metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′,2,2′,3,3′,4,4′-Octa­methyl­ferro­cenium 2,5-di­bromo-4-hy­dr­oxy-3,6-dioxo­cyclo­hexa-1,4-dien-1-olate

aDepartment of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Hyogo 657-8501, Japan
*Correspondence e-mail: tmochida@platinum.kobe-u.ac.jp

(Received 15 June 2011; accepted 28 June 2011; online 2 July 2011)

In the title salt, octa­methyl­ferrocenium bromanilate, [Fe(C9H13)2](C6HBr2O4), the Fe atom and the bromanilate anion lie on a mirror plane. The octa­methyl­ferrocenium cation adopts an eclipsed conformation. An intra­molecular O—H⋯O hydrogen bond is present in the bromanilate anion. In the crystal, the cations and anions are stacked alternately, forming a one-dimensional columnar structure along [010].

Related literature

For general background to ferrocene-based charge-transfer complexes, see: Miller et al. (1994[Miller, J. S., Epstein, A. J. & Reiff, W. M. (1994). Angew. Chem. Int. Ed. Engl. 33, 385-415.]); Mochida et al. (2007[Mochida, T., Koinuma, T., Akasaka, T., Sato, M., Nishio, Y., Kajita, K. & Mori, H. (2007). Chem. Eur. J. 13, 1872-1881.]). For organometallic supra­molecular compounds, see: Braga et al. (2001[Braga, D., Maini, L., Polito, M., Scaccianoce, L., Cojazzi, G. & Grepioni, F. (2001). Coord. Chem. Rev. 216-217, 225-248.]); Horikoshi et al. (2004[Horikoshi, R., Nambu, C. & Mochida, T. (2004). New J. Chem. 28, 26-33.]). For phase transitions in octa- and deca­methyl­ferrocene complexes, see: Mochida et al. (2011[Mochida, T., Funasako, Y. & Azumi, H. (2011). Dalton Trans. doi: 10.1039/C1DT10200A]); Mochida & Yoza (2010[Mochida, T. & Yoza, K. (2010). J. Organomet. Chem. 695, 1749-1752.]). For related structures containing bromanilic acid, see: Mochida (2010[Mochida, T. (2010). Inorg. Chim. Acta, 363, 3624-3626.]); Thomas et al. (2009[Thomas, L. H., Boyle, B., Clive, L. A., Collins, A., Currie, L. D., Gogol, M., Hastings, C., Jones, A. O. F., Kennedy, J. L., Kerr, G. B., Kidd, A., Lawton, L. M., Macintyre, S. J., MacLean, N. M., Martin, A. R. G., McGonagle, K., Melrose, S., Rew, G. A., Robinson, C. W., Schmidtmann, M., Turnbull, F. B., Williams, L. G., Wiseman, A. Y., Wocial, M. H. & Wilson, C. C. (2009). Acta Cryst. E65, o1218.]); Tomura & Yamashita (2000[Tomura, M. & Yamashita, Y. (2000). CrystEngComm, 2, 92-95.]); Zaman et al. (2001a[Zaman, Md. B., Tomura, M. & Yamashita, Y. (2001a). J. Org. Chem. 66, 5987-5995.],b[Zaman, Md. B., Tomura, M. & Yamashita, Y. (2001b). Inorg. Chim. Acta, 318, 127-134.], 2004[Zaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585-589.]). For the structure of the octa­methyl­ferrocenium cation, see: Miller et al. (1989[Miller, J. S., Glatzhofer, D. T., O'Hare, D. M., Reiff, W. M., Chakraborty, A. & Epstein, A. J. (1989). Inorg. Chem. 28, 2930-2939.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C9H13)2](C6HBr2O4)

  • Mr = 595.13

  • Orthorhombic, P n m a

  • a = 14.7106 (15) Å

  • b = 10.4938 (11) Å

  • c = 14.9461 (15) Å

  • V = 2307.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.15 mm−1

  • T = 173 K

  • 0.38 × 0.08 × 0.08 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.306, Tmax = 0.746

  • 14287 measured reflections

  • 2804 independent reflections

  • 1699 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.084

  • S = 1.00

  • 2804 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1 1.01 (8) 1.70 (9) 2.534 (5) 137 (7)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organometallic charge-transfer salts (Miller et al., 1994; Mochida et al., 2007) and organometallic hydrogen-bonded supramolecular compounds (Braga et al., 2001, Horikoshi et al., 2004) have attracted attention mainly from the viewpoints of physical properties and crystal engineering, respectively. This paper reports the crystal structure of the title compound, a charge-transfer salt of octamethylferrocene with bromanilic acid. Bromanilic acid acts as proton donor and electron acceptor, and is useful for building organometallic complexes (Mochida, 2010; Thomas et al., 2009; Tomura & Yamashita, 2000; Zaman et al., 2001a, 2004).

The title compound consists of octamethylferrocenium cation and bromanilate anion, which is a deprotonated form of bromanilic acid (Fig. 1). The asymmetric unit contains half of the cation and half of the anion, as the Fe atom and bromanilate anion lie on a mirror plane. The Fe—C(Cp) distances in the cation are 2.072 (3)–2.120 (3) Å (average: 2.102 Å), which is a typical value of the octamethylferrocenium cation (Miller et al., 1989). The C5HMe4 groups of the cation adopt an eclipsed conformation and exhibit no disorder. In the anion, the C—O bond length to the deprotonated O atom is shortened compared to that to the protonated O atom [1.234 (6) versus 1.337 (6) Å]. In the crystal, the cations and anions are alternately stacked along the b-axis to form one-dimensional columns (Fig. 2). There are no intermolecular hydrogen bonds, whereas the bromanilate anion shows an intramolecular O—H···O hydrogen bond (Table 1). The local molecular arrangement closely resembles that of a decamethylferrocene–bromanilate compound (Zaman et al., 2011b), although they are not isomorphous. In both crystals, the electronegative atoms (O or Br) of the anion appear to surround the Fe atoms of the cation, leading to the co-planar arrangement of the Fe atoms and the anion planes, as seen in Fig. 2b. In this compound, no O···Br close contacts are seen, in contrast to decamethylferrocene–bromanilate compound, and C—H···Br contacts are observed between the cation and anion (H···Br distance = 3.01 Å).

DSC measurements revealed no traces of phase transitions between 120–400 K, whereas decamethyl- and octamethylferrocene complexes often undergo phase transitions associated with order-disorder of the cyclopentadienyl rings (Mochida et al., 2011; Mochida & Yoza, 2010). An exothermic peak corresponding to decomposition was observed around 408 K.

Related literature top

For general background to ferrocene-based charge-transfer complexes, see: Miller et al. (1994); Mochida et al. (2007). For organometallic supramolecular compounds, see: Braga et al. (2001); Horikoshi et al. (2004). For phase transitions in octa- and decamethylferrocene complexes, see: Mochida et al. (2011); Mochida & Yoza (2010). For related structures containing bromanilic acid, see: Mochida (2010); Thomas et al. (2009); Tomura & Yamashita (2000); Zaman et al. (2001a,b, 2004). For the structure of the octamethylferrocenium cation, see: Miller et al. (1989).

Experimental top

Violet needle crystals of the title compound were grown by slow evaporation of solvent from a 1:1 solution of octamethylferrocene and bromanilic acid in dichloromethane at 223 K. IR (KBr, cm-1): 2919, 1642, 1562, 1368, 1336, 1167, 1030, 957, 790, 553.

Refinement top

The hydroxyl H atom was identified in a difference Fourier map and allowed to refine isotropically. Other H atoms were placed at calculated positions and refined in a riding model, with C—H = 0.98 (methyl) and 1.00 (aromatic) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms except for the hydroxyl group are omitted for clarity. [Symmetry code: (i) x, 1/2-y, z.]
[Figure 2] Fig. 2. Packing diagrams of the title compound, (a) viewed along the b-axis and (b) viewed along the a-axis. H atoms are omitted for clarity in (b).
1,1',2,2',3,3',4,4'-Octamethylferrocenium 2,5-dibromo-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate top
Crystal data top
[Fe(C9H13)2](C6HBr2O4)F(000) = 1196
Mr = 595.13Dx = 1.713 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1436 reflections
a = 14.7106 (15) Åθ = 2.7–24.0°
b = 10.4938 (11) ŵ = 4.15 mm1
c = 14.9461 (15) ÅT = 173 K
V = 2307.2 (4) Å3Needle, violet
Z = 40.38 × 0.08 × 0.08 mm
Data collection top
Bruker APEX CCD
diffractometer
2804 independent reflections
Radiation source: fine-focus sealed tube1699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1918
Tmin = 0.306, Tmax = 0.746k = 1313
14287 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
2804 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Fe(C9H13)2](C6HBr2O4)V = 2307.2 (4) Å3
Mr = 595.13Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.7106 (15) ŵ = 4.15 mm1
b = 10.4938 (11) ÅT = 173 K
c = 14.9461 (15) Å0.38 × 0.08 × 0.08 mm
Data collection top
Bruker APEX CCD
diffractometer
2804 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1699 reflections with I > 2σ(I)
Tmin = 0.306, Tmax = 0.746Rint = 0.087
14287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.56 e Å3
2804 reflectionsΔρmin = 0.39 e Å3
167 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.62817 (4)0.25000.60939 (4)0.04543 (19)
Br20.89861 (5)0.25000.25105 (4)0.0542 (2)
Fe10.24413 (4)0.25000.60312 (4)0.02121 (17)
C20.2127 (2)0.0859 (3)0.5266 (2)0.0264 (8)
C10.1616 (2)0.0870 (3)0.6081 (2)0.0266 (8)
C50.2252 (2)0.0881 (3)0.6802 (2)0.0298 (8)
H50.20940.08690.74530.036*
C30.3072 (2)0.0853 (3)0.5494 (2)0.0256 (8)
C40.3147 (2)0.0867 (3)0.6443 (2)0.0285 (8)
C80.3846 (2)0.0811 (4)0.4848 (2)0.0410 (10)
H8A0.43340.13720.50580.062*
H8B0.36370.10970.42590.062*
H8C0.40740.00640.48030.062*
C70.1734 (3)0.0829 (3)0.4341 (2)0.0389 (10)
H7A0.16330.00570.41600.058*
H7B0.21570.12360.39230.058*
H7C0.11540.12880.43350.058*
C90.4003 (2)0.0809 (4)0.6978 (3)0.0420 (10)
H9A0.41870.00830.70520.063*
H9B0.38990.11920.75670.063*
H9C0.44840.12780.66660.063*
C60.0605 (2)0.0820 (3)0.6176 (2)0.0415 (10)
H6A0.03230.13360.57050.062*
H6B0.04300.11550.67630.062*
H6C0.03990.00650.61210.062*
C120.7307 (4)0.25000.3449 (3)0.0328 (13)
C100.7062 (4)0.25000.5083 (3)0.0324 (13)
C110.6678 (4)0.25000.4242 (3)0.0357 (13)
C150.8004 (4)0.25000.5240 (4)0.0332 (13)
C140.8635 (4)0.25000.4391 (4)0.0365 (13)
C130.8211 (4)0.25000.3525 (3)0.0366 (13)
O10.5845 (3)0.25000.4037 (2)0.0482 (10)
O40.8385 (3)0.25000.5975 (2)0.0473 (11)
O30.9454 (3)0.25000.4508 (3)0.0532 (11)
O20.6862 (3)0.25000.2669 (2)0.0457 (11)
H10.625 (5)0.25000.297 (6)0.13 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0608 (5)0.0432 (4)0.0323 (3)0.0000.0033 (3)0.000
Br20.0666 (5)0.0589 (4)0.0373 (4)0.0000.0083 (3)0.000
Fe10.0223 (4)0.0178 (3)0.0235 (4)0.0000.0008 (3)0.000
C20.032 (2)0.0177 (17)0.030 (2)0.0013 (16)0.0022 (16)0.0020 (15)
C10.0208 (18)0.0214 (18)0.038 (2)0.0037 (14)0.0036 (16)0.0001 (17)
C50.040 (2)0.0222 (19)0.027 (2)0.0008 (16)0.0022 (17)0.0046 (15)
C30.027 (2)0.0155 (17)0.034 (2)0.0029 (15)0.0043 (15)0.0034 (16)
C40.031 (2)0.0206 (19)0.034 (2)0.0040 (16)0.0047 (16)0.0004 (16)
C80.038 (3)0.035 (2)0.050 (3)0.0073 (18)0.0156 (19)0.003 (2)
C70.055 (3)0.029 (2)0.032 (2)0.0029 (19)0.0125 (18)0.0037 (18)
C90.040 (2)0.035 (2)0.051 (3)0.0002 (19)0.0165 (19)0.005 (2)
C60.028 (2)0.036 (2)0.060 (3)0.0081 (18)0.0086 (19)0.003 (2)
C120.049 (4)0.026 (3)0.024 (3)0.0000.010 (3)0.000
C100.049 (4)0.028 (3)0.020 (3)0.0000.001 (2)0.000
C110.050 (4)0.027 (3)0.030 (3)0.0000.006 (3)0.000
C150.055 (4)0.014 (3)0.031 (3)0.0000.006 (3)0.000
C140.041 (4)0.029 (3)0.040 (3)0.0000.004 (3)0.000
C130.051 (4)0.027 (3)0.032 (3)0.0000.001 (3)0.000
O10.046 (3)0.055 (3)0.043 (2)0.0000.011 (2)0.000
O40.064 (3)0.045 (3)0.033 (2)0.0000.016 (2)0.000
O30.048 (3)0.060 (3)0.051 (3)0.0000.006 (2)0.000
O20.060 (3)0.053 (3)0.024 (2)0.0000.014 (2)0.000
Geometric parameters (Å, º) top
Br1—C101.898 (5)C8—H8B0.9800
Br2—C131.897 (5)C8—H8C0.9800
Fe1—C5i2.072 (3)C7—H7A0.9800
Fe1—C52.072 (3)C7—H7B0.9800
Fe1—C4i2.096 (3)C7—H7C0.9800
Fe1—C42.096 (3)C9—H9A0.9800
Fe1—C1i2.099 (3)C9—H9B0.9800
Fe1—C12.099 (3)C9—H9C0.9800
Fe1—C2i2.119 (3)C6—H6A0.9800
Fe1—C22.119 (3)C6—H6B0.9800
Fe1—C3i2.120 (3)C6—H6C0.9800
Fe1—C32.120 (3)C12—C131.334 (7)
C2—C11.432 (4)C12—O21.337 (6)
C2—C31.433 (5)C12—C111.505 (7)
C2—C71.499 (4)C10—C111.378 (7)
C1—C51.427 (5)C10—C151.405 (7)
C1—C61.495 (4)C11—O11.262 (6)
C5—C41.422 (5)C15—O41.234 (6)
C5—H51.0000C15—C141.571 (7)
C3—C41.421 (5)C14—O31.218 (6)
C3—C81.493 (4)C14—C131.437 (7)
C4—C91.493 (4)O2—H11.01 (8)
C8—H8A0.9800
C5i—Fe1—C5110.2 (2)C1—C5—Fe171.03 (19)
C5i—Fe1—C4i39.90 (13)C4—C5—H5125.6
C5—Fe1—C4i125.03 (14)C1—C5—H5125.6
C5i—Fe1—C4125.03 (14)Fe1—C5—H5125.6
C5—Fe1—C439.90 (13)C4—C3—C2108.2 (3)
C4i—Fe1—C4109.68 (19)C4—C3—C8125.9 (3)
C5i—Fe1—C1i40.01 (13)C2—C3—C8125.9 (3)
C5—Fe1—C1i124.82 (13)C4—C3—Fe169.39 (19)
C4i—Fe1—C1i67.03 (14)C2—C3—Fe170.21 (18)
C4—Fe1—C1i160.47 (14)C8—C3—Fe1127.1 (2)
C5i—Fe1—C1124.82 (13)C3—C4—C5107.8 (3)
C5—Fe1—C140.00 (13)C3—C4—C9126.8 (3)
C4i—Fe1—C1160.47 (14)C5—C4—C9125.4 (3)
C4—Fe1—C167.03 (14)C3—C4—Fe171.20 (19)
C1i—Fe1—C1109.18 (18)C5—C4—Fe169.14 (19)
C5i—Fe1—C2i66.68 (13)C9—C4—Fe1127.5 (2)
C5—Fe1—C2i159.65 (14)C3—C8—H8A109.5
C4i—Fe1—C2i66.55 (13)C3—C8—H8B109.5
C4—Fe1—C2i158.63 (14)H8A—C8—H8B109.5
C1i—Fe1—C2i39.67 (12)C3—C8—H8C109.5
C1—Fe1—C2i123.73 (13)H8A—C8—H8C109.5
C5i—Fe1—C2159.65 (14)H8B—C8—H8C109.5
C5—Fe1—C266.68 (13)C2—C7—H7A109.5
C4i—Fe1—C2158.63 (14)C2—C7—H7B109.5
C4—Fe1—C266.55 (13)H7A—C7—H7B109.5
C1i—Fe1—C2123.73 (13)C2—C7—H7C109.5
C1—Fe1—C239.68 (12)H7A—C7—H7C109.5
C2i—Fe1—C2108.75 (18)H7B—C7—H7C109.5
C5i—Fe1—C3i66.45 (14)C4—C9—H9A109.5
C5—Fe1—C3i159.74 (13)C4—C9—H9B109.5
C4i—Fe1—C3i39.41 (13)H9A—C9—H9B109.5
C4—Fe1—C3i124.10 (13)C4—C9—H9C109.5
C1i—Fe1—C3i66.56 (13)H9A—C9—H9C109.5
C1—Fe1—C3i158.65 (14)H9B—C9—H9C109.5
C2i—Fe1—C3i39.52 (12)C1—C6—H6A109.5
C2—Fe1—C3i123.65 (14)C1—C6—H6B109.5
C5i—Fe1—C3159.74 (13)H6A—C6—H6B109.5
C5—Fe1—C366.45 (14)C1—C6—H6C109.5
C4i—Fe1—C3124.10 (13)H6A—C6—H6C109.5
C4—Fe1—C339.41 (13)H6B—C6—H6C109.5
C1i—Fe1—C3158.65 (14)C13—C12—O2124.2 (5)
C1—Fe1—C366.56 (13)C13—C12—C11123.1 (5)
C2i—Fe1—C3123.66 (14)O2—C12—C11112.7 (5)
C2—Fe1—C339.52 (12)C11—C10—C15123.9 (5)
C3i—Fe1—C3109.26 (18)C11—C10—Br1118.5 (4)
C1—C2—C3107.8 (3)C15—C10—Br1117.6 (4)
C1—C2—C7125.7 (3)O1—C11—C10128.3 (5)
C3—C2—C7126.5 (3)O1—C11—C12114.0 (5)
C1—C2—Fe169.42 (18)C10—C11—C12117.8 (5)
C3—C2—Fe170.27 (18)O4—C15—C10126.6 (5)
C7—C2—Fe1126.8 (2)O4—C15—C14116.8 (5)
C5—C1—C2107.4 (3)C10—C15—C14116.6 (4)
C5—C1—C6125.5 (3)O3—C14—C13123.9 (5)
C2—C1—C6127.0 (3)O3—C14—C15118.0 (5)
C5—C1—Fe168.97 (18)C13—C14—C15118.1 (5)
C2—C1—Fe170.90 (18)C12—C13—C14120.6 (5)
C6—C1—Fe1127.4 (2)C12—C13—Br2122.1 (4)
C4—C5—C1108.8 (3)C14—C13—Br2117.4 (4)
C4—C5—Fe170.95 (19)C12—O2—H192 (5)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O11.01 (8)1.70 (9)2.534 (5)137 (7)

Experimental details

Crystal data
Chemical formula[Fe(C9H13)2](C6HBr2O4)
Mr595.13
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)173
a, b, c (Å)14.7106 (15), 10.4938 (11), 14.9461 (15)
V3)2307.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.15
Crystal size (mm)0.38 × 0.08 × 0.08
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.306, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14287, 2804, 1699
Rint0.087
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.084, 1.00
No. of reflections2804
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.39

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O11.01 (8)1.70 (9)2.534 (5)137 (7)
 

Acknowledgements

The author thanks Y. Funasako and H. Azumi for their help with crystallography and crystal growth. This work was supported financially by KAKENHI (No. 23110719).

References

First citationBraga, D., Maini, L., Polito, M., Scaccianoce, L., Cojazzi, G. & Grepioni, F. (2001). Coord. Chem. Rev. 216–217, 225–248.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHorikoshi, R., Nambu, C. & Mochida, T. (2004). New J. Chem. 28, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiller, J. S., Epstein, A. J. & Reiff, W. M. (1994). Angew. Chem. Int. Ed. Engl. 33, 385–415.  CrossRef Web of Science Google Scholar
First citationMiller, J. S., Glatzhofer, D. T., O'Hare, D. M., Reiff, W. M., Chakraborty, A. & Epstein, A. J. (1989). Inorg. Chem. 28, 2930–2939.  CSD CrossRef CAS Web of Science Google Scholar
First citationMochida, T. (2010). Inorg. Chim. Acta, 363, 3624–3626.  Web of Science CSD CrossRef CAS Google Scholar
First citationMochida, T., Funasako, Y. & Azumi, H. (2011). Dalton Trans. doi: 10.1039/C1DT10200A  Google Scholar
First citationMochida, T., Koinuma, T., Akasaka, T., Sato, M., Nishio, Y., Kajita, K. & Mori, H. (2007). Chem. Eur. J. 13, 1872–1881.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMochida, T. & Yoza, K. (2010). J. Organomet. Chem. 695, 1749–1752.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, L. H., Boyle, B., Clive, L. A., Collins, A., Currie, L. D., Gogol, M., Hastings, C., Jones, A. O. F., Kennedy, J. L., Kerr, G. B., Kidd, A., Lawton, L. M., Macintyre, S. J., MacLean, N. M., Martin, A. R. G., McGonagle, K., Melrose, S., Rew, G. A., Robinson, C. W., Schmidtmann, M., Turnbull, F. B., Williams, L. G., Wiseman, A. Y., Wocial, M. H. & Wilson, C. C. (2009). Acta Cryst. E65, o1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTomura, M. & Yamashita, Y. (2000). CrystEngComm, 2, 92–95.  Web of Science CSD CrossRef Google Scholar
First citationZaman, Md. B., Tomura, M. & Yamashita, Y. (2001a). J. Org. Chem. 66, 5987–5995.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZaman, Md. B., Tomura, M. & Yamashita, Y. (2001b). Inorg. Chim. Acta, 318, 127–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds