metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(cyanido-κC){6,6′-dimeth­­oxy-2,2′-[o-phenyl­enebis(nitrilo­methanylyl­­idene)]diphenolato-κ4O1,N,N′,O1′}cobalt(III) aceto­nitrile monosolvate

aKey Laboratory of Functional Inorganic Materials Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli_2000@163.com

(Received 13 July 2011; accepted 21 July 2011; online 30 July 2011)

In the title complex, [Co(C22H18N2O4)(CN)(H2O)]·CH3CN, the CoIII ion is six-coordinated in a distorted octa­hedral environment defined by two N atoms and two O atoms from a salen ligand in the equatorial plane and one O atom from a water mol­ecule and one C atom from a cyanide group at the axial positions. O—H⋯O hydrogen bonds connect adjacent complex mol­ecules into dimers. C—H⋯N hydrogen bonds and ππ inter­actions between the benzene rings [centroid–centroid distances = 3.700 (2) and 3.845 (2) Å] are also present.

Related literature

For the synthesis of the ligand, see: Costes et al. (2000[Costes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 5994-6000.]). For related transition-metal complexes, see: Przychodzeń et al. (2005[Przychodzeń, P., Rams, M., Guyard-Duhayon, C. & Sieklucka, B. (2005). Inorg. Chem. Commun. 8, 350-354.]). For bond-valence calculations, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C22H18N2O4)(CN)(H2O)]·C2H3N

  • Mr = 518.40

  • Monoclinic, P 21 /c

  • a = 10.829 (2) Å

  • b = 13.209 (3) Å

  • c = 18.906 (6) Å

  • β = 118.30 (2)°

  • V = 2381.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.34 × 0.31 × 0.29 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.780, Tmax = 0.811

  • 22543 measured reflections

  • 5426 independent reflections

  • 4439 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.08

  • 5426 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Co1—C23 1.869 (2)
Co1—N1 1.8944 (15)
Co1—N2 1.8972 (16)
Co1—O1 1.8948 (13)
Co1—O2 1.8998 (14)
Co1—O5 2.0194 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O3i 0.85 2.33 2.922 (2) 127
O5—H51⋯O1i 0.85 2.00 2.799 (2) 156
O5—H52⋯O2i 0.85 2.24 2.813 (2) 124
O5—H52⋯O4i 0.85 2.10 2.902 (2) 158
C10—H10⋯N4ii 0.93 2.61 3.433 (3) 148
C15—H15⋯N3 0.93 2.56 3.440 (3) 159
Symmetry codes: (i) -x+2, -y, -z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Transition metal complexes with spectroscopic and magnetic properties are currently of considerable interest. As a continuing work for the studies of salen ligands (Costes et al., 2000) and transition metal complexes (Przychodzeń et al., 2005), we present here the synthesis and crystal structure of the title compound.

The bond valence calculation (Spek, 2009) indicated that the Co atom is in a 3+ state, which can be produced by Li(TCNQ) oxidating Co(II) atom [TCNQ = 2,2'-(2,5-cyclohexadiene-1,4-diylidene)bis(propanedinitrile)]. Meanwhile, TCNQ decomposed to produce cyanide group. In the title complex, the CoIII ion is six-coordinated in a distorted octahedral environment defined by two imino N atoms and two phenolate O atoms from the salen type ligand, one O atom from a water molecule and one C atom from a cyanide group (Fig. 1, Table 1). O—H···O hydrogen bonds connect two adjacent complex molecules into a dimer (Fig. 2, Table 2). C—H···N hydrogen bonds and ππ interactions between the benzene rings [centroid–centroid distance = 3.700 (2) and 3.845 (2) Å] are present.

Related literature top

For the synthesis of the ligand, see: Costes et al. (2000). For related transition-metal complexes, see: Przychodzeń et al. (2005). For bond-valence calculations, see: Spek (2009).

Experimental top

A solution of CoL (0.078 g, 0.1 mmol) [L = N,N'-bis(3-methoxy-2-oxidobenzylidene) -1,2-diaminobenzene] (Costes et al., 2000) in CH3CN (25 ml) was added dropwise to a solution of LiTCNQ (0.044 g, 0.2 mmol) in H2O (20 ml). The reaction was carried out under nitrogen atmosphere, using standard Schlenk techniques and degassed solvents. Reddish brown single crystals suitable for X-ray analysis were obtained in five days. Analysis, calculated for C25H23CoN4O5: C 57.81, H 4.66, N 10.79; found: C 57.76, H 4.74, N 10.83%.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The water H atoms were initially located in a difference Fourier map and then treated as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the hydrogen-bonded dimer, showing hydrogen bonds (green dashed lines) and ππ interactions (blue dashed lines).
Aqua(cyanido-κC){6,6'-dimethoxy-2,2'-[o- phenylenebis(nitrilomethanylylidene)]diphenolato- κ4O1,N,N',O1'}cobalt(III) acetonitrile monosolvate top
Crystal data top
[Co(C22H18N2O4)(CN)(H2O)]·C2H3NF(000) = 1072
Mr = 518.40Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17687 reflections
a = 10.829 (2) Åθ = 3.1–27.5°
b = 13.209 (3) ŵ = 0.77 mm1
c = 18.906 (6) ÅT = 293 K
β = 118.30 (2)°Block, brown
V = 2381.1 (10) Å30.34 × 0.31 × 0.29 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5426 independent reflections
Radiation source: fine-focus sealed tube4439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1314
Tmin = 0.780, Tmax = 0.811k = 1717
22543 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.046P)2 + 0.9325P]
where P = (Fo2 + 2Fc2)/3
5426 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Co(C22H18N2O4)(CN)(H2O)]·C2H3NV = 2381.1 (10) Å3
Mr = 518.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.829 (2) ŵ = 0.77 mm1
b = 13.209 (3) ÅT = 293 K
c = 18.906 (6) Å0.34 × 0.31 × 0.29 mm
β = 118.30 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5426 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4439 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.811Rint = 0.034
22543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
5426 reflectionsΔρmin = 0.35 e Å3
319 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5547 (3)0.1426 (2)0.19502 (14)0.0647 (8)
H1A0.53010.08120.22590.097*
H1B0.58080.19320.22190.097*
H1C0.47570.16610.18960.097*
C20.7165 (2)0.20216 (16)0.06373 (12)0.0371 (4)
C30.6721 (2)0.30104 (17)0.08039 (14)0.0469 (5)
H30.60290.31840.13170.056*
C40.7297 (3)0.37577 (17)0.02117 (15)0.0504 (6)
H40.69970.44250.03340.060*
C50.8296 (2)0.35112 (16)0.05426 (14)0.0441 (5)
H50.86710.40120.09340.053*
C60.8773 (2)0.24945 (14)0.07391 (12)0.0341 (4)
C70.8218 (2)0.17321 (14)0.01489 (11)0.0312 (4)
C80.9842 (2)0.22983 (15)0.15339 (12)0.0333 (4)
H81.01590.28460.18850.040*
C91.1540 (2)0.13197 (15)0.26124 (11)0.0318 (4)
C101.2143 (2)0.21081 (16)0.31618 (12)0.0405 (5)
H101.18250.27690.30180.049*
C111.3210 (2)0.18993 (18)0.39164 (13)0.0469 (5)
H111.36100.24220.42860.056*
C121.3696 (2)0.09200 (19)0.41328 (13)0.0466 (5)
H121.44180.07900.46470.056*
C131.3121 (2)0.01354 (17)0.35951 (12)0.0401 (5)
H131.34560.05210.37430.048*
C141.2030 (2)0.03317 (14)0.28252 (11)0.0316 (4)
C151.1581 (2)0.13640 (15)0.23320 (11)0.0323 (4)
H151.22640.15610.28410.039*
C160.9948 (2)0.19407 (14)0.09435 (11)0.0300 (4)
C171.0922 (2)0.21447 (14)0.17560 (11)0.0324 (4)
C181.1305 (2)0.31644 (15)0.20116 (13)0.0397 (5)
H181.19530.32960.25440.048*
C191.0737 (3)0.39453 (16)0.14897 (14)0.0455 (5)
H191.09890.46080.16660.055*
C200.9769 (2)0.37543 (15)0.06817 (13)0.0419 (5)
H200.93850.42920.03260.050*
C210.9386 (2)0.27817 (15)0.04140 (12)0.0345 (4)
C220.7825 (3)0.32967 (19)0.09336 (14)0.0562 (7)
H22A0.72880.30070.14580.084*
H22B0.72180.36840.07970.084*
H22C0.85370.37310.09320.084*
C230.8551 (2)0.00903 (15)0.15346 (12)0.0348 (4)
Co10.99408 (3)0.018833 (18)0.124299 (14)0.02757 (9)
N11.04207 (17)0.14260 (11)0.18179 (9)0.0293 (3)
N21.13171 (17)0.03998 (12)0.22136 (9)0.0296 (3)
N40.7711 (2)0.02985 (16)0.17105 (14)0.0538 (5)
O10.95350 (15)0.10306 (10)0.06457 (7)0.0332 (3)
O20.86109 (14)0.07822 (10)0.02591 (8)0.0343 (3)
O30.84670 (17)0.25085 (11)0.03599 (8)0.0434 (4)
O40.66969 (16)0.12382 (12)0.11736 (9)0.0465 (4)
O51.14913 (14)0.04801 (10)0.09656 (8)0.0339 (3)
H511.11360.08090.05270.051*
H521.19920.00320.09010.051*
N31.4525 (3)0.2365 (3)0.39165 (18)0.1011 (11)
C241.4969 (3)0.3138 (3)0.41113 (18)0.0685 (8)
C251.5580 (4)0.4129 (3)0.4384 (3)0.1254 (18)
H25A1.65590.40580.47590.188*
H25B1.54740.45240.39330.188*
H25C1.51130.44610.46430.188*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0577 (16)0.0727 (19)0.0373 (12)0.0148 (13)0.0009 (11)0.0020 (12)
C20.0379 (11)0.0340 (10)0.0368 (10)0.0067 (8)0.0156 (9)0.0031 (9)
C30.0467 (13)0.0404 (12)0.0450 (12)0.0148 (10)0.0148 (10)0.0137 (10)
C40.0585 (14)0.0275 (10)0.0612 (14)0.0144 (10)0.0251 (12)0.0115 (11)
C50.0518 (13)0.0264 (10)0.0522 (13)0.0078 (9)0.0231 (11)0.0017 (10)
C60.0374 (10)0.0254 (9)0.0409 (10)0.0058 (8)0.0197 (9)0.0021 (8)
C70.0333 (10)0.0283 (9)0.0353 (10)0.0063 (7)0.0191 (8)0.0039 (8)
C80.0424 (11)0.0246 (9)0.0371 (10)0.0006 (8)0.0221 (9)0.0045 (8)
C90.0343 (10)0.0296 (10)0.0297 (9)0.0027 (8)0.0137 (8)0.0032 (8)
C100.0450 (12)0.0314 (10)0.0392 (11)0.0020 (9)0.0152 (9)0.0068 (9)
C110.0490 (13)0.0429 (13)0.0393 (11)0.0096 (10)0.0132 (10)0.0138 (10)
C120.0419 (12)0.0524 (14)0.0317 (10)0.0052 (10)0.0063 (9)0.0039 (10)
C130.0396 (11)0.0374 (11)0.0342 (10)0.0005 (9)0.0101 (9)0.0020 (9)
C140.0340 (10)0.0298 (10)0.0297 (9)0.0024 (7)0.0142 (8)0.0015 (8)
C150.0366 (10)0.0300 (10)0.0286 (9)0.0033 (8)0.0142 (8)0.0044 (8)
C160.0376 (10)0.0213 (8)0.0336 (9)0.0009 (7)0.0190 (8)0.0002 (8)
C170.0391 (11)0.0245 (9)0.0338 (9)0.0024 (8)0.0176 (8)0.0027 (8)
C180.0493 (12)0.0290 (10)0.0386 (11)0.0070 (9)0.0192 (10)0.0072 (9)
C190.0622 (15)0.0221 (10)0.0511 (13)0.0055 (9)0.0261 (11)0.0056 (9)
C200.0582 (14)0.0241 (10)0.0439 (11)0.0022 (9)0.0246 (10)0.0056 (9)
C210.0416 (11)0.0273 (10)0.0340 (10)0.0020 (8)0.0175 (9)0.0022 (8)
C220.0664 (16)0.0424 (13)0.0420 (12)0.0086 (12)0.0110 (12)0.0140 (11)
C230.0384 (11)0.0269 (9)0.0352 (10)0.0009 (8)0.0143 (9)0.0044 (8)
Co10.03420 (15)0.02039 (13)0.02460 (13)0.00213 (10)0.01105 (10)0.00039 (10)
N10.0368 (9)0.0240 (8)0.0277 (7)0.0003 (6)0.0158 (7)0.0023 (6)
N20.0343 (8)0.0262 (8)0.0264 (7)0.0000 (6)0.0130 (6)0.0009 (6)
N40.0546 (12)0.0493 (12)0.0678 (14)0.0096 (10)0.0373 (11)0.0099 (10)
O10.0463 (8)0.0212 (6)0.0261 (6)0.0023 (5)0.0123 (6)0.0006 (5)
O20.0420 (8)0.0260 (7)0.0286 (6)0.0069 (6)0.0116 (6)0.0004 (5)
O30.0547 (9)0.0283 (7)0.0341 (7)0.0033 (6)0.0104 (7)0.0058 (6)
O40.0471 (9)0.0422 (9)0.0346 (8)0.0103 (7)0.0067 (7)0.0018 (7)
O50.0400 (7)0.0303 (7)0.0324 (7)0.0050 (6)0.0180 (6)0.0024 (6)
N30.087 (2)0.088 (2)0.088 (2)0.0309 (18)0.0079 (17)0.0136 (18)
C240.0522 (16)0.073 (2)0.0594 (16)0.0092 (14)0.0092 (13)0.0069 (15)
C250.083 (3)0.059 (2)0.185 (5)0.0098 (19)0.023 (3)0.001 (3)
Geometric parameters (Å, º) top
C1—O41.426 (3)C15—C171.422 (3)
C1—H1A0.9600C15—H150.9300
C1—H1B0.9600C16—O11.313 (2)
C1—H1C0.9600C16—C171.417 (3)
C2—O41.367 (3)C16—C211.424 (3)
C2—C31.376 (3)C17—C181.425 (3)
C2—C71.431 (3)C18—C191.357 (3)
C3—C41.398 (3)C18—H180.9300
C3—H30.9300C19—C201.406 (3)
C4—C51.359 (3)C19—H190.9300
C4—H40.9300C20—C211.371 (3)
C5—C61.424 (3)C20—H200.9300
C5—H50.9300C21—O31.372 (2)
C6—C71.409 (3)C22—O31.424 (3)
C6—C81.420 (3)C22—H22A0.9600
C7—O21.309 (2)C22—H22B0.9600
C8—N11.300 (2)C22—H22C0.9600
C8—H80.9300C23—N41.140 (3)
C9—C141.394 (3)Co1—C231.869 (2)
C9—C101.395 (3)Co1—N11.8944 (15)
C9—N11.421 (2)Co1—N21.8972 (16)
C10—C111.372 (3)Co1—O11.8948 (13)
C10—H100.9300Co1—O21.8998 (14)
C11—C121.383 (3)Co1—O52.0194 (14)
C11—H110.9300O5—H510.8500
C12—C131.377 (3)O5—H520.8500
C12—H120.9300N3—C241.114 (4)
C13—C141.397 (3)C24—C251.447 (5)
C13—H130.9300C25—H25A0.9600
C14—N21.421 (2)C25—H25B0.9600
C15—N21.301 (2)C25—H25C0.9600
O4—C1—H1A109.5C19—C18—C17120.90 (19)
O4—C1—H1B109.5C19—C18—H18119.6
H1A—C1—H1B109.5C17—C18—H18119.6
O4—C1—H1C109.5C18—C19—C20120.06 (19)
H1A—C1—H1C109.5C18—C19—H19120.0
H1B—C1—H1C109.5C20—C19—H19120.0
O4—C2—C3125.62 (19)C21—C20—C19120.55 (19)
O4—C2—C7113.63 (17)C21—C20—H20119.7
C3—C2—C7120.7 (2)C19—C20—H20119.7
C2—C3—C4120.8 (2)C20—C21—O3125.44 (18)
C2—C3—H3119.6C20—C21—C16121.19 (19)
C4—C3—H3119.6O3—C21—C16113.37 (17)
C5—C4—C3120.1 (2)O3—C22—H22A109.5
C5—C4—H4119.9O3—C22—H22B109.5
C3—C4—H4119.9H22A—C22—H22B109.5
C4—C5—C6120.6 (2)O3—C22—H22C109.5
C4—C5—H5119.7H22A—C22—H22C109.5
C6—C5—H5119.7H22B—C22—H22C109.5
C7—C6—C8122.36 (17)N4—C23—Co1177.41 (19)
C7—C6—C5120.13 (19)C23—Co1—N192.35 (8)
C8—C6—C5117.48 (19)C23—Co1—O190.96 (7)
O2—C7—C6125.07 (17)N1—Co1—O1176.68 (7)
O2—C7—C2117.38 (17)C23—Co1—N290.42 (8)
C6—C7—C2117.53 (17)N1—Co1—N285.55 (7)
N1—C8—C6126.20 (18)O1—Co1—N294.73 (6)
N1—C8—H8116.9C23—Co1—O291.57 (8)
C6—C8—H8116.9N1—Co1—O294.58 (6)
C14—C9—C10120.28 (18)O1—Co1—O285.03 (6)
C14—C9—N1114.50 (16)N2—Co1—O2178.00 (7)
C10—C9—N1125.23 (18)C23—Co1—O5178.11 (7)
C11—C10—C9119.3 (2)N1—Co1—O587.05 (6)
C11—C10—H10120.3O1—Co1—O589.65 (6)
C9—C10—H10120.3N2—Co1—O587.75 (6)
C10—C11—C12120.7 (2)O2—Co1—O590.26 (6)
C10—C11—H11119.7C8—N1—C9121.80 (16)
C12—C11—H11119.7C8—N1—Co1125.49 (14)
C13—C12—C11120.7 (2)C9—N1—Co1112.69 (12)
C13—C12—H12119.7C15—N2—C14122.36 (16)
C11—C12—H12119.7C15—N2—Co1125.09 (13)
C12—C13—C14119.5 (2)C14—N2—Co1112.53 (12)
C12—C13—H13120.2C16—O1—Co1125.94 (12)
C14—C13—H13120.2C7—O2—Co1126.13 (12)
C9—C14—C13119.50 (18)C21—O3—C22117.74 (17)
C9—C14—N2114.59 (16)C2—O4—C1117.87 (19)
C13—C14—N2125.90 (18)Co1—O5—H51107.7
N2—C15—C17126.06 (18)Co1—O5—H52124.8
N2—C15—H15117.0H51—O5—H52103.9
C17—C15—H15117.0N3—C24—C25178.4 (4)
O1—C16—C17124.47 (17)C24—C25—H25A109.5
O1—C16—C21117.89 (17)C24—C25—H25B109.5
C17—C16—C21117.64 (17)H25A—C25—H25B109.5
C16—C17—C15122.53 (17)C24—C25—H25C109.5
C16—C17—C18119.65 (18)H25A—C25—H25C109.5
C15—C17—C18117.79 (18)H25B—C25—H25C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O3i0.852.332.922 (2)127
O5—H51···O1i0.852.002.799 (2)156
O5—H52···O2i0.852.242.813 (2)124
O5—H52···O4i0.852.102.902 (2)158
C10—H10···N4ii0.932.613.433 (3)148
C15—H15···N30.932.563.440 (3)159
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C22H18N2O4)(CN)(H2O)]·C2H3N
Mr518.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.829 (2), 13.209 (3), 18.906 (6)
β (°) 118.30 (2)
V3)2381.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.34 × 0.31 × 0.29
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.780, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
22543, 5426, 4439
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.08
No. of reflections5426
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—C231.869 (2)Co1—O11.8948 (13)
Co1—N11.8944 (15)Co1—O21.8998 (14)
Co1—N21.8972 (16)Co1—O52.0194 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O3i0.852.332.922 (2)127
O5—H51···O1i0.852.002.799 (2)156
O5—H52···O2i0.852.242.813 (2)124
O5—H52···O4i0.852.102.902 (2)158
C10—H10···N4ii0.932.613.433 (3)148
C15—H15···N30.932.563.440 (3)159
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 20872030 and 20972043), Heilongjiang Province (grant Nos. 2009RFXXG201, GC09A402 and 2010td03) and Heilongjiang University.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCostes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 5994–6000.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPrzychodzeń, P., Rams, M., Guyard-Duhayon, C. & Sieklucka, B. (2005). Inorg. Chem. Commun. 8, 350–354.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds