organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-hy­dr­oxy­phen­yl)methanone

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 23 June 2011; accepted 28 June 2011; online 2 July 2011)

In the title compound, C13H10O3, a benzophenone derivative, the least-squares planes defined by the C atoms of the 2-hy­droxy­phenyl rings inter­sect at an angle of 45.49 (3)°. The substituents on the aromatic systems are both orientated towards the central O atom. Intra- as well as inter­molecular O—H⋯O hydrogen bonds are observed, the latter giving rise to the formation of centrosymmetric dimers. The closest centroid–centroid distance between two π-systems is 3.7934 (7) Å.

Related literature

For the crystal structure of benzophenone, see: Lobanova (1968[Lobanova, G. M. (1968). Kristallografiya, 13, 984-986.]); Kutzke et al. (2000[Kutzke, H., Klapper, H., Hammond, R. B. & Roberts, K. J. (2000). Acta Cryst. B56, 486-496.]); Fleischer et al. (1968[Fleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem. 72, 4311-4312.]); Bernstein et al. (2002[Bernstein, J., Ellern, A. & Henck, J.-O. (2002). Private communication (CCDC 118986, ref-code BPHNO11). CCDC, Cambridge, England.]); Moncol & Coppens (2004[Moncol, J. & Coppens, P. (2004). Private communication (CCDC 245188, ref-code BPHNO12). CCDC, Cambridge, England.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of the resultant coordination compounds in relation to those exclusively applying comparable monodentate ligands, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage, Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10O3

  • Mr = 214.21

  • Monoclinic, P 21 /c

  • a = 7.7371 (2) Å

  • b = 12.2169 (4) Å

  • c = 11.3419 (3) Å

  • β = 110.610 (2)°

  • V = 1003.46 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 9306 measured reflections

  • 2483 independent reflections

  • 1939 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.05

  • 2483 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 1.88 2.6061 (11) 144
O2—H2⋯O1i 0.84 2.44 2.9976 (12) 124
O3—H3⋯O1 0.84 1.95 2.6623 (11) 142
Symmetry code: (i) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin.USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin.USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining two identical donor atoms in different states of hybridization seemed to be useful to us to accomodate a large variety of metal centers of variable Lewis acidity. To enable comparative studies in terms of bond lengths and angles in envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. The crystal structure of benzophenone is apparent in the literature (Lobanova, 1968; Kutzke et al., 2000; Fleischer et al., 1968; Bernstein et al., 2002; Moncol & Coppens, 2004).

The title compound is a symmetrical substitution product of benzophenone bearing one hydroxyl group in ortho-position of each phenyl ring. Both aromatic moieties adopt a conformation in which the substituents are orientated towards the central oxygen atom. The least-squares planes defined by the respective carbon atoms of both ortho-hydroxyphenyl rings intersect at an angle of 45.49 (3) °. Intracyclic C–C–C angles hardly deviate from the ideal value of 120 °.

In the crystal structure, intra- as well as intermolecular hydrogen bonds are observed. In both cases, the sp2-hybridized oxygen atom acts as acceptor, but while one of the hydroxyl groups exclusively forms an intramolecular hydrogen bond, the other hydroxyl group forms a bifurcated hydrogen bond to the keto group's oxygen atom of a neighbouring molecule as well. In total, two molecules are connected to centrosymmetric dimers. The descriptor for the hydrogen bonding system in terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) is DDR22(12) on the unitary level. The shortest intercentroid distance between two π-systems is 3.7934 (7) Å and is apparent between two different aromatic moieties.

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For the crystal structure of benzophenone, see: Lobanova (1968); Kutzke et al. (2000); Fleischer et al. (1968); Bernstein et al. (2002); Moncol & Coppens (2004). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of the resultant coordination compounds in relation to those exclusively applying comparable monodentate ligands, see: Gade (1998).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided product.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The hydrogen atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the O–C bonds to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Symmetry operator: i -x + 2, -y, -z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
Bis(2-hydroxyphenyl)methanone top
Crystal data top
C13H10O3F(000) = 448
Mr = 214.21Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4455 reflections
a = 7.7371 (2) Åθ = 2.5–28.3°
b = 12.2169 (4) ŵ = 0.10 mm1
c = 11.3419 (3) ÅT = 200 K
β = 110.610 (2)°Platelet, colourless
V = 1003.46 (5) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1939 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 28.3°, θmin = 2.5°
ϕ and ω scansh = 910
9306 measured reflectionsk = 1516
2483 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.1145P]
where P = (Fo2 + 2Fc2)/3
2483 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H10O3V = 1003.46 (5) Å3
Mr = 214.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7371 (2) ŵ = 0.10 mm1
b = 12.2169 (4) ÅT = 200 K
c = 11.3419 (3) Å0.24 × 0.20 × 0.18 mm
β = 110.610 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1939 reflections with I > 2σ(I)
9306 measured reflectionsRint = 0.033
2483 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
2483 reflectionsΔρmin = 0.19 e Å3
147 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.97092 (13)0.09617 (6)0.08169 (7)0.0405 (2)
O20.78137 (13)0.09971 (7)0.15911 (8)0.0407 (2)
H20.85280.07190.09190.061*
O31.09865 (13)0.09673 (6)0.33247 (8)0.0407 (2)
H31.05340.06640.26170.061*
C10.94988 (15)0.19703 (8)0.08687 (9)0.0271 (2)
C110.80678 (14)0.25299 (8)0.01695 (9)0.0255 (2)
C120.73030 (15)0.20048 (9)0.13533 (10)0.0294 (2)
C130.59669 (16)0.25366 (10)0.23411 (10)0.0348 (3)
H130.54990.21990.31460.042*
C140.53150 (16)0.35473 (10)0.21639 (11)0.0358 (3)
H140.43880.38960.28440.043*
C150.60019 (16)0.40645 (9)0.09954 (10)0.0334 (3)
H150.55370.47590.08760.040*
C160.73588 (15)0.35604 (9)0.00167 (10)0.0287 (2)
H160.78270.39150.07790.034*
C211.06958 (14)0.25691 (8)0.19946 (9)0.0253 (2)
C221.13591 (15)0.20282 (9)0.31684 (9)0.0283 (2)
C231.24280 (15)0.25933 (10)0.42392 (9)0.0340 (3)
H231.28070.22420.50370.041*
C241.29406 (17)0.36599 (10)0.41490 (11)0.0372 (3)
H241.36740.40390.48870.045*
C251.23981 (16)0.41868 (9)0.29931 (11)0.0341 (3)
H251.27980.49130.29330.041*
C261.12737 (15)0.36495 (8)0.19308 (10)0.0282 (2)
H261.08830.40170.11420.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0588 (6)0.0236 (4)0.0317 (4)0.0033 (4)0.0067 (4)0.0005 (3)
O20.0478 (5)0.0359 (5)0.0319 (4)0.0011 (4)0.0058 (4)0.0106 (3)
O30.0538 (6)0.0312 (4)0.0305 (4)0.0037 (4)0.0068 (4)0.0094 (3)
C10.0338 (6)0.0232 (5)0.0247 (5)0.0006 (4)0.0107 (4)0.0006 (4)
C110.0279 (5)0.0258 (5)0.0223 (5)0.0033 (4)0.0081 (4)0.0005 (4)
C120.0301 (5)0.0315 (5)0.0266 (5)0.0041 (4)0.0101 (4)0.0028 (4)
C130.0319 (6)0.0471 (7)0.0217 (5)0.0048 (5)0.0051 (4)0.0022 (5)
C140.0293 (6)0.0478 (7)0.0282 (5)0.0025 (5)0.0073 (5)0.0099 (5)
C150.0340 (6)0.0331 (6)0.0341 (6)0.0052 (5)0.0131 (5)0.0051 (5)
C160.0312 (5)0.0296 (5)0.0254 (5)0.0006 (4)0.0099 (4)0.0004 (4)
C210.0268 (5)0.0258 (5)0.0230 (5)0.0023 (4)0.0083 (4)0.0012 (4)
C220.0290 (5)0.0293 (5)0.0264 (5)0.0024 (4)0.0097 (4)0.0040 (4)
C230.0333 (6)0.0448 (7)0.0218 (5)0.0014 (5)0.0074 (5)0.0038 (5)
C240.0355 (6)0.0454 (7)0.0279 (6)0.0065 (5)0.0078 (5)0.0082 (5)
C250.0354 (6)0.0313 (6)0.0356 (6)0.0059 (5)0.0125 (5)0.0042 (5)
C260.0304 (5)0.0275 (5)0.0269 (5)0.0012 (4)0.0101 (4)0.0019 (4)
Geometric parameters (Å, º) top
O1—C11.2470 (12)C15—C161.3760 (15)
O2—C121.3489 (13)C15—H150.9500
O2—H20.8400C16—H160.9500
O3—C221.3530 (13)C21—C261.4035 (14)
O3—H30.8400C21—C221.4112 (13)
C1—C111.4703 (14)C22—C231.3886 (15)
C1—C211.4802 (14)C23—C241.3763 (16)
C11—C161.4081 (15)C23—H230.9500
C11—C121.4161 (14)C24—C251.3864 (16)
C12—C131.3894 (15)C24—H240.9500
C13—C141.3750 (17)C25—C261.3790 (15)
C13—H130.9500C25—H250.9500
C14—C151.3936 (16)C26—H260.9500
C14—H140.9500
C12—O2—H2109.5C15—C16—H16119.3
C22—O3—H3109.5C11—C16—H16119.3
O1—C1—C11119.72 (9)C26—C21—C22118.19 (9)
O1—C1—C21118.46 (9)C26—C21—C1122.29 (9)
C11—C1—C21121.81 (9)C22—C21—C1119.46 (9)
C16—C11—C12118.09 (9)O3—C22—C23116.77 (9)
C16—C11—C1122.23 (9)O3—C22—C21123.28 (9)
C12—C11—C1119.62 (9)C23—C22—C21119.94 (10)
O2—C12—C13116.92 (9)C24—C23—C22120.28 (10)
O2—C12—C11123.30 (10)C24—C23—H23119.9
C13—C12—C11119.78 (10)C22—C23—H23119.9
C14—C13—C12120.60 (10)C23—C24—C25120.71 (10)
C14—C13—H13119.7C23—C24—H24119.6
C12—C13—H13119.7C25—C24—H24119.6
C13—C14—C15120.62 (10)C26—C25—C24119.54 (10)
C13—C14—H14119.7C26—C25—H25120.2
C15—C14—H14119.7C24—C25—H25120.2
C16—C15—C14119.44 (11)C25—C26—C21121.14 (10)
C16—C15—H15120.3C25—C26—H26119.4
C14—C15—H15120.3C21—C26—H26119.4
C15—C16—C11121.37 (10)
O1—C1—C11—C16159.44 (10)O1—C1—C21—C26146.95 (11)
C21—C1—C11—C1619.72 (15)C11—C1—C21—C2633.88 (15)
O1—C1—C11—C1217.66 (15)O1—C1—C21—C2230.02 (14)
C21—C1—C11—C12163.18 (10)C11—C1—C21—C22149.15 (10)
C16—C11—C12—O2176.94 (9)C26—C21—C22—O3175.80 (10)
C1—C11—C12—O20.28 (16)C1—C21—C22—O31.29 (16)
C16—C11—C12—C133.58 (15)C26—C21—C22—C235.22 (15)
C1—C11—C12—C13179.20 (9)C1—C21—C22—C23177.68 (9)
O2—C12—C13—C14177.36 (10)O3—C22—C23—C24176.91 (10)
C11—C12—C13—C143.13 (17)C21—C22—C23—C244.05 (17)
C12—C13—C14—C150.97 (17)C22—C23—C24—C250.12 (18)
C13—C14—C15—C160.68 (17)C23—C24—C25—C262.53 (18)
C14—C15—C16—C110.13 (17)C24—C25—C26—C211.22 (17)
C12—C11—C16—C151.98 (15)C22—C21—C26—C252.61 (16)
C1—C11—C16—C15179.12 (10)C1—C21—C26—C25179.62 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.882.6061 (11)144
O2—H2···O1i0.842.442.9976 (12)124
O3—H3···O10.841.952.6623 (11)142
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC13H10O3
Mr214.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)7.7371 (2), 12.2169 (4), 11.3419 (3)
β (°) 110.610 (2)
V3)1003.46 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9306, 2483, 1939
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.05
No. of reflections2483
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.882.6061 (11)144
O2—H2···O1i0.842.442.9976 (12)124
O3—H3···O10.841.952.6623 (11)142
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

The authors thank Mr Phindile Gaika for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Ellern, A. & Henck, J.-O. (2002). Private communication (CCDC 118986, ref-code BPHNO11). CCDC, Cambridge, England.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin.USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem. 72, 4311–4312.  CSD CrossRef CAS Web of Science Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage, Weinheim: Wiley–VCH.  Google Scholar
First citationKutzke, H., Klapper, H., Hammond, R. B. & Roberts, K. J. (2000). Acta Cryst. B56, 486–496.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLobanova, G. M. (1968). Kristallografiya, 13, 984–986.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoncol, J. & Coppens, P. (2004). Private communication (CCDC 245188, ref-code BPHNO12). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds