organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1975-o1976

3,5-Bis(4-meth­­oxy­phen­yl)-4,5-di­hydro­isoxazole

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 22 June 2011; accepted 5 July 2011; online 9 July 2011)

In the title compound, C17H17NO3, the five-membered isoxazoline ring adopts an envelope conformation with the chiral C atom at the flap position and 0.133 (2) Å out of the mean plane formed by the other four atoms. The two benzene rings form dihedral angles of 6.05 (5) and 81.52 (5)° with the C—C—N—O plane of the isoxazoline ring. The crystal structure is stabilized by weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For medical uses of isoxazole derivatives, see: Sperry & Wright (2005[Sperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723-740.]). For their biological activity, see; Boyd (1991[Boyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166-185.]); Lang & Lin (1984[Lang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1-130. Oxford: Pergamon Press.]). For related structures, see; Baktır et al. (2011a[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262-o1263.],b[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292-o1293.]); Chopra et al. (2006[Chopra, D., Mohan, T. P. & Vishalakshi, B. (2006). Acta Cryst. E62, o3547-o3548.]); Dardouri et al. (2010[Dardouri, R., Kandri Rodi, Y., Saffon, N., El Ammari, L. & Essassi, E. M. (2010). Acta Cryst. E66, o2983.]); Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Guo et al. (2006[Guo, X.-H., Qi, X.-X. & Chang, J.-B. (2006). Acta Cryst. E62, o374-o375.]); Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948-o1949.]); Ko et al. (2011[Ko, Y. K., Ryu, J. W., Koo, D. W., Woo, J. C. & Kim, C.-H. (2011). Acta Cryst. E67, o1040.]); Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO3

  • Mr = 283.32

  • Orthorhombic, P b c a

  • a = 10.5071 (7) Å

  • b = 8.4023 (5) Å

  • c = 32.6662 (19) Å

  • V = 2883.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.42 × 0.36 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.967, Tmax = 1.000

  • 13952 measured reflections

  • 4821 independent reflections

  • 2738 reflections with i > 2σ(i)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.156

  • S = 1.06

  • 4821 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6AA⋯O1i 0.93 2.52 3.324 (2) 145
C1—H1ACg3ii 0.98 2.62 3.590 (2) 170
C6B—H6BACg3iii 0.93 3.00 3.724 (2) 136
C7B—H7BCCg2iv 0.96 2.83 3.541 (3) 132
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iv) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are convenient intermediates for the synthesis of various biodynamic cyclic derivatives such as isoxazoline, pyrazoline, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010; Baktır et al., 2011a,b). Isoxazole derivatives represent a unique class of nitrogen- and oxygen-containing five-membered heterocycles. These are the components in a variety of natural products and medicinally useful compounds (Sperry et al., 2005). Isoxazole derivatives bearing different substituents are known to have various biological activities in pharmaceutical and agricultural areas (Lang & Lin, 1984; Boyd, 1991).

The crystal structures of some 4,5-dihydroisoxazole derivatives viz., 5-(4-fluoro-3-phenoxyphenyl)-3-(4-methylphenyl)-4,5-dihydroisoxazole (Chopra et al., 2006), 5-(1H-indol-3-yl)-3-(4-methylphenyl)-4,5-dihydroisoxazoline (Guo et al., 2006), 1,5-dimethyl-3-[(3-phenyl-4,5-dihydro-1,2-oxazol-5-yl)methyl]-1H-1,5- benzodiazepine-2,4(3H,5H)-dione (Dardouri et al., 2010) and (S)-[5-methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl] methanol solvate (Ko et al., 2011) have been reported. In view of the importance of isoxazoles and in continuation of our work on synthesis of various derivatives of chalcones, the title compound (I) was prepared and its crystal structure is reported.

As shown in Fig. 1, the 4,5-dihydroisoxazole ring (O1/N1/C1–C3) of the title compound (I) has an envelope conformation with the chiral C1 atom at the flap position, displaced from the mean plane by -0.133 (2) Å; the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.2156 (17) Å, ϕ(2) = 319.7 (5)°. Furthermore, one (O1B/C1B–C7B) of the methoxyphenyl ring systems makes a dihedral angle of 6.05 (5)°, whereas the other one (O1A/C1A–C7A) is almost orthogonal to the plane formed by the four atoms O1, N1, C2 and C3 of the five-membered isoxazoline ring, the dihedral angle being 81.52 (5)° (Nardelli, 1983). The dihedral angle between the methoxyphenyl ring systems (O1A/C1A–C7A and O1B/C1B–C7B) is 76.56 (4)°.

In the crystal structure, molecules are linked by weak C6A—H6AA···O1 (Table 1, Fig. 2) hydrogen bonds, and are further consolidated by C–H···π interactions (Table 1, Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively).

Related literature top

For medical uses of isoxazole derivatives, see: Sperry et al. (2005). For their biological activity, see; Boyd (1991); Lang & Lin (1984). For related structures, see; Baktır et al. (2011a,b); Chopra et al. (2006); Dardouri et al. (2010); Fun et al. (2010a,b); Guo et al. (2006); Jasinski et al. (2010); Ko et al. (2011); Samshuddin et al. (2010). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A solution of (2E)-1,3-bis(4-methoxyphenyl)prop-2-en-1-one (2.68 g, 0.01 mol) and hydroxylamine hydrochloride (0.695 g, 0.01 mol) in 25 ml ethanol containing 3 ml of 10% sodium hydroxide solution was refluxed for 12 h. After cooling the mixture was poured into 50 ml ice-cold water. The resulting precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from 2-propanol by slow evaporation of the solvent (yield: 59%; (m.p.: 407 K).

Refinement top

H atoms were located geometrically (aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, methylene C—H = 0.97 Å and methine C—H = 0.98 Å) and refined using the riding model approximation with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(methyl-C) and Uiso(H) = 1.2 Ueq(other C atoms).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with ellipsoids drawn at the 30% probability level and H atoms as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title molecule, showing C—H···O interactions, viewed down the b axis. Hydrogen atoms not involved in H-bonding have been omitted for clarity.
3,5-Bis(4-methoxyphenyl)-4,5-dihydroisoxazole top
Crystal data top
C17H17NO3F(000) = 1200
Mr = 283.32Dx = 1.305 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2593 reflections
a = 10.5071 (7) Åθ = 5.2–32.6°
b = 8.4023 (5) ŵ = 0.09 mm1
c = 32.6662 (19) ÅT = 295 K
V = 2883.9 (3) Å3Triangular plate, colourless
Z = 80.42 × 0.36 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4821 independent reflections
Radiation source: Enhance (Mo) X-ray Source2738 reflections with i > 2σ(i)
Graphite monochromatorRint = 0.046
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 5.2°
ω scansh = 1215
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1012
Tmin = 0.967, Tmax = 1.000l = 2946
13952 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.4739P]
where P = (Fo2 + 2Fc2)/3
4821 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H17NO3V = 2883.9 (3) Å3
Mr = 283.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.5071 (7) ŵ = 0.09 mm1
b = 8.4023 (5) ÅT = 295 K
c = 32.6662 (19) Å0.42 × 0.36 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4821 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2738 reflections with i > 2σ(i)
Tmin = 0.967, Tmax = 1.000Rint = 0.046
13952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
4821 reflectionsΔρmin = 0.17 e Å3
192 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70804 (13)0.51832 (16)0.43065 (4)0.0604 (5)
O1A0.63367 (15)0.77980 (18)0.25241 (4)0.0702 (5)
O1B0.62961 (12)0.83077 (16)0.65053 (4)0.0603 (5)
N10.72185 (15)0.54460 (19)0.47317 (4)0.0554 (5)
C10.58593 (17)0.5848 (2)0.41763 (5)0.0480 (6)
C1A0.59901 (16)0.6424 (2)0.37429 (5)0.0424 (5)
C1B0.63231 (14)0.69607 (18)0.52798 (5)0.0381 (5)
C20.55553 (17)0.7045 (2)0.45099 (5)0.0487 (6)
C2A0.51887 (17)0.5861 (2)0.34384 (6)0.0534 (6)
C2B0.53722 (15)0.7969 (2)0.54218 (5)0.0420 (5)
C30.63763 (14)0.64427 (19)0.48509 (5)0.0392 (5)
C3A0.53294 (18)0.6342 (2)0.30376 (6)0.0588 (7)
C3B0.53190 (15)0.8445 (2)0.58282 (5)0.0440 (5)
C4A0.62771 (17)0.7403 (2)0.29317 (5)0.0476 (6)
C4B0.62455 (15)0.7929 (2)0.60983 (5)0.0435 (5)
C5A0.70837 (17)0.7983 (2)0.32303 (5)0.0485 (6)
C5B0.71995 (16)0.6916 (2)0.59621 (5)0.0502 (6)
C6A0.69329 (16)0.7490 (2)0.36319 (5)0.0472 (5)
C6B0.72320 (15)0.6433 (2)0.55609 (5)0.0459 (6)
C7A0.7369 (2)0.8744 (3)0.23880 (6)0.0751 (9)
C7B0.53076 (19)0.9273 (3)0.66684 (6)0.0651 (8)
H2AA0.454500.514700.350600.0640*
H1A0.521800.500200.418300.0580*
H3AA0.478300.595100.283700.0710*
H2A0.579000.811700.443000.0580*
H2B0.466100.702200.458300.0580*
H5AA0.772400.870000.316200.0580*
H6AA0.747800.788400.383200.0570*
H7AA0.733800.883900.209500.1130*
H7AB0.815600.825200.246700.1130*
H7AC0.731200.978300.250900.1130*
H2BA0.475600.833300.524000.0500*
H3BA0.466600.910500.591800.0530*
H5BA0.782000.656300.614400.0600*
H6BA0.787000.574200.547500.0550*
H7BA0.542800.939300.695800.0980*
H7BB0.450000.877800.661700.0980*
H7BC0.532801.030100.654000.0980*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0765 (9)0.0589 (8)0.0457 (7)0.0266 (7)0.0012 (6)0.0037 (6)
O1A0.0859 (10)0.0801 (10)0.0445 (8)0.0125 (8)0.0025 (7)0.0053 (7)
O1B0.0668 (8)0.0680 (9)0.0461 (7)0.0106 (7)0.0018 (6)0.0049 (6)
N10.0640 (10)0.0565 (10)0.0458 (8)0.0209 (8)0.0000 (7)0.0006 (7)
C10.0512 (10)0.0445 (10)0.0484 (10)0.0028 (8)0.0005 (8)0.0025 (7)
C1A0.0459 (9)0.0381 (9)0.0433 (9)0.0013 (7)0.0011 (7)0.0018 (7)
C1B0.0353 (8)0.0358 (8)0.0431 (9)0.0013 (7)0.0019 (7)0.0057 (6)
C20.0467 (9)0.0551 (11)0.0442 (9)0.0109 (8)0.0026 (7)0.0033 (8)
C2A0.0503 (10)0.0533 (11)0.0565 (11)0.0148 (9)0.0028 (8)0.0009 (8)
C2B0.0387 (8)0.0410 (9)0.0463 (9)0.0046 (7)0.0007 (7)0.0084 (7)
C30.0371 (8)0.0354 (8)0.0452 (9)0.0005 (7)0.0028 (7)0.0051 (6)
C3A0.0607 (12)0.0630 (12)0.0528 (11)0.0120 (10)0.0144 (9)0.0034 (9)
C3B0.0428 (9)0.0387 (9)0.0504 (10)0.0047 (7)0.0067 (7)0.0044 (7)
C4A0.0534 (10)0.0480 (10)0.0413 (9)0.0038 (9)0.0011 (7)0.0012 (7)
C4B0.0462 (9)0.0427 (9)0.0417 (9)0.0033 (8)0.0020 (7)0.0031 (7)
C5A0.0493 (10)0.0458 (10)0.0505 (10)0.0062 (8)0.0029 (8)0.0004 (7)
C5B0.0439 (10)0.0568 (11)0.0500 (10)0.0083 (8)0.0081 (7)0.0044 (8)
C6A0.0482 (9)0.0480 (10)0.0454 (9)0.0055 (8)0.0050 (7)0.0055 (7)
C6B0.0384 (9)0.0483 (10)0.0511 (10)0.0087 (8)0.0017 (7)0.0024 (8)
C7A0.0860 (16)0.0809 (16)0.0584 (13)0.0076 (13)0.0103 (11)0.0144 (11)
C7B0.0696 (13)0.0732 (14)0.0524 (12)0.0015 (11)0.0105 (9)0.0100 (10)
Geometric parameters (Å, º) top
O1—N11.4139 (19)C4B—C5B1.388 (2)
O1—C11.463 (2)C5A—C6A1.385 (2)
O1A—C4A1.374 (2)C5B—C6B1.372 (2)
O1A—C7A1.416 (3)C1—H1A0.9800
O1B—C4B1.368 (2)C2—H2A0.9700
O1B—C7B1.421 (3)C2—H2B0.9700
N1—C31.279 (2)C2A—H2AA0.9300
C1—C1A1.503 (2)C2B—H2BA0.9300
C1—C21.517 (2)C3A—H3AA0.9300
C1A—C2A1.386 (2)C3B—H3BA0.9300
C1A—C6A1.384 (2)C5A—H5AA0.9300
C1B—C2B1.390 (2)C5B—H5BA0.9300
C1B—C31.468 (2)C6A—H6AA0.9300
C1B—C6B1.397 (2)C6B—H6BA0.9300
C2—C31.497 (2)C7A—H7AA0.9600
C2A—C3A1.378 (3)C7A—H7AB0.9600
C2B—C3B1.388 (2)C7A—H7AC0.9600
C3A—C4A1.381 (3)C7B—H7BA0.9600
C3B—C4B1.384 (2)C7B—H7BB0.9600
C4A—C5A1.381 (2)C7B—H7BC0.9600
N1—O1—C1108.43 (13)C1—C2—H2A112.00
C4A—O1A—C7A118.35 (15)C1—C2—H2B112.00
C4B—O1B—C7B117.94 (14)C3—C2—H2A112.00
O1—N1—C3109.29 (14)C3—C2—H2B112.00
O1—C1—C1A108.47 (14)H2A—C2—H2B109.00
O1—C1—C2103.24 (13)C1A—C2A—H2AA119.00
C1A—C1—C2118.86 (14)C3A—C2A—H2AA119.00
C1—C1A—C2A120.70 (15)C1B—C2B—H2BA119.00
C1—C1A—C6A121.39 (15)C3B—C2B—H2BA119.00
C2A—C1A—C6A117.88 (15)C2A—C3A—H3AA120.00
C2B—C1B—C3121.78 (14)C4A—C3A—H3AA120.00
C2B—C1B—C6B117.75 (15)C2B—C3B—H3BA120.00
C3—C1B—C6B120.47 (14)C4B—C3B—H3BA120.00
C1—C2—C3100.90 (13)C4A—C5A—H5AA120.00
C1A—C2A—C3A121.09 (16)C6A—C5A—H5AA120.00
C1B—C2B—C3B121.60 (15)C4B—C5B—H5BA120.00
N1—C3—C1B120.73 (14)C6B—C5B—H5BA120.00
N1—C3—C2113.17 (14)C1A—C6A—H6AA119.00
C1B—C3—C2126.01 (14)C5A—C6A—H6AA119.00
C2A—C3A—C4A120.32 (17)C1B—C6B—H6BA120.00
C2B—C3B—C4B119.44 (15)C5B—C6B—H6BA119.00
O1A—C4A—C3A115.58 (16)O1A—C7A—H7AA109.00
O1A—C4A—C5A124.85 (16)O1A—C7A—H7AB109.00
C3A—C4A—C5A119.57 (16)O1A—C7A—H7AC109.00
O1B—C4B—C3B125.04 (15)H7AA—C7A—H7AB109.00
O1B—C4B—C5B115.21 (14)H7AA—C7A—H7AC109.00
C3B—C4B—C5B119.72 (15)H7AB—C7A—H7AC110.00
C4A—C5A—C6A119.56 (16)O1B—C7B—H7BA109.00
C4B—C5B—C6B120.35 (15)O1B—C7B—H7BB109.00
C1A—C6A—C5A121.58 (16)O1B—C7B—H7BC109.00
C1B—C6B—C5B121.12 (15)H7BA—C7B—H7BB110.00
O1—C1—H1A109.00H7BA—C7B—H7BC109.00
C1A—C1—H1A109.00H7BB—C7B—H7BC109.00
C2—C1—H1A109.00
C1—O1—N1—C312.91 (18)C2B—C1B—C3—N1176.15 (16)
N1—O1—C1—C1A148.33 (13)C2B—C1B—C3—C27.6 (2)
N1—O1—C1—C221.37 (16)C6B—C1B—C3—N13.2 (2)
C7A—O1A—C4A—C3A173.31 (17)C6B—C1B—C3—C2173.08 (15)
C7A—O1A—C4A—C5A6.5 (3)C2B—C1B—C6B—C5B1.1 (2)
C7B—O1B—C4B—C3B1.7 (3)C3—C1B—C6B—C5B179.54 (15)
C7B—O1B—C4B—C5B176.75 (16)C1—C2—C3—N114.78 (19)
O1—N1—C3—C1B178.53 (14)C1—C2—C3—C1B168.71 (15)
O1—N1—C3—C21.81 (19)C1A—C2A—C3A—C4A0.1 (3)
O1—C1—C1A—C2A123.44 (17)C1B—C2B—C3B—C4B1.2 (2)
O1—C1—C1A—C6A54.6 (2)C2A—C3A—C4A—O1A179.75 (16)
C2—C1—C1A—C2A119.19 (18)C2A—C3A—C4A—C5A0.1 (3)
C2—C1—C1A—C6A62.8 (2)C2B—C3B—C4B—O1B179.72 (15)
O1—C1—C2—C320.68 (16)C2B—C3B—C4B—C5B1.4 (2)
C1A—C1—C2—C3140.76 (15)O1A—C4A—C5A—C6A179.71 (16)
C1—C1A—C2A—C3A177.79 (16)C3A—C4A—C5A—C6A0.1 (3)
C6A—C1A—C2A—C3A0.3 (3)O1B—C4B—C5B—C6B178.89 (15)
C1—C1A—C6A—C5A177.80 (16)C3B—C4B—C5B—C6B0.4 (3)
C2A—C1A—C6A—C5A0.2 (3)C4A—C5A—C6A—C1A0.0 (3)
C3—C1B—C2B—C3B179.44 (15)C4B—C5B—C6B—C1B0.9 (3)
C6B—C1B—C2B—C3B0.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6A—H6AA···O1i0.932.523.324 (2)145
C1—H1A···Cg3ii0.982.623.590 (2)170
C6B—H6BA···Cg3iii0.933.003.724 (2)136
C7B—H7BC···Cg2iv0.962.833.541 (3)132
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H17NO3
Mr283.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)10.5071 (7), 8.4023 (5), 32.6662 (19)
V3)2883.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.36 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.967, 1.000
No. of measured, independent and
observed [i > 2σ(i)] reflections
13952, 4821, 2738
Rint0.046
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.156, 1.06
No. of reflections4821
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6A—H6AA···O1i0.932.523.324 (2)145
C1—H1A···Cg3ii0.982.623.590 (2)170
C6B—H6BA···Cg3iii0.933.003.724 (2)136
C7B—H7BC···Cg2iv0.962.833.541 (3)132
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z; (iv) x+1, y+2, z+1.
 

Acknowledgements

SS and BN thank Mangalore University for the research facilities and the UGC SAP for financial assistance for the purchase of chemicals. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166–185.  CAS Google Scholar
First citationChopra, D., Mohan, T. P. & Vishalakshi, B. (2006). Acta Cryst. E62, o3547–o3548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDardouri, R., Kandri Rodi, Y., Saffon, N., El Ammari, L. & Essassi, E. M. (2010). Acta Cryst. E66, o2983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuo, X.-H., Qi, X.-X. & Chang, J.-B. (2006). Acta Cryst. E62, o374–o375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKo, Y. K., Ryu, J. W., Koo, D. W., Woo, J. C. & Kim, C.-H. (2011). Acta Cryst. E67, o1040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1–130. Oxford: Pergamon Press.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723–740.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1975-o1976
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds