metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(acetato-κO)di­aquabis­(2-amino­pyrazine-κN4)manganese(II) dihydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and, Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 July 2011; accepted 16 July 2011; online 23 July 2011)

The MnII atom in the title compound, [Mn(CH3COO)2(C4H5N3)2(H2O)2]·2H2O, is situated on a center of inversion and shows an octa­hedral coordination polyhedron made up by four O atoms and two N atoms. The octa­hedron is somewhat tetra­gonally distorted owing to the longer Mn—N bond [2.323 (3) Å]. The mononuclear complex mol­ecule and uncoordinated water mol­ecules are linked by O—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For the crystal structure of manganese acetate dihydrate, see: Cheng & Wang (1991[Cheng, C.-Y. & Wang, S.-L. (1991). Acta Cryst. C47, 1734-1736.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2H3O2)2(C4H5N3)2(H2O)2]·2H2O

  • Mr = 435.31

  • Triclinic, [P \overline 1]

  • a = 7.0761 (7) Å

  • b = 8.5411 (8) Å

  • c = 9.5162 (10) Å

  • α = 100.866 (3)°

  • β = 105.036 (3)°

  • γ = 110.250 (3)°

  • V = 495.92 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 293 K

  • 0.10 × 0.08 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.932, Tmax = 0.965

  • 4911 measured reflections

  • 2249 independent reflections

  • 1558 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.159

  • S = 1.07

  • 2249 reflections

  • 148 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2 0.84 (1) 1.89 (2) 2.690 (4) 160 (5)
O1w—H12⋯N2i 0.84 (1) 2.02 (2) 2.837 (4) 165 (5)
O2w—H21⋯O1ii 0.84 (1) 2.02 (1) 2.851 (4) 171 (4)
O2w—H22⋯O2iii 0.84 (1) 1.90 (2) 2.726 (5) 167 (5)
N3—H31⋯O2w 0.88 (1) 1.98 (1) 2.859 (5) 178 (6)
Symmetry codes: (i) x, y-1, z; (ii) x, y, z-1; (iii) x-1, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There are few crystal structure studies of N-heterocyclic adducts of manganese acetate, the latter crystallizing as a dihydrate (Cheng & Wang, 1991). Other first-row transition metal acetates furnish a large number of adducts. The MnII atom in Mn(H2O)2(C2H3O2)2(C4H5N3)2 × 2 H2O (Scheme I, Fig. 1) shows an octahedral coordination polyhedron made up by four O atoms and two N atoms. The octahedron is somewhat tetragonally distorted owing to the longer Mn–N bond. The mononuclear complex molecule and lattice water molecules are linked hydrogen bonds to generate a three-dimensional network (Table 1, Fig. 2).

Related literature top

For the crystal structure of manganese acetate dihydrate, see: Cheng & Wang (1991).

Experimental top

To an aqueous solution of 2-aminopyrazine (1 mmol) was added manganese acetate tetrahydrate (1 mmol). The mixture was stirred for 30 min and then filtered. Colorless crystals of the title complex separated from the solution after a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement using the riding model approximation, with U(H) set to 1.2U(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with distance restraints N–H 0.88±0.01 Å, O–H 0.84±0.01 Å and H···H 1.37±0.01 Å; their temperature factors were refined.

The largest peaks/holes in the final difference Fourier map were found in close vicinity of Mn1.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Mn(H2O)2(C2H3O2)2(C4H5N3)2 × 2 H2O at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Three-dimensional hydrogen-bonded network of the title compound. Hydrogen bonds are depicted as dashed lines.
trans-Bis(acetato-κO)diaquabis(2-aminopyrazine- κN4)manganese(II) dihydrate top
Crystal data top
[Mn(C2H3O2)2(C4H5N3)2(H2O)2]·2H2OZ = 1
Mr = 435.31F(000) = 227
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0761 (7) ÅCell parameters from 3626 reflections
b = 8.5411 (8) Åθ = 3.3–27.5°
c = 9.5162 (10) ŵ = 0.72 mm1
α = 100.866 (3)°T = 293 K
β = 105.036 (3)°Prism, colorless
γ = 110.250 (3)°0.10 × 0.08 × 0.05 mm
V = 495.92 (9) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2249 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 89
Tmin = 0.932, Tmax = 0.965k = 1111
4911 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.7384P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2249 reflectionsΔρmax = 0.80 e Å3
148 parametersΔρmin = 1.01 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (8)
Crystal data top
[Mn(C2H3O2)2(C4H5N3)2(H2O)2]·2H2Oγ = 110.250 (3)°
Mr = 435.31V = 495.92 (9) Å3
Triclinic, P1Z = 1
a = 7.0761 (7) ÅMo Kα radiation
b = 8.5411 (8) ŵ = 0.72 mm1
c = 9.5162 (10) ÅT = 293 K
α = 100.866 (3)°0.10 × 0.08 × 0.05 mm
β = 105.036 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2249 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1558 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.965Rint = 0.033
4911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0438 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.80 e Å3
2249 reflectionsΔρmin = 1.01 e Å3
148 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.0358 (3)
O10.6700 (4)0.6113 (3)0.7465 (3)0.0413 (6)
O20.9808 (5)0.5959 (6)0.7684 (4)0.0826 (12)
O1W0.7647 (4)0.4463 (3)0.4659 (3)0.0414 (6)
H110.858 (6)0.503 (5)0.553 (3)0.082 (18)*
H120.763 (8)0.346 (3)0.440 (5)0.09 (2)*
O2W0.4054 (5)0.6764 (5)0.0904 (4)0.0719 (10)
H210.470 (6)0.649 (7)0.147 (4)0.085 (18)*
H220.273 (2)0.636 (6)0.141 (4)0.084 (18)*
N10.6498 (5)0.7758 (4)0.4722 (3)0.0406 (7)
N20.7601 (5)1.1077 (4)0.4338 (4)0.0464 (8)
N30.6301 (9)0.9802 (5)0.1732 (4)0.0738 (13)
H310.562 (9)0.888 (5)0.091 (4)0.111*
H320.654 (10)1.085 (4)0.163 (7)0.111*
C10.7478 (6)0.9231 (5)0.5927 (4)0.0465 (9)
H10.78030.91470.69140.056*
C20.7999 (7)1.0845 (5)0.5717 (4)0.0476 (9)
H20.86651.18300.65760.057*
C30.6692 (7)0.9628 (5)0.3141 (4)0.0448 (9)
C40.6154 (6)0.7964 (5)0.3351 (4)0.0408 (8)
H40.55370.69770.24970.049*
C50.8583 (6)0.6370 (5)0.8229 (4)0.0428 (8)
C60.9380 (8)0.7229 (7)0.9942 (5)0.0659 (13)
H6A1.09030.75691.03630.099*
H6B0.86580.64141.04020.099*
H6C0.90850.82481.01450.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0395 (5)0.0376 (4)0.0301 (4)0.0194 (3)0.0089 (3)0.0084 (3)
O10.0417 (14)0.0507 (15)0.0297 (12)0.0216 (12)0.0082 (10)0.0099 (11)
O20.0530 (19)0.146 (3)0.0437 (17)0.054 (2)0.0102 (14)0.0016 (19)
O1W0.0385 (14)0.0421 (15)0.0414 (15)0.0189 (11)0.0122 (12)0.0067 (12)
O2W0.0502 (19)0.097 (3)0.0474 (18)0.0277 (19)0.0103 (15)0.0094 (17)
N10.0447 (17)0.0347 (15)0.0428 (17)0.0181 (13)0.0142 (14)0.0116 (13)
N20.057 (2)0.0371 (16)0.0435 (17)0.0194 (14)0.0172 (15)0.0115 (14)
N30.124 (4)0.048 (2)0.042 (2)0.030 (2)0.022 (2)0.0184 (17)
C10.054 (2)0.045 (2)0.0352 (19)0.0192 (17)0.0118 (16)0.0099 (16)
C20.055 (2)0.0359 (19)0.041 (2)0.0151 (17)0.0117 (17)0.0050 (16)
C30.055 (2)0.042 (2)0.0385 (19)0.0226 (17)0.0156 (17)0.0115 (16)
C40.047 (2)0.0354 (18)0.0382 (19)0.0155 (15)0.0159 (16)0.0093 (15)
C50.045 (2)0.044 (2)0.0321 (18)0.0159 (16)0.0069 (15)0.0099 (15)
C60.059 (3)0.094 (4)0.033 (2)0.034 (3)0.0049 (19)0.005 (2)
Geometric parameters (Å, º) top
Mn1—O1Wi2.163 (3)N2—C31.335 (5)
Mn1—O1W2.163 (3)N2—C21.336 (5)
Mn1—O1i2.181 (2)N3—C31.344 (5)
Mn1—O12.181 (2)N3—H310.879 (10)
Mn1—N1i2.323 (3)N3—H320.878 (10)
Mn1—N12.323 (3)C1—C21.366 (5)
O1—C51.260 (4)C1—H10.9300
O2—C51.232 (5)C2—H20.9300
O1W—H110.840 (10)C3—C41.406 (5)
O1W—H120.841 (10)C4—H40.9300
O2W—H210.838 (10)C5—C61.516 (5)
O2W—H220.838 (10)C6—H6A0.9600
N1—C41.321 (5)C6—H6B0.9600
N1—C11.348 (5)C6—H6C0.9600
O1Wi—Mn1—O1W180.000 (1)C3—N3—H31121 (4)
O1Wi—Mn1—O1i91.79 (10)C3—N3—H32119 (4)
O1W—Mn1—O1i88.21 (9)H31—N3—H32119 (6)
O1Wi—Mn1—O188.21 (10)N1—C1—C2120.9 (4)
O1W—Mn1—O191.79 (10)N1—C1—H1119.6
O1i—Mn1—O1180.000 (1)C2—C1—H1119.6
O1Wi—Mn1—N1i90.34 (10)N2—C2—C1123.2 (3)
O1W—Mn1—N1i89.66 (10)N2—C2—H2118.4
O1i—Mn1—N1i89.93 (10)C1—C2—H2118.4
O1—Mn1—N1i90.07 (10)N2—C3—N3118.3 (4)
O1Wi—Mn1—N189.66 (10)N2—C3—C4120.7 (3)
O1W—Mn1—N190.34 (10)N3—C3—C4121.0 (3)
O1i—Mn1—N190.07 (10)N1—C4—C3122.1 (3)
O1—Mn1—N189.93 (10)N1—C4—H4118.9
N1i—Mn1—N1180.000 (1)C3—C4—H4118.9
C5—O1—Mn1128.8 (2)O2—C5—O1124.7 (3)
Mn1—O1W—H1199 (3)O2—C5—C6118.0 (4)
Mn1—O1W—H12125 (4)O1—C5—C6117.4 (4)
H11—O1W—H12109 (2)C5—C6—H6A109.5
H21—O2W—H22110 (2)C5—C6—H6B109.5
C4—N1—C1116.8 (3)H6A—C6—H6B109.5
C4—N1—Mn1120.7 (2)C5—C6—H6C109.5
C1—N1—Mn1121.9 (2)H6A—C6—H6C109.5
C3—N2—C2116.2 (3)H6B—C6—H6C109.5
O1Wi—Mn1—O1—C5175.9 (3)C4—N1—C1—C22.6 (6)
O1W—Mn1—O1—C54.1 (3)Mn1—N1—C1—C2168.1 (3)
N1i—Mn1—O1—C593.7 (3)C3—N2—C2—C11.6 (6)
N1—Mn1—O1—C586.3 (3)N1—C1—C2—N20.5 (6)
O1Wi—Mn1—N1—C495.9 (3)C2—N2—C3—N3178.7 (4)
O1W—Mn1—N1—C484.1 (3)C2—N2—C3—C41.5 (6)
O1i—Mn1—N1—C44.2 (3)C1—N1—C4—C32.7 (5)
O1—Mn1—N1—C4175.8 (3)Mn1—N1—C4—C3168.1 (3)
O1Wi—Mn1—N1—C174.3 (3)N2—C3—C4—N10.7 (6)
O1W—Mn1—N1—C1105.7 (3)N3—C3—C4—N1179.1 (4)
O1i—Mn1—N1—C1166.1 (3)Mn1—O1—C5—O22.8 (6)
O1—Mn1—N1—C113.9 (3)Mn1—O1—C5—C6178.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O20.84 (1)1.89 (2)2.690 (4)160 (5)
O1w—H12···N2ii0.84 (1)2.02 (2)2.837 (4)165 (5)
O2w—H21···O1iii0.84 (1)2.02 (1)2.851 (4)171 (4)
O2w—H22···O2iv0.84 (1)1.90 (2)2.726 (5)167 (5)
N3—H31···O2w0.88 (1)1.98 (1)2.859 (5)178 (6)
Symmetry codes: (ii) x, y1, z; (iii) x, y, z1; (iv) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Mn(C2H3O2)2(C4H5N3)2(H2O)2]·2H2O
Mr435.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0761 (7), 8.5411 (8), 9.5162 (10)
α, β, γ (°)100.866 (3), 105.036 (3), 110.250 (3)
V3)495.92 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.10 × 0.08 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.932, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4911, 2249, 1558
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.159, 1.07
No. of reflections2249
No. of parameters148
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 1.01

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O20.84 (1)1.89 (2)2.690 (4)160 (5)
O1w—H12···N2i0.84 (1)2.02 (2)2.837 (4)165 (5)
O2w—H21···O1ii0.84 (1)2.02 (1)2.851 (4)171 (4)
O2w—H22···O2iii0.84 (1)1.90 (2)2.726 (5)167 (5)
N3—H31···O2w0.88 (1)1.98 (1)2.859 (5)178 (6)
Symmetry codes: (i) x, y1, z; (ii) x, y, z1; (iii) x1, y, z1.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCheng, C.-Y. & Wang, S.-L. (1991). Acta Cryst. C47, 1734–1736.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds