organic compounds
3,5-Bis(4-methoxyphenyl)-4,5-dihydroisoxazole
aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, C17H17NO3, the five-membered isoxazoline ring adopts an with the chiral C atom at the flap position and 0.133 (2) Å out of the mean plane formed by the other four atoms. The two benzene rings form dihedral angles of 6.05 (5) and 81.52 (5)° with the C—C—N—O plane of the isoxazoline ring. The is stabilized by weak C—H⋯O hydrogen bonds and C—H⋯π interactions.
Related literature
For medical uses of isoxazole derivatives, see: Sperry & Wright (2005). For their biological activity, see; Boyd (1991); Lang & Lin (1984). For related structures, see; Baktır et al. (2011a,b); Chopra et al. (2006); Dardouri et al. (2010); Fun et al. (2010a,b); Guo et al. (2006); Jasinski et al. (2010); Ko et al. (2011); Samshuddin et al. (2010). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811026833/im2301sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811026833/im2301Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811026833/im2301Isup3.cml
A solution of (2E)-1,3-bis(4-methoxyphenyl)prop-2-en-1-one (2.68 g, 0.01 mol) and hydroxylamine hydrochloride (0.695 g, 0.01 mol) in 25 ml ethanol containing 3 ml of 10% sodium hydroxide solution was refluxed for 12 h. After cooling the mixture was poured into 50 ml ice-cold water. The resulting precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from 2-propanol by slow evaporation of the solvent (yield: 59%; (m.p.: 407 K).
H atoms were located geometrically (aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, methylene C—H = 0.97 Å and methine C—H = 0.98 Å) and refined using the riding model approximation with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(methyl-C) and Uiso(H) = 1.2 Ueq(other C atoms).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. Molecular structure of the title compound with ellipsoids drawn at the 30% probability level and H atoms as spheres of arbitrary radius. | |
Fig. 2. Packing diagram of the title molecule, showing C—H···O interactions, viewed down the b axis. Hydrogen atoms not involved in H-bonding have been omitted for clarity. |
C17H17NO3 | F(000) = 1200 |
Mr = 283.32 | Dx = 1.305 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2593 reflections |
a = 10.5071 (7) Å | θ = 5.2–32.6° |
b = 8.4023 (5) Å | µ = 0.09 mm−1 |
c = 32.6662 (19) Å | T = 295 K |
V = 2883.9 (3) Å3 | Triangular plate, colourless |
Z = 8 | 0.42 × 0.36 × 0.16 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 4821 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2738 reflections with i > 2σ(i) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 32.7°, θmin = 5.2° |
ω scans | h = −12→15 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −10→12 |
Tmin = 0.967, Tmax = 1.000 | l = −29→46 |
13952 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.075 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0468P)2 + 0.4739P] where P = (Fo2 + 2Fc2)/3 |
4821 reflections | (Δ/σ)max = 0.001 |
192 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C17H17NO3 | V = 2883.9 (3) Å3 |
Mr = 283.32 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 10.5071 (7) Å | µ = 0.09 mm−1 |
b = 8.4023 (5) Å | T = 295 K |
c = 32.6662 (19) Å | 0.42 × 0.36 × 0.16 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 4821 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 2738 reflections with i > 2σ(i) |
Tmin = 0.967, Tmax = 1.000 | Rint = 0.046 |
13952 measured reflections |
R[F2 > 2σ(F2)] = 0.075 | 0 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.23 e Å−3 |
4821 reflections | Δρmin = −0.17 e Å−3 |
192 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.70804 (13) | 0.51832 (16) | 0.43065 (4) | 0.0604 (5) | |
O1A | 0.63367 (15) | 0.77980 (18) | 0.25241 (4) | 0.0702 (5) | |
O1B | 0.62961 (12) | 0.83077 (16) | 0.65053 (4) | 0.0603 (5) | |
N1 | 0.72185 (15) | 0.54460 (19) | 0.47317 (4) | 0.0554 (5) | |
C1 | 0.58593 (17) | 0.5848 (2) | 0.41763 (5) | 0.0480 (6) | |
C1A | 0.59901 (16) | 0.6424 (2) | 0.37429 (5) | 0.0424 (5) | |
C1B | 0.63231 (14) | 0.69607 (18) | 0.52798 (5) | 0.0381 (5) | |
C2 | 0.55553 (17) | 0.7045 (2) | 0.45099 (5) | 0.0487 (6) | |
C2A | 0.51887 (17) | 0.5861 (2) | 0.34384 (6) | 0.0534 (6) | |
C2B | 0.53722 (15) | 0.7969 (2) | 0.54218 (5) | 0.0420 (5) | |
C3 | 0.63763 (14) | 0.64427 (19) | 0.48509 (5) | 0.0392 (5) | |
C3A | 0.53294 (18) | 0.6342 (2) | 0.30376 (6) | 0.0588 (7) | |
C3B | 0.53190 (15) | 0.8445 (2) | 0.58282 (5) | 0.0440 (5) | |
C4A | 0.62771 (17) | 0.7403 (2) | 0.29317 (5) | 0.0476 (6) | |
C4B | 0.62455 (15) | 0.7929 (2) | 0.60983 (5) | 0.0435 (5) | |
C5A | 0.70837 (17) | 0.7983 (2) | 0.32303 (5) | 0.0485 (6) | |
C5B | 0.71995 (16) | 0.6916 (2) | 0.59621 (5) | 0.0502 (6) | |
C6A | 0.69329 (16) | 0.7490 (2) | 0.36319 (5) | 0.0472 (5) | |
C6B | 0.72320 (15) | 0.6433 (2) | 0.55609 (5) | 0.0459 (6) | |
C7A | 0.7369 (2) | 0.8744 (3) | 0.23880 (6) | 0.0751 (9) | |
C7B | 0.53076 (19) | 0.9273 (3) | 0.66684 (6) | 0.0651 (8) | |
H2AA | 0.45450 | 0.51470 | 0.35060 | 0.0640* | |
H1A | 0.52180 | 0.50020 | 0.41830 | 0.0580* | |
H3AA | 0.47830 | 0.59510 | 0.28370 | 0.0710* | |
H2A | 0.57900 | 0.81170 | 0.44300 | 0.0580* | |
H2B | 0.46610 | 0.70220 | 0.45830 | 0.0580* | |
H5AA | 0.77240 | 0.87000 | 0.31620 | 0.0580* | |
H6AA | 0.74780 | 0.78840 | 0.38320 | 0.0570* | |
H7AA | 0.73380 | 0.88390 | 0.20950 | 0.1130* | |
H7AB | 0.81560 | 0.82520 | 0.24670 | 0.1130* | |
H7AC | 0.73120 | 0.97830 | 0.25090 | 0.1130* | |
H2BA | 0.47560 | 0.83330 | 0.52400 | 0.0500* | |
H3BA | 0.46660 | 0.91050 | 0.59180 | 0.0530* | |
H5BA | 0.78200 | 0.65630 | 0.61440 | 0.0600* | |
H6BA | 0.78700 | 0.57420 | 0.54750 | 0.0550* | |
H7BA | 0.54280 | 0.93930 | 0.69580 | 0.0980* | |
H7BB | 0.45000 | 0.87780 | 0.66170 | 0.0980* | |
H7BC | 0.53280 | 1.03010 | 0.65400 | 0.0980* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0765 (9) | 0.0589 (8) | 0.0457 (7) | 0.0266 (7) | 0.0012 (6) | −0.0037 (6) |
O1A | 0.0859 (10) | 0.0801 (10) | 0.0445 (8) | −0.0125 (8) | −0.0025 (7) | 0.0053 (7) |
O1B | 0.0668 (8) | 0.0680 (9) | 0.0461 (7) | 0.0106 (7) | −0.0018 (6) | −0.0049 (6) |
N1 | 0.0640 (10) | 0.0565 (10) | 0.0458 (8) | 0.0209 (8) | 0.0000 (7) | 0.0006 (7) |
C1 | 0.0512 (10) | 0.0445 (10) | 0.0484 (10) | −0.0028 (8) | −0.0005 (8) | 0.0025 (7) |
C1A | 0.0459 (9) | 0.0381 (9) | 0.0433 (9) | 0.0013 (7) | 0.0011 (7) | −0.0018 (7) |
C1B | 0.0353 (8) | 0.0358 (8) | 0.0431 (9) | −0.0013 (7) | 0.0019 (7) | 0.0057 (6) |
C2 | 0.0467 (9) | 0.0551 (11) | 0.0442 (9) | 0.0109 (8) | 0.0026 (7) | 0.0033 (8) |
C2A | 0.0503 (10) | 0.0533 (11) | 0.0565 (11) | −0.0148 (9) | −0.0028 (8) | 0.0009 (8) |
C2B | 0.0387 (8) | 0.0410 (9) | 0.0463 (9) | 0.0046 (7) | −0.0007 (7) | 0.0084 (7) |
C3 | 0.0371 (8) | 0.0354 (8) | 0.0452 (9) | −0.0005 (7) | 0.0028 (7) | 0.0051 (6) |
C3A | 0.0607 (12) | 0.0630 (12) | 0.0528 (11) | −0.0120 (10) | −0.0144 (9) | −0.0034 (9) |
C3B | 0.0428 (9) | 0.0387 (9) | 0.0504 (10) | 0.0047 (7) | 0.0067 (7) | 0.0044 (7) |
C4A | 0.0534 (10) | 0.0480 (10) | 0.0413 (9) | 0.0038 (9) | 0.0011 (7) | −0.0012 (7) |
C4B | 0.0462 (9) | 0.0427 (9) | 0.0417 (9) | −0.0033 (8) | 0.0020 (7) | 0.0031 (7) |
C5A | 0.0493 (10) | 0.0458 (10) | 0.0505 (10) | −0.0062 (8) | 0.0029 (8) | 0.0004 (7) |
C5B | 0.0439 (10) | 0.0568 (11) | 0.0500 (10) | 0.0083 (8) | −0.0081 (7) | 0.0044 (8) |
C6A | 0.0482 (9) | 0.0480 (10) | 0.0454 (9) | −0.0055 (8) | −0.0050 (7) | −0.0055 (7) |
C6B | 0.0384 (9) | 0.0483 (10) | 0.0511 (10) | 0.0087 (8) | 0.0017 (7) | 0.0024 (8) |
C7A | 0.0860 (16) | 0.0809 (16) | 0.0584 (13) | −0.0076 (13) | 0.0103 (11) | 0.0144 (11) |
C7B | 0.0696 (13) | 0.0732 (14) | 0.0524 (12) | 0.0015 (11) | 0.0105 (9) | −0.0100 (10) |
O1—N1 | 1.4139 (19) | C4B—C5B | 1.388 (2) |
O1—C1 | 1.463 (2) | C5A—C6A | 1.385 (2) |
O1A—C4A | 1.374 (2) | C5B—C6B | 1.372 (2) |
O1A—C7A | 1.416 (3) | C1—H1A | 0.9800 |
O1B—C4B | 1.368 (2) | C2—H2A | 0.9700 |
O1B—C7B | 1.421 (3) | C2—H2B | 0.9700 |
N1—C3 | 1.279 (2) | C2A—H2AA | 0.9300 |
C1—C1A | 1.503 (2) | C2B—H2BA | 0.9300 |
C1—C2 | 1.517 (2) | C3A—H3AA | 0.9300 |
C1A—C2A | 1.386 (2) | C3B—H3BA | 0.9300 |
C1A—C6A | 1.384 (2) | C5A—H5AA | 0.9300 |
C1B—C2B | 1.390 (2) | C5B—H5BA | 0.9300 |
C1B—C3 | 1.468 (2) | C6A—H6AA | 0.9300 |
C1B—C6B | 1.397 (2) | C6B—H6BA | 0.9300 |
C2—C3 | 1.497 (2) | C7A—H7AA | 0.9600 |
C2A—C3A | 1.378 (3) | C7A—H7AB | 0.9600 |
C2B—C3B | 1.388 (2) | C7A—H7AC | 0.9600 |
C3A—C4A | 1.381 (3) | C7B—H7BA | 0.9600 |
C3B—C4B | 1.384 (2) | C7B—H7BB | 0.9600 |
C4A—C5A | 1.381 (2) | C7B—H7BC | 0.9600 |
N1—O1—C1 | 108.43 (13) | C1—C2—H2A | 112.00 |
C4A—O1A—C7A | 118.35 (15) | C1—C2—H2B | 112.00 |
C4B—O1B—C7B | 117.94 (14) | C3—C2—H2A | 112.00 |
O1—N1—C3 | 109.29 (14) | C3—C2—H2B | 112.00 |
O1—C1—C1A | 108.47 (14) | H2A—C2—H2B | 109.00 |
O1—C1—C2 | 103.24 (13) | C1A—C2A—H2AA | 119.00 |
C1A—C1—C2 | 118.86 (14) | C3A—C2A—H2AA | 119.00 |
C1—C1A—C2A | 120.70 (15) | C1B—C2B—H2BA | 119.00 |
C1—C1A—C6A | 121.39 (15) | C3B—C2B—H2BA | 119.00 |
C2A—C1A—C6A | 117.88 (15) | C2A—C3A—H3AA | 120.00 |
C2B—C1B—C3 | 121.78 (14) | C4A—C3A—H3AA | 120.00 |
C2B—C1B—C6B | 117.75 (15) | C2B—C3B—H3BA | 120.00 |
C3—C1B—C6B | 120.47 (14) | C4B—C3B—H3BA | 120.00 |
C1—C2—C3 | 100.90 (13) | C4A—C5A—H5AA | 120.00 |
C1A—C2A—C3A | 121.09 (16) | C6A—C5A—H5AA | 120.00 |
C1B—C2B—C3B | 121.60 (15) | C4B—C5B—H5BA | 120.00 |
N1—C3—C1B | 120.73 (14) | C6B—C5B—H5BA | 120.00 |
N1—C3—C2 | 113.17 (14) | C1A—C6A—H6AA | 119.00 |
C1B—C3—C2 | 126.01 (14) | C5A—C6A—H6AA | 119.00 |
C2A—C3A—C4A | 120.32 (17) | C1B—C6B—H6BA | 120.00 |
C2B—C3B—C4B | 119.44 (15) | C5B—C6B—H6BA | 119.00 |
O1A—C4A—C3A | 115.58 (16) | O1A—C7A—H7AA | 109.00 |
O1A—C4A—C5A | 124.85 (16) | O1A—C7A—H7AB | 109.00 |
C3A—C4A—C5A | 119.57 (16) | O1A—C7A—H7AC | 109.00 |
O1B—C4B—C3B | 125.04 (15) | H7AA—C7A—H7AB | 109.00 |
O1B—C4B—C5B | 115.21 (14) | H7AA—C7A—H7AC | 109.00 |
C3B—C4B—C5B | 119.72 (15) | H7AB—C7A—H7AC | 110.00 |
C4A—C5A—C6A | 119.56 (16) | O1B—C7B—H7BA | 109.00 |
C4B—C5B—C6B | 120.35 (15) | O1B—C7B—H7BB | 109.00 |
C1A—C6A—C5A | 121.58 (16) | O1B—C7B—H7BC | 109.00 |
C1B—C6B—C5B | 121.12 (15) | H7BA—C7B—H7BB | 110.00 |
O1—C1—H1A | 109.00 | H7BA—C7B—H7BC | 109.00 |
C1A—C1—H1A | 109.00 | H7BB—C7B—H7BC | 109.00 |
C2—C1—H1A | 109.00 | ||
C1—O1—N1—C3 | −12.91 (18) | C2B—C1B—C3—N1 | −176.15 (16) |
N1—O1—C1—C1A | 148.33 (13) | C2B—C1B—C3—C2 | 7.6 (2) |
N1—O1—C1—C2 | 21.37 (16) | C6B—C1B—C3—N1 | 3.2 (2) |
C7A—O1A—C4A—C3A | −173.31 (17) | C6B—C1B—C3—C2 | −173.08 (15) |
C7A—O1A—C4A—C5A | 6.5 (3) | C2B—C1B—C6B—C5B | −1.1 (2) |
C7B—O1B—C4B—C3B | 1.7 (3) | C3—C1B—C6B—C5B | 179.54 (15) |
C7B—O1B—C4B—C5B | −176.75 (16) | C1—C2—C3—N1 | 14.78 (19) |
O1—N1—C3—C1B | −178.53 (14) | C1—C2—C3—C1B | −168.71 (15) |
O1—N1—C3—C2 | −1.81 (19) | C1A—C2A—C3A—C4A | −0.1 (3) |
O1—C1—C1A—C2A | 123.44 (17) | C1B—C2B—C3B—C4B | 1.2 (2) |
O1—C1—C1A—C6A | −54.6 (2) | C2A—C3A—C4A—O1A | 179.75 (16) |
C2—C1—C1A—C2A | −119.19 (18) | C2A—C3A—C4A—C5A | −0.1 (3) |
C2—C1—C1A—C6A | 62.8 (2) | C2B—C3B—C4B—O1B | −179.72 (15) |
O1—C1—C2—C3 | −20.68 (16) | C2B—C3B—C4B—C5B | −1.4 (2) |
C1A—C1—C2—C3 | −140.76 (15) | O1A—C4A—C5A—C6A | −179.71 (16) |
C1—C1A—C2A—C3A | −177.79 (16) | C3A—C4A—C5A—C6A | 0.1 (3) |
C6A—C1A—C2A—C3A | 0.3 (3) | O1B—C4B—C5B—C6B | 178.89 (15) |
C1—C1A—C6A—C5A | 177.80 (16) | C3B—C4B—C5B—C6B | 0.4 (3) |
C2A—C1A—C6A—C5A | −0.2 (3) | C4A—C5A—C6A—C1A | 0.0 (3) |
C3—C1B—C2B—C3B | 179.44 (15) | C4B—C5B—C6B—C1B | 0.9 (3) |
C6B—C1B—C2B—C3B | 0.1 (2) |
Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6A—H6AA···O1i | 0.93 | 2.52 | 3.324 (2) | 145 |
C1—H1A···Cg3ii | 0.98 | 2.62 | 3.590 (2) | 170 |
C6B—H6BA···Cg3iii | 0.93 | 3.00 | 3.724 (2) | 136 |
C7B—H7BC···Cg2iv | 0.96 | 2.83 | 3.541 (3) | 132 |
Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) −x+1, −y+1, −z+1; (iii) −x+3/2, y−1/2, z; (iv) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C17H17NO3 |
Mr | 283.32 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 295 |
a, b, c (Å) | 10.5071 (7), 8.4023 (5), 32.6662 (19) |
V (Å3) | 2883.9 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.42 × 0.36 × 0.16 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.967, 1.000 |
No. of measured, independent and observed [i > 2σ(i)] reflections | 13952, 4821, 2738 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.760 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.075, 0.156, 1.06 |
No. of reflections | 4821 |
No. of parameters | 192 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.17 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6A—H6AA···O1i | 0.93 | 2.52 | 3.324 (2) | 145 |
C1—H1A···Cg3ii | 0.98 | 2.62 | 3.590 (2) | 170 |
C6B—H6BA···Cg3iii | 0.93 | 3.00 | 3.724 (2) | 136 |
C7B—H7BC···Cg2iv | 0.96 | 2.83 | 3.541 (3) | 132 |
Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) −x+1, −y+1, −z+1; (iii) −x+3/2, y−1/2, z; (iv) −x+1, −y+2, −z+1. |
Acknowledgements
SS and BN thank Mangalore University for the research facilities and the UGC SAP for financial assistance for the purchase of chemicals. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.
References
Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293. Web of Science CSD CrossRef IUCr Journals Google Scholar
Boyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166–185. CAS Google Scholar
Chopra, D., Mohan, T. P. & Vishalakshi, B. (2006). Acta Cryst. E62, o3547–o3548. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dardouri, R., Kandri Rodi, Y., Saffon, N., El Ammari, L. & Essassi, E. M. (2010). Acta Cryst. E66, o2983. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Guo, X.-H., Qi, X.-X. & Chang, J.-B. (2006). Acta Cryst. E62, o374–o375. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ko, Y. K., Ryu, J. W., Koo, D. W., Woo, J. C. & Kim, C.-H. (2011). Acta Cryst. E67, o1040. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1–130. Oxford: Pergamon Press. Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723–740. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones are convenient intermediates for the synthesis of various biodynamic cyclic derivatives such as isoxazoline, pyrazoline, benzodiazepine and cyclohexenone derivatives (Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010; Baktır et al., 2011a,b). Isoxazole derivatives represent a unique class of nitrogen- and oxygen-containing five-membered heterocycles. These are the components in a variety of natural products and medicinally useful compounds (Sperry et al., 2005). Isoxazole derivatives bearing different substituents are known to have various biological activities in pharmaceutical and agricultural areas (Lang & Lin, 1984; Boyd, 1991).
The crystal structures of some 4,5-dihydroisoxazole derivatives viz., 5-(4-fluoro-3-phenoxyphenyl)-3-(4-methylphenyl)-4,5-dihydroisoxazole (Chopra et al., 2006), 5-(1H-indol-3-yl)-3-(4-methylphenyl)-4,5-dihydroisoxazoline (Guo et al., 2006), 1,5-dimethyl-3-[(3-phenyl-4,5-dihydro-1,2-oxazol-5-yl)methyl]-1H-1,5- benzodiazepine-2,4(3H,5H)-dione (Dardouri et al., 2010) and (S)-[5-methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl] methanol solvate (Ko et al., 2011) have been reported. In view of the importance of isoxazoles and in continuation of our work on synthesis of various derivatives of chalcones, the title compound (I) was prepared and its crystal structure is reported.
As shown in Fig. 1, the 4,5-dihydroisoxazole ring (O1/N1/C1–C3) of the title compound (I) has an envelope conformation with the chiral C1 atom at the flap position, displaced from the mean plane by -0.133 (2) Å; the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.2156 (17) Å, ϕ(2) = 319.7 (5)°. Furthermore, one (O1B/C1B–C7B) of the methoxyphenyl ring systems makes a dihedral angle of 6.05 (5)°, whereas the other one (O1A/C1A–C7A) is almost orthogonal to the plane formed by the four atoms O1, N1, C2 and C3 of the five-membered isoxazoline ring, the dihedral angle being 81.52 (5)° (Nardelli, 1983). The dihedral angle between the methoxyphenyl ring systems (O1A/C1A–C7A and O1B/C1B–C7B) is 76.56 (4)°.
In the crystal structure, molecules are linked by weak C6A—H6AA···O1 (Table 1, Fig. 2) hydrogen bonds, and are further consolidated by C–H···π interactions (Table 1, Cg2 and Cg3 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively).