metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1010-m1011

Bis{2-[(E)-(4-fluoro­benz­yl)imino­meth­yl]-6-meth­­oxy­phenolato-κ2N,O1}nickel(II)

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 14 June 2011; accepted 27 June 2011; online 2 July 2011)

In the title compound, [Ni(C15H13FNO2)2], the NiII atom is tetra­coordinated by two N atoms and two O atoms from two 2-[(4-fluoro­benz­yl)imino­meth­yl]-6-meth­oxy­phenolate ligands in a square-planar geometry. The two N atoms and two O atoms around the NiII atom are trans to each other, as the NiII atom lies on an inversion centre. In the fluoro­phenyl group, five C atoms and an F atom are disordered over two sets of positions of equal occupancy. In the crystal, the complex mol­ecules are linked via inter­molecular C—H⋯F hydrogen bonds, forming chains along [001].

Related literature

For applications of Schiff base complexes, see: Arun et al. (2009[Arun, V., Sridevi, N., Robinson, P. P., Manju, S. & Yusuff, K. K. M. (2009). J. Mol. Catal. A Chem. 304, 191-198.]); Bagihalli et al. (2008[Bagihalli, G. B., Avaji, P. G., Patil, S. A. & Badami, P. S. (2008). Eur. J. Med. Chem. 43, 2639-2649.]); Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.]). For a related structure, see: Mohd Tajuddin et al. (2010[Mohd Tajuddin, A., Bahron, H., Wan Ibrahim, W. N. & Yamin, B. M. (2010). Acta Cryst. E66, m1100.]). For the synthesis of the ligand, see: Bahron et al. (2007[Bahron, H., Kassim, K., Omar, S. R. S., Rashid, S. H., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, o558-o560.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C15H13FNO2)2]

  • Mr = 575.24

  • Triclinic, [P \overline 1]

  • a = 5.0110 (2) Å

  • b = 10.9309 (4) Å

  • c = 12.2435 (5) Å

  • α = 109.631 (2)°

  • β = 99.083 (3)°

  • γ = 91.020 (3)°

  • V = 621.92 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 100 K

  • 0.49 × 0.09 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.685, Tmax = 0.977

  • 14720 measured reflections

  • 3948 independent reflections

  • 3148 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 1.08

  • 3948 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −1.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯F1i 0.95 2.51 3.363 (18) 150
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are attractive due to their simple synthesis, versatility and diverse range of applications (Yamada, 1999). Nickel(II) Schiff base complexes have been reported to possess various properties such as anti-bacterial, anti-fungal (Bagihalli et al., 2008) and catalytic activities (Arun et al., 2009). The title compound is bis-bidentate and related to the previously reported bis[2-(1-benzyliminoethyl)phenolato]palladium(II) (Mohd Tajuddin et al., 2010), but with different metal centres and substituents on the iminoalkylphenolato and benzyl moieties.

The asymmetric unit has one half of the molecule, in which the NiII atom lies on an inversion centre (Fig. 1). The geometry around the NiII atom is square-planar, in which two N atoms and two O atoms are coplanar and trans to each other. The fluorophenyl group is disordered with five C atoms and an F atom over two sets of positions in an occupancy ratio of 0.50:0.50. The distances between the Ni atom and O and N atoms are 1.8298 (14) and 1.9223 (16) Å, respectively. In the crystal structure, the complex molecules are linked via C—H···F hydrogen bonds (Table 1, Fig. 2), forming a one-dimensional chain along [0 0 1].

Related literature top

For applications of Schiff base complexes, see: Arun et al. (2009); Bagihalli et al. (2008); Yamada (1999). For a related structure, see: Mohd Tajuddin et al. (2010). For the synthesis of the ligand, see: Bahron et al. (2007).

Experimental top

The ligand 2-[(E)-(4-fluorobenzylimino)methyl]-6-methoxyphenol (0.519 g, 2 mmol), which was prepared according to the previously published method (Bahron et al., 2007), was dissolved in ethanol (5 ml) in a round-bottomed flask. Nickel(II) acetate ( 0.251 g, 1 mmol) was dissolved separately in ethanol (5 ml ) and added into the flask containing the ligand solution. The mixture was stirred and refluxed for 5 h, upon which a green precipitate was formed. It was isolated by gravity filtration, washed with cold ethanol and air dried at room temperature. The solid product was recrystallized from chloroform, yielding green crystals (yield: 83.9%). Melting point: 493–498 K. Analysis, calculated for C30H26F2N2NiO4: C 62.64, H 4.56, N 4.87%; found: C 62.83, H 4.61, N 4.62%. IR (cm-1): ν(CN) 1612 (s), ν(C–O) 1249 (s), ν(C–H) 2837 (w), ν(C–N) 1340 (m), ν(C–OCH3) 1082 (m), ν(Ni–O) 648 (w), ν(Ni–N) 462 (w). 1H NMR (CDCl3, 300 MHz, p.p.m.): δ = 6.238 (1H, s, HCN), 6.741–7.559 (7H, m, H–aromatic), 5.695 (2H, s, CH2), 3.703 (3H, s, OCH3).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 (CH), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). Five C atoms and an F atom of the fluorophenyl group are disordered each over two sites, with a refined occupancy ratio of 0.507 (5):0.493 (5). In the final refinement, the occupancy ratio was fixed at 0.50:0.50.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. [Symmetry code: (i) -x+1, -y+1, -z.]
[Figure 2] Fig. 2. The crystal packing of the title compound. Only major components of the disordered atoms are shown. Dashed lines denote hydrogen bonds.
Bis{2-[(E)-(4-fluorobenzyl)iminomethyl]-6-methoxyphenolato- κ2N,O1}nickel(II) top
Crystal data top
[Ni(C15H13FNO2)2]Z = 1
Mr = 575.24F(000) = 298
Triclinic, P1Dx = 1.536 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0110 (2) ÅCell parameters from 3312 reflections
b = 10.9309 (4) Åθ = 3.1–29.9°
c = 12.2435 (5) ŵ = 0.84 mm1
α = 109.631 (2)°T = 100 K
β = 99.083 (3)°Needle, green
γ = 91.020 (3)°0.49 × 0.09 × 0.03 mm
V = 621.92 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3948 independent reflections
Radiation source: fine-focus sealed tube3148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 31.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 77
Tmin = 0.685, Tmax = 0.977k = 1515
14720 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2521P]
where P = (Fo2 + 2Fc2)/3
3948 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 1.20 e Å3
Crystal data top
[Ni(C15H13FNO2)2]γ = 91.020 (3)°
Mr = 575.24V = 621.92 (4) Å3
Triclinic, P1Z = 1
a = 5.0110 (2) ÅMo Kα radiation
b = 10.9309 (4) ŵ = 0.84 mm1
c = 12.2435 (5) ÅT = 100 K
α = 109.631 (2)°0.49 × 0.09 × 0.03 mm
β = 99.083 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3948 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3148 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.977Rint = 0.071
14720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.08Δρmax = 0.55 e Å3
3948 reflectionsΔρmin = 1.20 e Å3
222 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107) operating at 100.0 (1) K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.00000.01452 (11)
O10.7199 (3)0.64851 (13)0.03573 (12)0.0179 (3)
O21.0870 (3)0.82320 (14)0.03948 (13)0.0216 (3)
N10.3601 (3)0.56402 (15)0.14468 (14)0.0152 (3)
C10.7786 (4)0.74804 (18)0.13306 (17)0.0156 (4)
C20.9789 (4)0.84687 (19)0.13974 (18)0.0169 (4)
C31.0462 (5)0.95465 (19)0.24012 (19)0.0200 (4)
H3A1.17991.01910.24330.024*
C40.9191 (5)0.9703 (2)0.33805 (19)0.0221 (4)
H4A0.96811.04480.40710.027*
C50.7253 (5)0.87862 (19)0.33413 (18)0.0204 (4)
H5A0.63850.89020.40010.024*
C60.6530 (4)0.76618 (18)0.23190 (18)0.0170 (4)
C70.4439 (4)0.67372 (19)0.22852 (17)0.0162 (4)
H7A0.35620.69490.29520.019*
C80.1401 (4)0.48995 (19)0.17120 (17)0.0168 (4)
H8A0.03730.42830.09660.020*
H8B0.01310.55140.21020.020*
C90.2526 (4)0.41510 (19)0.25017 (18)0.0177 (4)
C151.2842 (5)0.9193 (2)0.0404 (2)0.0233 (4)
H15A1.34080.89450.03670.035*
H15B1.44190.92560.10120.035*
H15C1.20571.00370.05740.035*
F10.549 (4)0.2029 (11)0.4639 (17)0.031 (2)0.50
C100.1167 (9)0.4015 (4)0.3345 (4)0.0197 (8)0.50
H10A0.04750.44250.34500.024*0.50
C110.2113 (10)0.3290 (4)0.4062 (4)0.0228 (8)0.50
H11A0.11470.32060.46440.027*0.50
C120.449 (2)0.2710 (7)0.3888 (8)0.0228 (8)0.50
C130.5903 (14)0.2752 (6)0.3032 (6)0.0216 (12)0.50
H13A0.75110.23120.29250.026*0.50
C140.4904 (12)0.3462 (5)0.2325 (5)0.0197 (10)0.50
H14A0.58230.34890.17100.024*0.50
F1X0.583 (4)0.2322 (11)0.4752 (17)0.0270 (16)0.50
C10X0.2322 (10)0.4664 (4)0.3718 (4)0.0200 (8)0.50
H10B0.14420.54420.40060.024*0.50
C11X0.3399 (9)0.4039 (4)0.4485 (4)0.0214 (7)0.50
H11B0.32430.43670.52940.026*0.50
C12X0.471 (2)0.2918 (7)0.4034 (8)0.0214 (7)0.50
C13X0.4963 (13)0.2427 (6)0.2862 (6)0.0201 (12)0.50
H13B0.58660.16570.25710.024*0.50
C14X0.3865 (11)0.3080 (5)0.2107 (5)0.0164 (9)0.50
H14B0.40710.27600.13030.020*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0169 (2)0.01101 (16)0.01719 (18)0.00043 (13)0.00410 (14)0.00644 (13)
O10.0213 (8)0.0145 (6)0.0180 (7)0.0027 (6)0.0053 (6)0.0050 (5)
O20.0236 (8)0.0186 (7)0.0237 (7)0.0048 (6)0.0078 (6)0.0073 (6)
N10.0152 (8)0.0143 (7)0.0171 (8)0.0003 (6)0.0027 (6)0.0069 (6)
C10.0165 (10)0.0120 (8)0.0189 (9)0.0018 (7)0.0009 (7)0.0070 (7)
C20.0159 (10)0.0160 (8)0.0209 (9)0.0020 (7)0.0030 (8)0.0092 (7)
C30.0200 (10)0.0163 (8)0.0247 (10)0.0018 (8)0.0024 (8)0.0091 (8)
C40.0268 (12)0.0152 (9)0.0208 (10)0.0034 (8)0.0020 (9)0.0027 (8)
C50.0238 (11)0.0174 (9)0.0191 (9)0.0010 (8)0.0049 (8)0.0046 (8)
C60.0189 (10)0.0141 (8)0.0192 (9)0.0007 (7)0.0030 (8)0.0073 (7)
C70.0179 (10)0.0164 (8)0.0168 (9)0.0034 (7)0.0044 (7)0.0079 (7)
C80.0147 (9)0.0171 (8)0.0208 (9)0.0007 (7)0.0043 (8)0.0090 (7)
C90.0169 (10)0.0171 (8)0.0203 (9)0.0024 (7)0.0036 (8)0.0083 (7)
C150.0204 (11)0.0216 (9)0.0333 (12)0.0020 (8)0.0070 (9)0.0155 (9)
F10.050 (6)0.024 (4)0.030 (4)0.009 (4)0.008 (3)0.021 (4)
C100.020 (2)0.0161 (18)0.025 (2)0.0036 (17)0.0072 (17)0.0072 (16)
C110.032 (2)0.0187 (16)0.0222 (19)0.0007 (15)0.0068 (16)0.0117 (14)
C120.032 (2)0.0187 (16)0.0222 (19)0.0007 (15)0.0068 (16)0.0117 (14)
C130.024 (3)0.018 (3)0.023 (3)0.006 (2)0.005 (3)0.008 (2)
C140.024 (3)0.017 (2)0.019 (2)0.0003 (19)0.006 (2)0.0069 (18)
F1X0.037 (4)0.026 (5)0.028 (3)0.006 (4)0.009 (3)0.020 (4)
C10X0.023 (2)0.0192 (19)0.0190 (19)0.0064 (18)0.0054 (17)0.0076 (16)
C11X0.0254 (19)0.0235 (18)0.0163 (17)0.0022 (15)0.0007 (14)0.0096 (14)
C12X0.0254 (19)0.0235 (18)0.0163 (17)0.0022 (15)0.0007 (14)0.0096 (14)
C13X0.026 (3)0.016 (3)0.020 (3)0.003 (2)0.006 (3)0.007 (2)
C14X0.020 (2)0.013 (2)0.018 (2)0.0003 (17)0.0049 (19)0.0067 (17)
Geometric parameters (Å, º) top
Ni1—O11.8297 (14)C9—C10X1.425 (5)
Ni1—N11.9223 (16)C9—C141.428 (6)
O1—C11.303 (2)C15—H15A0.9800
O2—C21.367 (2)C15—H15B0.9800
O2—C151.425 (2)C15—H15C0.9800
N1—C71.299 (2)F1—C121.41 (2)
N1—C81.495 (2)C10—C111.404 (6)
C1—C61.409 (3)C10—H10A0.9500
C1—C21.434 (3)C11—C121.371 (12)
C2—C31.376 (3)C11—H11A0.9500
C3—C41.407 (3)C12—C131.367 (13)
C3—H3A0.9500C13—C141.390 (9)
C4—C51.367 (3)C13—H13A0.9500
C4—H4A0.9500C14—H14A0.9500
C5—C61.420 (3)F1X—C12X1.32 (2)
C5—H5A0.9500C10X—C11X1.388 (6)
C6—C71.429 (3)C10X—H10B0.9500
C7—H7A0.9500C11X—C12X1.389 (10)
C8—C91.516 (3)C11X—H11B0.9500
C8—H8A0.9900C12X—C13X1.380 (12)
C8—H8B0.9900C13X—C14X1.402 (9)
C9—C14X1.344 (5)C13X—H13B0.9500
C9—C101.369 (5)C14X—H14B0.9500
O1—Ni1—O1i180.00 (9)C10X—C9—C14111.5 (3)
O1—Ni1—N193.00 (7)C14X—C9—C8122.0 (3)
O1i—Ni1—N187.00 (7)C10—C9—C8121.1 (3)
O1—Ni1—N1i87.00 (7)C10X—C9—C8118.4 (2)
O1i—Ni1—N1i93.00 (6)C14—C9—C8121.3 (3)
N1—Ni1—N1i180.0O2—C15—H15A109.5
C1—O1—Ni1130.38 (13)O2—C15—H15B109.5
C2—O2—C15116.49 (16)H15A—C15—H15B109.5
C7—N1—C8113.22 (16)O2—C15—H15C109.5
C7—N1—Ni1124.50 (14)H15A—C15—H15C109.5
C8—N1—Ni1122.29 (12)H15B—C15—H15C109.5
O1—C1—C6123.93 (18)C9—C10—C11122.4 (4)
O1—C1—C2118.37 (18)C9—C10—H10A118.8
C6—C1—C2117.68 (17)C11—C10—H10A118.8
O2—C2—C3125.29 (19)C12—C11—C10117.3 (6)
O2—C2—C1114.03 (17)C12—C11—H11A121.3
C3—C2—C1120.68 (19)C10—C11—H11A121.3
C2—C3—C4120.63 (19)C13—C12—C11123.9 (9)
C2—C3—H3A119.7C13—C12—F1118.8 (12)
C4—C3—H3A119.7C11—C12—F1117.3 (12)
C5—C4—C3120.18 (19)C12—C13—C14117.6 (7)
C5—C4—H4A119.9C12—C13—H13A121.2
C3—C4—H4A119.9C14—C13—H13A121.2
C4—C5—C6120.33 (19)C13—C14—C9121.4 (5)
C4—C5—H5A119.8C13—C14—H14A119.3
C6—C5—H5A119.8C9—C14—H14A119.3
C1—C6—C5120.49 (19)C11X—C10X—C9120.6 (3)
C1—C6—C7120.17 (18)C11X—C10X—H10B119.7
C5—C6—C7119.30 (18)C9—C10X—H10B119.7
N1—C7—C6127.39 (18)C10X—C11X—C12X118.0 (5)
N1—C7—H7A116.3C10X—C11X—H11B121.0
C6—C7—H7A116.3C12X—C11X—H11B121.0
N1—C8—C9111.72 (16)F1X—C12X—C13X118.8 (11)
N1—C8—H8A109.3F1X—C12X—C11X119.3 (10)
C9—C8—H8A109.3C13X—C12X—C11X121.9 (8)
N1—C8—H8B109.3C12X—C13X—C14X119.0 (7)
C9—C8—H8B109.3C12X—C13X—H13B120.5
H8A—C8—H8B107.9C14X—C13X—H13B120.5
C14X—C9—C10108.2 (3)C9—C14X—C13X121.0 (5)
C14X—C9—C10X119.5 (3)C9—C14X—H14B119.5
C10—C9—C14117.3 (3)C13X—C14X—H14B119.5
N1—Ni1—O1—C18.77 (19)N1—C8—C9—C10143.9 (3)
N1i—Ni1—O1—C1171.23 (19)N1—C8—C9—C10X102.8 (3)
O1—Ni1—N1—C74.67 (18)N1—C8—C9—C1442.0 (3)
O1i—Ni1—N1—C7175.33 (18)C14X—C9—C10—C1129.7 (5)
O1—Ni1—N1—C8175.40 (15)C10X—C9—C10—C1185.9 (6)
O1i—Ni1—N1—C84.60 (15)C14—C9—C10—C113.4 (6)
Ni1—O1—C1—C67.0 (3)C8—C9—C10—C11177.8 (3)
Ni1—O1—C1—C2174.36 (14)C9—C10—C11—C120.0 (7)
C15—O2—C2—C30.3 (3)C10—C11—C12—C132.9 (9)
C15—O2—C2—C1179.05 (18)C10—C11—C12—F1177.4 (7)
O1—C1—C2—O20.1 (3)C11—C12—C13—C142.1 (10)
C6—C1—C2—O2178.77 (18)F1—C12—C13—C14178.2 (7)
O1—C1—C2—C3179.33 (19)C12—C13—C14—C91.6 (8)
C6—C1—C2—C30.6 (3)C14X—C9—C14—C1379.1 (9)
O2—C2—C3—C4179.04 (19)C10—C9—C14—C134.2 (6)
C1—C2—C3—C40.3 (3)C10X—C9—C14—C1334.5 (6)
C2—C3—C4—C50.4 (3)C8—C9—C14—C13178.6 (4)
C3—C4—C5—C60.8 (3)C14X—C9—C10X—C11X2.6 (6)
O1—C1—C6—C5178.92 (19)C10—C9—C10X—C11X77.3 (5)
C2—C1—C6—C50.3 (3)C14—C9—C10X—C11X29.9 (5)
O1—C1—C6—C71.2 (3)C8—C9—C10X—C11X177.9 (3)
C2—C1—C6—C7177.37 (18)C9—C10X—C11X—C12X1.1 (8)
C4—C5—C6—C10.4 (3)C10X—C11X—C12X—F1X178.0 (9)
C4—C5—C6—C7178.1 (2)C10X—C11X—C12X—C13X0.1 (10)
C8—N1—C7—C6179.02 (19)F1X—C12X—C13X—C14X177.8 (9)
Ni1—N1—C7—C60.9 (3)C11X—C12X—C13X—C14X0.1 (11)
C1—C6—C7—N15.2 (3)C10—C9—C14X—C13X34.3 (6)
C5—C6—C7—N1177.1 (2)C10X—C9—C14X—C13X2.8 (7)
C7—N1—C8—C980.9 (2)C14—C9—C14X—C13X81.2 (9)
Ni1—N1—C8—C999.07 (17)C8—C9—C14X—C13X177.9 (4)
N1—C8—C9—C14X72.4 (3)C12X—C13X—C14X—C91.6 (9)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···F1ii0.952.513.363 (18)150
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C15H13FNO2)2]
Mr575.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.0110 (2), 10.9309 (4), 12.2435 (5)
α, β, γ (°)109.631 (2), 99.083 (3), 91.020 (3)
V3)621.92 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.49 × 0.09 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.685, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
14720, 3948, 3148
Rint0.071
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.08
No. of reflections3948
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 1.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···F1i0.952.513.363 (18)150
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HB, AMT and WNWI acknowledge the Ministry of Higher Education of Malaysia for research grant No. 600-RMI/ST/FRGS5/3/Fst(7/2009) and Universiti Teknologi MARA and Universiti Sains Malaysia for the facilities. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationArun, V., Sridevi, N., Robinson, P. P., Manju, S. & Yusuff, K. K. M. (2009). J. Mol. Catal. A Chem. 304, 191–198.  Web of Science CrossRef CAS Google Scholar
First citationBagihalli, G. B., Avaji, P. G., Patil, S. A. & Badami, P. S. (2008). Eur. J. Med. Chem. 43, 2639–2649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBahron, H., Kassim, K., Omar, S. R. S., Rashid, S. H., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, o558–o560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMohd Tajuddin, A., Bahron, H., Wan Ibrahim, W. N. & Yamin, B. M. (2010). Acta Cryst. E66, m1100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1010-m1011
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds