metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1054-m1055

Poly[[(μ2-acetato-κ3O,O′:O′)aqua­bis­­(μ3-isonicotinato-κ3O:O′:N)samarium(III)silver(I)] perchlorate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China, and bSchool of Light Industry and Food Science, South China University of Technology, Guangzhou 510641, People's Republic of China
*Correspondence e-mail: simingzhu76@yahoo.com.cn

(Received 7 June 2011; accepted 1 July 2011; online 9 July 2011)

The title compound, {[AgSm(C6H4NO2)2(CH3CO2)(H2O)]ClO4}n, is a three-dimensional heterobimetallic complex constructed from a repeating dimeric unit. Only half of the dimeric moiety is found in the asymmetric unit; the unit cell is completed by crystallographic inversion symmetry. The SmIII ion is eight-coordinated by four O atoms of four different isonicotinate ligands, three O atoms of two different acetate ligands, and one O atom of a water mol­ecule. The two-coordinate AgI ion is bonded to two N atoms of two different isonicotinate anions, thereby connecting the disamarium units. In addition, the isonicotinate ligands also act as bridging ligands, generating a three-dimensional network. The coordinated water mol­ecules link the carboxyl­ate group and acetate ligands by O—H⋯O hydrogen bonding. Another O—H⋯O hydrogen bond is observed in the crystal structure. The perchlorate ion is disordered over two sites with site-occupancy factors of 0.560 (11) and 0.440 (11), whereas the methyl group of the acetate ligand is disordered over two sites with site-occupancy factors of 0.53 (5) and 0.47 (5).

Related literature

For background to lanthanide–transition metal heterometallic complexes, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]); Peng et al. (2008[Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409-1411.]); Zhu et al. (2009[Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105.]).

[Scheme 1]

Experimental

Crystal data
  • [AgSm(C6H4NO2)2(C2H3O2)(H2O)]ClO4

  • Mr = 678.94

  • Monoclinic, P 21 /c

  • a = 16.1703 (15) Å

  • b = 15.1042 (14) Å

  • c = 7.9858 (7) Å

  • β = 92.845 (1)°

  • V = 1948.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.19 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.414, Tmax = 0.451

  • 9927 measured reflections

  • 3512 independent reflections

  • 2957 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.07

  • 3512 reflections

  • 320 parameters

  • 158 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O6i 0.81 (4) 1.98 (4) 2.785 (4) 171 (6)
O1W—H1W⋯O2ii 0.81 (4) 2.22 (3) 2.921 (5) 146 (5)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, lanthanide-transition metal heterometallic complexes with bridging multifunctional organic ligands are of increasing interest not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and as luminescent probes (Cheng et al., 2006; Kuang et al., 2007; Peng et al., 2008; Zhu et al., 2009). As an extension of this research, the structure of the title compound, a new heterobimetallic coordination polymer, (I), has been determined which is presented in this artcle.

The polymer of the title compound displays a three-dimensional heterometallic coordination framework constructed from the repeating dimeric unit. Only half of the dimeric unit is found in the asymmetric unit whose center is a crystallographic center of inversion (Fig. 1). The asymmetric unit of the title compound, contains one of the SmIII and AgI ions each, two halves of the acetate ligands, two isonicotinate ligands and one coordinated water molecule. The SmIII ion is eight-coordinated by four O atoms of four different isonicotinate ligands, three O atoms of two different acetate ligands and one O atom of a water molecule. The Sm center can therefore be described as adopting a bicapped trigonal prismatic coordination geometry. The two-coordinate AgI ion is bonded to two N atoms of two different isonicotinate anions. The AgI ion shows an almost linear coordination with N1—Ag1—N2 being 166.2 (2) °. These metal coordination units are additionally connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network (Fig. 2).The coordinated water molecules link the carboxylate group and acetate ligand by O—H···O hydrogen bonding (Table 1). Another O–H···O hydrogen bond is observed in the crystal structure.

Related literature top

For background to lanthanide–transition metal heterometallic complexes, see: Cheng et al. (2006); Kuang et al. (2007); Peng et al. (2008); Zhu et al. (2009).

Experimental top

A mixture of AgNO3 (0.057 g, 0.33 mmol), Sm2O3 (0.116 g, 0.33 mmol), isonicotinic acid (0.164 g, 1.33 mmol), CH3COONa (0.057 g, 0.7 mmol), H2O (7 ml), and HClO4 (0.257 mmol, pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried(yield: 45% based on Sm). Yellow block shaped crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of O—H = 0.82 Å. The perchlorate ion was disordered over two sites with site occupancy factors 0.560 (11) and 0.440 (11), whereas the methyl group of the acetate ligand was disordered over two sites with site occupancy factors 0.53 (5) and 0.47 (5).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. Symmetry codes: (A) 1 - x, 1/2 + y, 2.5 - z; (B) x, 1.5 - y, 1/2 + z; (C) 2 - x, 2 - y, 2 - z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound. Hydrogen atoms are omitted for clarity.
Poly[[(µ2-acetato-κ3O,O':O')aquabis(µ3- isonicotinato-κ3O:O':N)samarium(III)silver(I)] perchlorate] top
Crystal data top
[AgSm(C6H4NO2)2(C2H3O2)(H2O)]ClO4F(000) = 1300
Mr = 678.94Dx = 2.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3844 reflections
a = 16.1703 (15) Åθ = 2.5–27.3°
b = 15.1042 (14) ŵ = 4.19 mm1
c = 7.9858 (7) ÅT = 296 K
β = 92.845 (1)°Block, yellow
V = 1948.0 (3) Å30.22 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube2957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scanθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1719
Tmin = 0.414, Tmax = 0.451k = 1718
9927 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.0621P]
where P = (Fo2 + 2Fc2)/3
3512 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.85 e Å3
158 restraintsΔρmin = 0.59 e Å3
Crystal data top
[AgSm(C6H4NO2)2(C2H3O2)(H2O)]ClO4V = 1948.0 (3) Å3
Mr = 678.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1703 (15) ŵ = 4.19 mm1
b = 15.1042 (14) ÅT = 296 K
c = 7.9858 (7) Å0.22 × 0.20 × 0.19 mm
β = 92.845 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3512 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2957 reflections with I > 2σ(I)
Tmin = 0.414, Tmax = 0.451Rint = 0.030
9927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026158 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.85 e Å3
3512 reflectionsΔρmin = 0.59 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10.952467 (14)0.883640 (13)1.04772 (3)0.02097 (9)
Ag10.52807 (3)1.23823 (4)1.39951 (7)0.06436 (17)
C10.8319 (3)0.7509 (3)0.7966 (5)0.0243 (10)
C20.7476 (3)0.7501 (3)0.8658 (6)0.0255 (10)
C30.7080 (3)0.6710 (3)0.8907 (6)0.0357 (12)
H30.73320.61780.86390.043*
C40.6304 (3)0.6710 (3)0.9558 (7)0.0465 (14)
H40.60420.61710.97260.056*
C50.6303 (3)0.8222 (3)0.9692 (6)0.0388 (12)
H50.60370.87470.99480.047*
C60.7077 (3)0.8270 (3)0.9062 (6)0.0331 (11)
H60.73280.88160.89110.040*
C70.8665 (3)1.0831 (3)1.1375 (7)0.0367 (12)
C80.7883 (3)1.1243 (3)1.1940 (6)0.0310 (11)
C90.7177 (3)1.0739 (3)1.2021 (7)0.0414 (13)
H90.71861.01431.17280.050*
C100.6466 (4)1.1114 (4)1.2534 (8)0.0529 (16)
H100.59911.07671.25660.064*
C110.7115 (3)1.2455 (3)1.2903 (8)0.0475 (15)
H110.70961.30481.32160.057*
C120.7843 (3)1.2127 (3)1.2376 (7)0.0431 (14)
H120.83041.24901.23100.052*
O10.8543 (2)0.68433 (19)0.7172 (4)0.0336 (8)
O20.87650 (19)0.81870 (18)0.8220 (4)0.0288 (7)
O30.8699 (2)1.0005 (2)1.1391 (5)0.0493 (11)
O40.9236 (2)1.1345 (2)1.0941 (5)0.0472 (11)
O50.9496 (2)0.99873 (19)0.8377 (4)0.0375 (8)
O60.9636 (2)1.1151 (2)0.6844 (4)0.0400 (9)
N10.5915 (3)0.7460 (3)0.9955 (6)0.0420 (11)
N20.6427 (3)1.1970 (3)1.2995 (6)0.0467 (12)
O1W0.9949 (3)0.72899 (19)1.0725 (4)0.0411 (9)
H2W1.012 (3)0.698 (2)0.999 (5)0.062*
H1W0.974 (3)0.696 (2)1.138 (5)0.062*
C130.9284 (3)1.0421 (3)0.7094 (6)0.0305 (11)
C140.8508 (14)1.0157 (19)0.608 (3)0.048 (4)0.47 (5)
H14A0.84960.95250.59530.071*0.47 (5)
H14B0.85061.04320.50000.071*0.47 (5)
H14C0.80311.03450.66560.071*0.47 (5)
C14'0.8691 (14)1.0029 (16)0.577 (3)0.048 (4)0.53 (5)
H14D0.83801.04960.52210.071*0.53 (5)
H14E0.83180.96310.62930.071*0.53 (5)
H14F0.89970.97120.49660.071*0.53 (5)
Cl10.58196 (10)0.45830 (10)0.2449 (2)0.0586 (4)0.440 (11)
O70.5413 (12)0.5414 (9)0.242 (2)0.091 (8)0.440 (11)
O80.6274 (10)0.4512 (9)0.3969 (14)0.107 (6)0.440 (11)
O90.5293 (9)0.3894 (8)0.216 (2)0.123 (6)0.440 (11)
O100.6425 (9)0.4616 (9)0.1148 (18)0.124 (6)0.440 (11)
Cl1'0.58196 (10)0.45830 (10)0.2449 (2)0.0586 (4)0.560 (11)
O7'0.5434 (8)0.5371 (7)0.201 (2)0.080 (5)0.560 (11)
O8'0.6654 (5)0.4696 (6)0.2946 (18)0.101 (4)0.560 (11)
O9'0.5408 (9)0.4196 (8)0.3857 (15)0.139 (6)0.560 (11)
O10'0.5760 (8)0.3951 (8)0.1174 (13)0.116 (5)0.560 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.02057 (14)0.01549 (13)0.02745 (14)0.00121 (9)0.00717 (9)0.00001 (9)
Ag10.0295 (3)0.0884 (4)0.0776 (4)0.0140 (2)0.0260 (2)0.0008 (3)
C10.023 (3)0.024 (2)0.026 (2)0.0023 (19)0.0013 (19)0.0000 (19)
C20.023 (3)0.026 (2)0.028 (3)0.0038 (19)0.0054 (19)0.0029 (19)
C30.031 (3)0.028 (3)0.049 (3)0.004 (2)0.013 (2)0.005 (2)
C40.034 (3)0.041 (3)0.066 (4)0.010 (3)0.011 (3)0.002 (3)
C50.026 (3)0.040 (3)0.051 (3)0.008 (2)0.012 (2)0.002 (2)
C60.029 (3)0.024 (2)0.047 (3)0.002 (2)0.014 (2)0.001 (2)
C70.031 (3)0.025 (2)0.056 (3)0.001 (2)0.019 (2)0.002 (2)
C80.027 (3)0.030 (2)0.037 (3)0.005 (2)0.013 (2)0.003 (2)
C90.034 (3)0.028 (3)0.063 (4)0.005 (2)0.017 (3)0.004 (3)
C100.031 (3)0.047 (3)0.083 (5)0.009 (3)0.019 (3)0.005 (3)
C110.035 (3)0.034 (3)0.075 (4)0.006 (2)0.021 (3)0.009 (3)
C120.029 (3)0.028 (3)0.073 (4)0.000 (2)0.017 (3)0.003 (3)
O10.0282 (19)0.0250 (16)0.049 (2)0.0004 (14)0.0150 (15)0.0096 (15)
O20.0237 (18)0.0259 (16)0.0371 (19)0.0067 (14)0.0060 (14)0.0072 (14)
O30.044 (2)0.0207 (17)0.086 (3)0.0039 (16)0.038 (2)0.0031 (17)
O40.039 (2)0.0222 (17)0.083 (3)0.0019 (15)0.036 (2)0.0050 (17)
O50.050 (2)0.0264 (16)0.0346 (19)0.0114 (16)0.0101 (16)0.0089 (15)
O60.053 (3)0.0338 (18)0.033 (2)0.0138 (17)0.0029 (16)0.0100 (15)
N10.026 (3)0.048 (3)0.054 (3)0.004 (2)0.014 (2)0.002 (2)
N20.028 (3)0.046 (3)0.067 (3)0.011 (2)0.017 (2)0.003 (2)
O1W0.065 (3)0.0229 (17)0.037 (2)0.0084 (18)0.0223 (19)0.0043 (15)
C130.035 (3)0.030 (2)0.026 (3)0.005 (2)0.001 (2)0.001 (2)
C140.047 (6)0.048 (6)0.048 (6)0.008 (5)0.007 (5)0.003 (4)
C14'0.047 (6)0.048 (6)0.048 (6)0.008 (5)0.007 (5)0.003 (4)
Cl10.0610 (11)0.0449 (8)0.0692 (11)0.0000 (8)0.0030 (8)0.0018 (8)
O70.097 (11)0.085 (10)0.090 (10)0.023 (8)0.000 (7)0.016 (7)
O80.130 (10)0.104 (8)0.083 (8)0.032 (8)0.039 (7)0.001 (7)
O90.129 (10)0.092 (8)0.143 (11)0.067 (7)0.032 (8)0.025 (7)
O100.130 (10)0.120 (9)0.125 (10)0.036 (8)0.045 (8)0.001 (7)
Cl1'0.0610 (11)0.0449 (8)0.0692 (11)0.0000 (8)0.0030 (8)0.0018 (8)
O7'0.071 (7)0.071 (7)0.100 (8)0.030 (5)0.024 (6)0.043 (6)
O8'0.065 (6)0.079 (6)0.158 (9)0.003 (5)0.016 (6)0.012 (6)
O9'0.164 (10)0.131 (8)0.128 (8)0.020 (7)0.068 (7)0.039 (7)
O10'0.127 (9)0.122 (8)0.097 (7)0.022 (7)0.017 (6)0.058 (6)
Geometric parameters (Å, º) top
Sm1—O22.345 (3)C9—C101.364 (7)
Sm1—O32.352 (3)C9—H90.9300
Sm1—O4i2.367 (3)C10—N21.346 (6)
Sm1—O1ii2.371 (3)C10—H100.9300
Sm1—O52.414 (3)C11—N21.337 (7)
Sm1—O1W2.440 (3)C11—C121.364 (7)
Sm1—O6i2.476 (3)C11—H110.9300
Sm1—O5i2.521 (3)C12—H120.9300
Sm1—C13i2.892 (5)O1—Sm1iv2.371 (3)
Sm1—Sm1i3.9263 (5)O4—Sm1i2.367 (3)
Ag1—N22.148 (4)O5—C131.249 (5)
Ag1—N1iii2.149 (4)O5—Sm1i2.521 (3)
C1—O11.252 (5)O6—C131.262 (5)
C1—O21.264 (5)O6—Sm1i2.476 (3)
C1—C21.495 (6)N1—Ag1v2.149 (4)
C2—C31.375 (6)O1W—H2W0.81 (4)
C2—C61.375 (6)O1W—H1W0.81 (4)
C3—C41.382 (7)C13—C141.511 (10)
C3—H30.9300C13—C14'1.511 (9)
C4—N11.341 (6)C13—Sm1i2.892 (5)
C4—H40.9300C14—H14A0.9600
C5—N11.333 (6)C14—H14B0.9600
C5—C61.373 (6)C14—H14C0.9600
C5—H50.9300C14'—H14D0.9600
C6—H60.9300C14'—H14E0.9600
C7—O31.248 (5)C14'—H14F0.9600
C7—O41.267 (6)Cl1—O91.357 (9)
C7—C81.500 (6)Cl1—O81.391 (9)
C8—C91.376 (7)Cl1—O71.417 (10)
C8—C121.381 (6)Cl1—O101.464 (9)
O2—Sm1—O3105.57 (13)C5—C6—H6120.4
O2—Sm1—O4i90.42 (12)C2—C6—H6120.4
O3—Sm1—O4i137.99 (11)O3—C7—O4125.7 (4)
O2—Sm1—O1ii85.29 (11)O3—C7—C8116.7 (4)
O3—Sm1—O1ii75.00 (10)O4—C7—C8117.6 (4)
O4i—Sm1—O1ii146.13 (10)C9—C8—C12118.3 (4)
O2—Sm1—O577.05 (10)C9—C8—C7119.9 (4)
O3—Sm1—O571.54 (12)C12—C8—C7121.8 (4)
O4i—Sm1—O574.83 (12)C10—C9—C8119.9 (5)
O1ii—Sm1—O5135.91 (12)C10—C9—H9120.1
O2—Sm1—O1W78.25 (13)C8—C9—H9120.1
O3—Sm1—O1W148.79 (11)N2—C10—C9122.1 (5)
O4i—Sm1—O1W71.75 (11)N2—C10—H10118.9
O1ii—Sm1—O1W74.48 (11)C9—C10—H10118.9
O5—Sm1—O1W137.85 (11)N2—C11—C12123.4 (5)
O2—Sm1—O6i155.64 (10)N2—C11—H11118.3
O3—Sm1—O6i91.24 (14)C12—C11—H11118.3
O4i—Sm1—O6i88.48 (14)C11—C12—C8118.8 (5)
O1ii—Sm1—O6i82.17 (11)C11—C12—H12120.6
O5—Sm1—O6i125.83 (10)C8—C12—H12120.6
O1W—Sm1—O6i78.31 (12)C1—O1—Sm1iv148.9 (3)
O2—Sm1—O5i150.36 (10)C1—O2—Sm1137.3 (3)
O3—Sm1—O5i73.42 (13)C7—O3—Sm1140.5 (3)
O4i—Sm1—O5i73.96 (12)C7—O4—Sm1i134.8 (3)
O1ii—Sm1—O5i121.62 (11)C13—O5—Sm1160.4 (3)
O5—Sm1—O5i74.62 (12)C13—O5—Sm1i94.0 (3)
O1W—Sm1—O5i118.44 (13)Sm1—O5—Sm1i105.38 (12)
O6i—Sm1—O5i51.22 (10)C13—O6—Sm1i95.9 (3)
O2—Sm1—C13i169.71 (12)C5—N1—C4117.6 (4)
O3—Sm1—C13i82.55 (14)C5—N1—Ag1v123.2 (3)
O4i—Sm1—C13i79.29 (14)C4—N1—Ag1v119.2 (3)
O1ii—Sm1—C13i103.16 (12)C11—N2—C10117.5 (4)
O5—Sm1—C13i100.12 (12)C11—N2—Ag1126.6 (4)
O1W—Sm1—C13i98.16 (14)C10—N2—Ag1115.6 (4)
O6i—Sm1—C13i25.73 (11)Sm1—O1W—H2W127 (3)
O5i—Sm1—C13i25.53 (11)Sm1—O1W—H1W121 (3)
O2—Sm1—Sm1i114.86 (7)H2W—O1W—H1W106 (4)
O3—Sm1—Sm1i67.80 (8)O5—C13—O6118.7 (4)
O4i—Sm1—Sm1i70.22 (7)O5—C13—C14119.1 (11)
O1ii—Sm1—Sm1i141.10 (7)O6—C13—C14121.0 (11)
O5—Sm1—Sm1i38.26 (8)O5—C13—C14'120.4 (10)
O1W—Sm1—Sm1i139.62 (10)O6—C13—C14'120.5 (10)
O6i—Sm1—Sm1i87.58 (7)C14—C13—C14'16.7 (16)
O5i—Sm1—Sm1i36.36 (7)O5—C13—Sm1i60.4 (2)
C13i—Sm1—Sm1i61.87 (9)O6—C13—Sm1i58.4 (2)
N2—Ag1—N1iii166.24 (17)C14—C13—Sm1i165.6 (14)
O1—C1—O2123.7 (4)C14'—C13—Sm1i177.6 (12)
O1—C1—C2118.2 (4)C13—C14—H14A109.5
O2—C1—C2118.1 (4)C13—C14—H14B109.5
C3—C2—C6118.2 (4)C13—C14—H14C109.5
C3—C2—C1120.0 (4)C13—C14'—H14D109.5
C6—C2—C1121.8 (4)C13—C14'—H14E109.5
C2—C3—C4119.6 (4)H14D—C14'—H14E109.5
C2—C3—H3120.2C13—C14'—H14F109.5
C4—C3—H3120.2H14D—C14'—H14F109.5
N1—C4—C3122.2 (5)H14E—C14'—H14F109.5
N1—C4—H4118.9O9—Cl1—O8112.8 (7)
C3—C4—H4118.9O9—Cl1—O7113.0 (9)
N1—C5—C6123.2 (4)O8—Cl1—O7108.0 (8)
N1—C5—H5118.4O9—Cl1—O10110.1 (8)
C6—C5—H5118.4O8—Cl1—O10106.2 (8)
C5—C6—C2119.3 (4)O7—Cl1—O10106.5 (8)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+5/2; (iv) x, y+3/2, z1/2; (v) x+1, y1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O6vi0.81 (4)1.98 (4)2.785 (4)171 (6)
O1W—H1W···O2ii0.81 (4)2.22 (3)2.921 (5)146 (5)
Symmetry codes: (ii) x, y+3/2, z+1/2; (vi) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[AgSm(C6H4NO2)2(C2H3O2)(H2O)]ClO4
Mr678.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.1703 (15), 15.1042 (14), 7.9858 (7)
β (°) 92.845 (1)
V3)1948.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.19
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.414, 0.451
No. of measured, independent and
observed [I > 2σ(I)] reflections
9927, 3512, 2957
Rint0.030
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.07
No. of reflections3512
No. of parameters320
No. of restraints158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.59

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O6i0.81 (4)1.98 (4)2.785 (4)171 (6)
O1W—H1W···O2ii0.81 (4)2.22 (3)2.921 (5)146 (5)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge South China Normal University and South China University of Technology for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1054-m1055
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds