metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­{[2-methyl­sulfanyl-4-(pyridin-4-yl-κN)pyrimidine]­copper(II)}(Cu—Cu)

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 12 July 2011; accepted 23 July 2011; online 30 July 2011)

The binuclear title compound, [Cu2(CH3CO2)4(C10H9N3S)2], comprises a Cu2(CH3CO2)4 paddle-wheel core axially bound by two 2-methyl­sulfanyl-4-(pyridin-4-yl)pyrimidine ligands. The complex mol­ecule has an inversion center lying at the mid-point of the Cu—Cu bond.

Related literature

For a related structure, see: Li et al. (2009[Li, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C10H9N3S)2]

  • Mr = 769.82

  • Monoclinic, P 21 /c

  • a = 15.192 (2) Å

  • b = 13.003 (2) Å

  • c = 8.6108 (13) Å

  • β = 103.781 (2)°

  • V = 1652.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 298 K

  • 0.41 × 0.25 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.650, Tmax = 0.768

  • 9568 measured reflections

  • 2827 independent reflections

  • 2354 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.097

  • S = 1.04

  • 2827 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1i 1.970 (2)
Cu1—O2 1.967 (2)
Cu1—O3i 1.974 (2)
Cu1—O4 1.967 (2)
Cu1—N1 2.183 (2)
Cu1—Cu1i 2.6299 (7)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our previous work, we have reported a mononuclear Cu(II) complex with 4-(pyridin-4-yl)pyrimidine-2-sulfonate ligand (Li et al., 2009). Herein, we report a binuclear Cu(II) coordination compound with 2-(methylthio)-4-(pyridin-4-yl)pyrimidine (L) ligand. The title compound lies on an inversion center with a Cu—Cu separation of 2.6299 (7) Å (Fig. 1). The L ligand acts as a terminal ligand via its pyridine N atom, with a Cu—N distance of 2.183 (2) Å (Table 1).

Related literature top

For a related structure, see: Li et al. (2009).

Experimental top

A mixture of Cu(CH3CO2)2 (0.1 mmol), L (0.1 mmol) in ethanol (15 ml) was stirred for 20 min at room temperature. After filtration, the mother liquid was allowed to stand for one week to give blue crystals suitable for X-ray diffraction analysis.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) 1-x, -y, 1-z.]
Tetra-µ-acetato-κ8O:O'-bis{[2-methylsulfanyl- 4-(pyridin-4-yl-κN)pyrimidine]copper(II)}(Cu—Cu) top
Crystal data top
[Cu2(C2H3O2)4(C10H9N3S)2]F(000) = 788
Mr = 769.82Dx = 1.548 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2827 reflections
a = 15.192 (2) Åθ = 2.3–25.5°
b = 13.003 (2) ŵ = 1.47 mm1
c = 8.6108 (13) ÅT = 298 K
β = 103.781 (2)°Block, blue
V = 1652.0 (4) Å30.41 × 0.25 × 0.18 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2827 independent reflections
Radiation source: fine-focus sealed tube2354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1518
Tmin = 0.650, Tmax = 0.768k = 1515
9568 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.3763P]
where P = (Fo2 + 2Fc2)/3
2827 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu2(C2H3O2)4(C10H9N3S)2]V = 1652.0 (4) Å3
Mr = 769.82Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.192 (2) ŵ = 1.47 mm1
b = 13.003 (2) ÅT = 298 K
c = 8.6108 (13) Å0.41 × 0.25 × 0.18 mm
β = 103.781 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2827 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2354 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.768Rint = 0.024
9568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
2827 reflectionsΔρmin = 0.32 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.42790 (2)0.03013 (2)0.39231 (4)0.03313 (14)
O20.39177 (14)0.11545 (15)0.3826 (3)0.0474 (5)
O40.50560 (15)0.00064 (17)0.2452 (2)0.0462 (5)
N10.31254 (16)0.08776 (18)0.2112 (3)0.0380 (5)
O10.62838 (15)0.05037 (17)0.4261 (3)0.0522 (6)
O30.51441 (14)0.16651 (15)0.5641 (3)0.0518 (6)
C140.5845 (2)0.03341 (19)0.2841 (4)0.0396 (7)
C80.2390 (2)0.0311 (2)0.1478 (4)0.0440 (7)
H80.23760.03680.18100.053*
C60.16582 (19)0.1693 (2)0.0149 (3)0.0377 (6)
C100.2425 (2)0.2277 (2)0.0483 (3)0.0427 (7)
H100.24590.29560.01640.051*
C90.3132 (2)0.1843 (2)0.1582 (3)0.0410 (7)
H90.36440.22430.19800.049*
C120.4403 (2)0.1827 (2)0.4653 (4)0.0412 (7)
C70.1662 (2)0.0681 (2)0.0368 (4)0.0477 (7)
H70.11690.02560.00420.057*
N20.02885 (17)0.1470 (2)0.2225 (3)0.0491 (6)
C50.08668 (19)0.2131 (2)0.1331 (3)0.0417 (7)
C40.0726 (2)0.3178 (3)0.1478 (4)0.0573 (9)
H40.11230.36400.08460.069*
S10.11441 (7)0.09520 (9)0.43675 (14)0.0806 (3)
N30.0610 (2)0.2871 (3)0.3527 (4)0.0620 (8)
C130.6315 (3)0.0562 (3)0.1536 (4)0.0579 (9)
H13A0.59100.04260.05170.087*
H13B0.64940.12710.15900.087*
H13C0.68420.01330.16640.087*
C20.0421 (2)0.1878 (3)0.3268 (4)0.0514 (8)
C110.4090 (2)0.2928 (2)0.4448 (5)0.0609 (9)
H11A0.45140.33580.51660.091*
H11B0.40500.31410.33660.091*
H11C0.35040.29860.46810.091*
C30.0023 (3)0.3513 (3)0.2593 (5)0.0657 (10)
H30.01270.42160.27070.079*
C10.2020 (2)0.1704 (4)0.5637 (5)0.0900 (14)
H1A0.24520.12540.63010.135*
H1B0.17570.21450.62980.135*
H1C0.23190.21140.49900.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0360 (2)0.0322 (2)0.0284 (2)0.00451 (13)0.00199 (15)0.00098 (13)
O20.0452 (12)0.0375 (11)0.0524 (13)0.0012 (9)0.0028 (10)0.0009 (9)
O40.0511 (13)0.0567 (12)0.0316 (11)0.0104 (10)0.0111 (10)0.0027 (9)
N10.0412 (14)0.0382 (13)0.0322 (13)0.0043 (10)0.0039 (11)0.0004 (10)
O10.0528 (13)0.0680 (15)0.0362 (12)0.0198 (11)0.0116 (11)0.0003 (10)
O30.0536 (14)0.0350 (10)0.0552 (13)0.0022 (10)0.0099 (11)0.0011 (9)
C140.0538 (19)0.0307 (14)0.0372 (17)0.0042 (13)0.0166 (15)0.0001 (12)
C80.0453 (18)0.0382 (15)0.0444 (18)0.0003 (13)0.0024 (15)0.0087 (13)
C60.0379 (16)0.0397 (15)0.0339 (15)0.0062 (12)0.0057 (13)0.0037 (12)
C100.0484 (18)0.0342 (14)0.0410 (17)0.0016 (13)0.0019 (14)0.0030 (12)
C90.0419 (16)0.0369 (15)0.0393 (16)0.0005 (12)0.0001 (13)0.0026 (12)
C120.0482 (18)0.0357 (15)0.0396 (17)0.0016 (13)0.0103 (14)0.0075 (13)
C70.0403 (17)0.0469 (17)0.0503 (19)0.0071 (14)0.0002 (15)0.0053 (14)
N20.0401 (15)0.0544 (15)0.0480 (16)0.0030 (12)0.0009 (13)0.0101 (12)
C50.0365 (16)0.0485 (16)0.0384 (17)0.0052 (13)0.0056 (14)0.0069 (13)
C40.053 (2)0.0488 (18)0.062 (2)0.0087 (16)0.0018 (17)0.0036 (16)
S10.0607 (6)0.0805 (7)0.0812 (8)0.0150 (5)0.0214 (5)0.0158 (6)
N30.0477 (17)0.0690 (19)0.0622 (19)0.0113 (14)0.0007 (15)0.0157 (15)
C130.077 (3)0.057 (2)0.047 (2)0.0175 (18)0.0314 (19)0.0038 (16)
C20.0376 (17)0.067 (2)0.0468 (19)0.0017 (15)0.0045 (15)0.0123 (16)
C110.063 (2)0.0362 (16)0.076 (2)0.0064 (15)0.0006 (19)0.0080 (16)
C30.062 (2)0.052 (2)0.076 (3)0.0151 (18)0.001 (2)0.0134 (19)
C10.045 (2)0.126 (4)0.082 (3)0.004 (2)0.020 (2)0.018 (3)
Geometric parameters (Å, º) top
Cu1—O1i1.970 (2)C12—C111.505 (4)
Cu1—O21.967 (2)C7—H70.9300
Cu1—O3i1.974 (2)N2—C21.338 (4)
Cu1—O41.967 (2)N2—C51.335 (4)
Cu1—N12.183 (2)C5—C41.379 (4)
Cu1—Cu1i2.6299 (7)C4—C31.373 (5)
O2—C121.251 (4)C4—H40.9300
O4—C141.241 (4)S1—C21.748 (4)
N1—C91.337 (4)S1—C11.796 (4)
N1—C81.341 (4)N3—C21.330 (5)
O1—C141.265 (4)N3—C31.341 (5)
O3—C121.257 (4)C13—H13A0.9600
C14—C131.498 (4)C13—H13B0.9600
C8—C71.366 (4)C13—H13C0.9600
C8—H80.9300C11—H11A0.9600
C6—C101.388 (4)C11—H11B0.9600
C6—C71.389 (4)C11—H11C0.9600
C6—C51.491 (4)C3—H30.9300
C10—C91.372 (4)C1—H1A0.9600
C10—H100.9300C1—H1B0.9600
C9—H90.9300C1—H1C0.9600
O4—Cu1—O288.92 (9)O2—C12—C11118.1 (3)
O4—Cu1—O1i168.10 (9)O3—C12—C11116.5 (3)
O2—Cu1—O1i89.58 (9)C8—C7—C6119.9 (3)
O4—Cu1—O3i89.87 (9)C8—C7—H7120.0
O2—Cu1—O3i168.30 (8)C6—C7—H7120.0
O1i—Cu1—O3i89.20 (10)C2—N2—C5116.5 (3)
O4—Cu1—N196.46 (9)N2—C5—C4121.1 (3)
O2—Cu1—N197.57 (9)N2—C5—C6117.4 (3)
O1i—Cu1—N195.44 (9)C4—C5—C6121.5 (3)
O3i—Cu1—N194.13 (9)C3—C4—C5117.5 (3)
O4—Cu1—Cu1i82.34 (7)C3—C4—H4121.3
O2—Cu1—Cu1i85.43 (6)C5—C4—H4121.3
O1i—Cu1—Cu1i85.77 (7)C2—S1—C1103.5 (2)
O3i—Cu1—Cu1i82.88 (6)C2—N3—C3114.7 (3)
N1—Cu1—Cu1i176.77 (7)C14—C13—H13A109.5
C12—O2—Cu1121.89 (19)C14—C13—H13B109.5
C14—O4—Cu1125.8 (2)H13A—C13—H13B109.5
C9—N1—C8116.8 (2)C14—C13—H13C109.5
C9—N1—Cu1119.7 (2)H13A—C13—H13C109.5
C8—N1—Cu1123.46 (19)H13B—C13—H13C109.5
C14—O1—Cu165.15 (17)N3—C2—N2127.2 (3)
C12—O3—Cu166.66 (15)N3—C2—S1119.7 (3)
O4—C14—O1125.0 (3)N2—C2—S1113.1 (3)
O4—C14—C13117.9 (3)C12—C11—H11A109.5
O1—C14—C13117.1 (3)C12—C11—H11B109.5
N1—C8—C7123.3 (3)H11A—C11—H11B109.5
N1—C8—H8118.4C12—C11—H11C109.5
C7—C8—H8118.4H11A—C11—H11C109.5
C10—C6—C7117.0 (3)H11B—C11—H11C109.5
C10—C6—C5121.6 (3)N3—C3—C4123.0 (3)
C7—C6—C5121.4 (3)N3—C3—H3118.5
C9—C10—C6119.5 (3)C4—C3—H3118.5
C9—C10—H10120.3S1—C1—H1A109.5
C6—C10—H10120.3S1—C1—H1B109.5
N1—C9—C10123.5 (3)H1A—C1—H1B109.5
N1—C9—H9118.2S1—C1—H1C109.5
C10—C9—H9118.2H1A—C1—H1C109.5
O2—C12—O3125.4 (3)H1B—C1—H1C109.5
O4—Cu1—O2—C1281.3 (2)Cu1—O4—C14—C13177.6 (2)
O1i—Cu1—O2—C1286.9 (2)C9—N1—C8—C71.4 (4)
O3i—Cu1—O2—C122.9 (6)Cu1—N1—C8—C7178.6 (2)
N1—Cu1—O2—C12177.7 (2)C7—C6—C10—C90.9 (4)
Cu1i—Cu1—O2—C121.1 (2)C5—C6—C10—C9179.2 (3)
O2—Cu1—O4—C1485.3 (2)C8—N1—C9—C102.1 (4)
O1i—Cu1—O4—C142.5 (6)Cu1—N1—C9—C10178.0 (2)
O3i—Cu1—O4—C1483.0 (2)C6—C10—C9—N10.9 (4)
N1—Cu1—O4—C14177.2 (2)Cu1—O2—C12—C11177.5 (2)
Cu1i—Cu1—O4—C140.2 (2)N1—C8—C7—C60.4 (5)
O4—Cu1—N1—C980.7 (2)C10—C6—C7—C81.5 (4)
O2—Cu1—N1—C9170.5 (2)C5—C6—C7—C8178.6 (3)
O1i—Cu1—N1—C999.2 (2)C2—N2—C5—C40.6 (4)
O3i—Cu1—N1—C99.6 (2)C2—N2—C5—C6179.4 (3)
O4—Cu1—N1—C899.3 (2)C10—C6—C5—N2160.4 (3)
O2—Cu1—N1—C89.5 (2)C7—C6—C5—N219.5 (4)
O1i—Cu1—N1—C880.8 (2)C10—C6—C5—C420.7 (4)
O3i—Cu1—N1—C8170.4 (2)C7—C6—C5—C4159.4 (3)
O4—Cu1—O1i—C14i4.2 (6)N2—C5—C4—C30.9 (5)
O2—Cu1—O1i—C14i86.9 (2)C6—C5—C4—C3179.7 (3)
O3i—Cu1—O1i—C14i81.4 (2)C3—N3—C2—N21.7 (5)
N1—Cu1—O1i—C14i175.5 (2)C3—N3—C2—S1178.5 (3)
Cu1i—Cu1—O1i—C14i1.5 (2)C5—N2—C2—N30.8 (5)
O4—Cu1—O3i—C12i82.5 (2)C5—N2—C2—S1179.4 (2)
O2—Cu1—O3i—C12i1.5 (6)C1—S1—C2—N30.4 (3)
O1i—Cu1—O3i—C12i85.6 (2)C1—S1—C2—N2179.7 (2)
N1—Cu1—O3i—C12i179.0 (2)C2—N3—C3—C41.2 (5)
Cu1i—Cu1—O3i—C12i0.2 (2)C5—C4—C3—N30.0 (6)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C10H9N3S)2]
Mr769.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.192 (2), 13.003 (2), 8.6108 (13)
β (°) 103.781 (2)
V3)1652.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.41 × 0.25 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.650, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
9568, 2827, 2354
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.097, 1.04
No. of reflections2827
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O1i1.970 (2)Cu1—O41.967 (2)
Cu1—O21.967 (2)Cu1—N12.183 (2)
Cu1—O3i1.974 (2)Cu1—Cu1i2.6299 (7)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Research Program for Excellent Young Teachers of Southeast University (grant No. 3207041202).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds