van der Lee, A., Le Bideau, J. & Leclercq, D. (2005). Dalton Trans. pp. 1903–1909.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds