organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1913-o1914

Methyl (2Z)-2-(2-fluoro-4-meth­­oxy­benzyl­­idene)-5-(4-meth­­oxy­phen­yl)-7-methyl-3-oxo-2,3-di­hydro-5H-[1,3]thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 June 2011; accepted 26 June 2011; online 6 July 2011)

The asymmetric unit of the title compound, C24H21FN2O5S, consists of two crystallographically independent mol­ecules. In each mol­ecule, the central dihydro­pyrimidine ring is significantly puckered and adopts a conformation which is best described as an inter­mediate between a boat and a screw boat. The least-squares planes of the dihydro­pyrimidine rings are almost coplanar with the fluoro-substituted benzene rings, making dihedral angles of 9.04 (7) and 6.68 (7)°, and almost perpendicular to the meth­oxy-substituted benzene rings with dihedral angles of 89.23 (7) and 88.30 (7)°. In the mol­ecular structure, S(6) ring motifs are formed by C—H⋯O and C—H⋯S hydrogen bonds. In the crystal, mol­ecules are linked into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯F hydrogen bonds. The crystal structure is further stabilized by a C—H⋯π inter­action.

Related literature

For background to pyrimidine and its derivatives, see: Brugnatelli (1818[Brugnatelli, G. (1818). Ann. Chim. Phys. 8, 201-206.]); Smee et al. (1987[Smee, D. F., McKernan, P. A., Nord, L. D., Willis, R. C., Petrie, C. R., Riley, T. M., Revankar, G. R., Robins, R. K. & Smith, R. A. (1987). Antimicrob. Agent. Chemother. 31, 1535-1541.]); Lagu et al. (2000[Lagu, B., Tian, D., Chiu, G., Nagarathnam, D., Fang, J., Shen, Q., Forray, C., Ransom, R. W., Chang, R. S., Vyas, K. P., Zhang, K. & Gluchowski, C. (2000). Bioorg. Med. Chem. Lett. 10, 175-178.]). For background to thia­zole and its derivatives, see: Holla et al. (2003[Holla, B. S., Malini, K. V., Rao, B. S., Sarojini, B. K. & Suchethakumari, N. (2003). Eur. J. Med. Chem. 38, 313-318.]); Narayana et al. (2004[Narayana, B., Vijayaraj, K. K., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2004). Eur. J. Med. Chem. 39, 867-872.]); Sarojini et al. (2010[Sarojini, B. K., Krishna, B. G., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Eur. J. Med. Chem. 45, 3490-3496.]). For the effect of fluorine in a mol­ecule on its biological activity, see: Filler & Kobayashi (1982[Filler, R. & Kobayashi, Y. (1982). Biomedical Aspects of Fluorine Chemistry. Amsterdam: Elsevier.]). For related structures, see: Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224-o1225.]); Jotani et al. (2010[Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010). Acta Cryst. E66, o599-o600.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For puckering parameters, see: Cremer & Pople (1975)[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.].

[Scheme 1]

Experimental

Crystal data
  • C24H21FN2O5S

  • Mr = 468.49

  • Triclinic, [P \overline 1]

  • a = 11.7374 (2) Å

  • b = 14.3062 (2) Å

  • c = 14.5552 (2) Å

  • α = 61.939 (1)°

  • β = 80.791 (1)°

  • γ = 84.878 (1)°

  • V = 2128.69 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.37 × 0.33 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.980

  • 46547 measured reflections

  • 12629 independent reflections

  • 10022 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.04

  • 12629 reflections

  • 602 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C17A–C22A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12A⋯O1Bi 0.95 2.52 3.4472 (18) 166
C13A—H13A⋯S1A 0.95 2.55 3.2321 (18) 129
C13B—H13B⋯S1B 0.95 2.54 3.2578 (19) 133
C14A—H14A⋯O3A 0.98 2.17 2.927 (2) 133
C14B—H14D⋯O3B 0.98 2.15 2.8820 (19) 130
C18A—H18A⋯O3Bii 0.95 2.58 3.249 (2) 128
C21A—H21A⋯F1Biii 0.95 2.48 3.2047 (18) 134
C24A—H24C⋯O3B 0.98 2.48 3.2724 (19) 137
C24A—H24ACg1iv 0.98 2.50 3.3612 (19) 147
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrimidine derivatives are known for their varied biological properties. Brugnatelli was the first scientist to isolate 'Alloxan', a pyrimidine derivative in 1818, and later this compound was found to possess antineoplastic properties (Brugnatelli, 1818). Nucleosides of pyrimidine bases have been used extensively as antiviral and anticancer agents (Smee et al., 1987). Recently, fluoropyrimidines and flurouracil-based combination therapy is used in the treatment of gastrointestinal cancer and solid tumors. Furopyrimidinones are found to be metabolites of dihydropyrimidinones that are subtype-selective antagonists of the α1a-adreginic receptor antagonists (Lagu et al., 2000). Thiazoles and their derivatives are found to be associated with various biological activities such as antibacterial, antifungal and anti-inflammatory activities (Holla et al., 2003; Narayana et al., 2004; Sarojini et al., 2010). Presence of fluorine in a molecule enhances drug persistence and lipid solubility (Filler & Kobayashi, 1982). The crystal structure of ethyl 7-methyl-2-[4-(methylsulfanyl)benzylidene] -5-[4-(methylsulfanyl)phenyl]-3-oxo-2,3-dihydro-5H-thiazolo [3,2-a] pyrimidine-6-carboxylate synthesized in an one pot reaction using tin(II) chloride was reported (Fischer et al., 2007). In continuation to our studies on crystal structure of new heterocyclic analogs, we report the synthesis and crystal structure of a new methyl (2Z)-2-[(2-fluoro-4-methoxyphenyl)methylidene]-5-(4-methoxyphenyl)-7- methyl-3-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine-6- carboxylate, C24H20N2FO5S.

The title compound (Fig. 1) consists of two crystallographically independent molecules (molecule A & B). The central pyrimidine rings (N1/C1/N2/C2–C4) are significantly puckered and adopt a conformation which is best described as an intermediate between a boat and screw boat with the puckering parameter (Cremer & Pople, 1975), Q = 0.2565 (15) Å, Θ = 112.0 (3)° and ϕ = 136.5 (4)° in molecule A; Q = 0.2340 (15) Å, Θ = 69.0 (4)° and ϕ = 317.1 (4)° in molecule B. The mean planes of pyrimidine rings are almost coplanar with the fluoro-substituted phenyl rings (C8–C13) with dihedral angles of 9.04 (7)° in molecule A and 6.68 (7)° in molecule B; and almost perpendicular with the methoxy-substituted phenyl rings (C17–C22) with dihedral angles of 89.23 (7) and 88.30 (7)°, respectively, in molecule A and B. In the molecular structure, S(6) ring motifs (Bernstein et al., 1995) are formed via intramolecular C14A—H14A···O3A, C14B—H14D···O3B, C13A—H13A···S1A and C13B—H13B···S1B hydrogen bonds (Table 1). Bond lengths and angles are within the normal ranges and are comparable to the related structure (Jotani et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into three-dimensional network by intermolecular C12A—H12A···O1B, C18A—H18A···O3B, C21A—H21A···F1B and C24A—H24C···O3B hydrogen bonds (Table 1). The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the centroids of C17A–C22A ring (Cg1).

Related literature top

For background to pyrimidine and its derivatives, see: Brugnatelli (1818); Smee et al. (1987); Lagu et al. (2000). For background to thiazole and its derivatives, see: Holla et al. (2003); Narayana et al. (2004); Sarojini et al. (2010). For the effect of fluorine in a molecule on its biological activity, see: Filler & Kobayashi (1982). For related structures, see: Fischer et al. (2007); Jotani et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of methyl 4-(4-methoxyphenyl)-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (2.59 mmol), chloro acetic acid (0.29 g, 3.11 mmol), 2-fluoro-4-methoxy-benzaldehyde (3.11 mmol) and sodium acetate (10 mmol) in 1:1 mixture glacial acetic acid/ acetic anhydride (10 ml) were heated to 130 °C for 3–5 h. After the completion of the reaction, the reaction mass was cooled to room temperature and quenched to ice cooled water. The solid precipitated out were collected by filtration and recrystallized from acetonitrile/water to afford title compound (m.p. 477.9–478.5 K). Analysis, found (calculated): C 61.50 (61.53), H 4.45 (4.48), N 5.97% (5.98%).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.95–1.00 °). A rotating group model was applied to the methyl groups. There is no pseudo-symmetry in the crystal structure.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Methyl (2Z)-2-(2-fluoro-4-methoxybenzylidene)-5-(4-methoxyphenyl)- 7-methyl-3-oxo-2,3-dihydro-5H-[1,3]thiazolo[3,2-a]pyrimidine- 6-carboxylate top
Crystal data top
C24H21FN2O5SZ = 4
Mr = 468.49F(000) = 976
Triclinic, P1Dx = 1.462 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7374 (2) ÅCell parameters from 9870 reflections
b = 14.3062 (2) Åθ = 2.5–30.2°
c = 14.5552 (2) ŵ = 0.20 mm1
α = 61.939 (1)°T = 100 K
β = 80.791 (1)°Plate, yellow
γ = 84.878 (1)°0.37 × 0.33 × 0.10 mm
V = 2128.69 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12629 independent reflections
Radiation source: fine-focus sealed tube10022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 30.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.929, Tmax = 0.980k = 1920
46547 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.8664P]
where P = (Fo2 + 2Fc2)/3
12629 reflections(Δ/σ)max = 0.001
602 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C24H21FN2O5Sγ = 84.878 (1)°
Mr = 468.49V = 2128.69 (6) Å3
Triclinic, P1Z = 4
a = 11.7374 (2) ÅMo Kα radiation
b = 14.3062 (2) ŵ = 0.20 mm1
c = 14.5552 (2) ÅT = 100 K
α = 61.939 (1)°0.37 × 0.33 × 0.10 mm
β = 80.791 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12629 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
10022 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.980Rint = 0.031
46547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.49 e Å3
12629 reflectionsΔρmin = 0.49 e Å3
602 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.74753 (3)0.78373 (3)0.38302 (3)0.01691 (8)
F1A1.06880 (7)0.51889 (7)0.31316 (7)0.02532 (19)
O1A0.97502 (9)0.88905 (8)0.13570 (8)0.0236 (2)
O2A0.86743 (9)1.26518 (8)0.02597 (8)0.0226 (2)
O3A0.70722 (10)1.31812 (9)0.09628 (9)0.0289 (2)
O4A1.26523 (9)1.11070 (9)0.31666 (8)0.0220 (2)
O5A0.83717 (9)0.25364 (8)0.60271 (8)0.0228 (2)
N1A0.83373 (10)0.95336 (9)0.22110 (9)0.0154 (2)
N2A0.67609 (10)0.98277 (10)0.32890 (9)0.0182 (2)
C1A0.74917 (12)0.92232 (11)0.30607 (10)0.0160 (2)
C2A0.67868 (12)1.09231 (11)0.25526 (11)0.0171 (3)
C3A0.76554 (12)1.13335 (11)0.17452 (11)0.0163 (3)
C4A0.86866 (11)1.06546 (10)0.16296 (10)0.0152 (2)
H4AA0.89021.08490.08690.018*
C5A0.89772 (12)0.87326 (11)0.20725 (11)0.0169 (3)
C6A0.85833 (12)0.76833 (11)0.29416 (10)0.0165 (3)
C7A0.91184 (12)0.67857 (11)0.29940 (11)0.0171 (3)
H7AA0.97240.68830.24410.021*
C8A0.88975 (12)0.56950 (11)0.37761 (10)0.0164 (3)
C9A0.97110 (12)0.49082 (11)0.38290 (11)0.0175 (3)
C10A0.95972 (12)0.38516 (11)0.45515 (11)0.0183 (3)
H10A1.01850.33480.45580.022*
C11A0.85951 (12)0.35454 (11)0.52711 (11)0.0177 (3)
C12A0.77288 (12)0.43003 (11)0.52394 (11)0.0182 (3)
H12A0.70360.40900.57190.022*
C13A0.78905 (12)0.53461 (11)0.45091 (11)0.0173 (3)
H13A0.73020.58510.44990.021*
C14A0.57542 (12)1.15044 (12)0.27907 (12)0.0227 (3)
H14A0.58191.22620.22990.034*
H14B0.57131.13990.35110.034*
H14C0.50541.12330.27180.034*
C15A0.77248 (12)1.24770 (11)0.09754 (11)0.0179 (3)
C16A0.88851 (16)1.37461 (12)0.04928 (13)0.0290 (3)
H16A0.95941.37940.09700.044*
H16B0.89711.41520.01220.044*
H16C0.82341.40360.08970.044*
C17A0.97262 (11)1.08027 (10)0.20475 (10)0.0146 (2)
C18A0.96020 (12)1.08372 (11)0.29973 (11)0.0168 (3)
H18A0.88531.07900.33770.020*
C19A1.05591 (12)1.09396 (11)0.34035 (11)0.0177 (3)
H19A1.04621.09590.40550.021*
C20A1.16530 (12)1.10132 (11)0.28444 (11)0.0173 (3)
C21A1.17872 (12)1.09913 (12)0.18825 (11)0.0198 (3)
H21A1.25341.10470.14980.024*
C22A1.08299 (12)1.08886 (11)0.14903 (11)0.0181 (3)
H22A1.09261.08770.08350.022*
C23A1.25509 (14)1.10826 (15)0.41683 (13)0.0281 (3)
H23A1.33181.11430.43180.042*
H23B1.22071.04130.47120.042*
H23C1.20581.16750.41620.042*
C24A0.91703 (14)0.17216 (12)0.60228 (12)0.0240 (3)
H24A0.89210.10390.66150.036*
H24B0.99400.18800.60870.036*
H24C0.91960.16870.53630.036*
S1B0.73247 (3)0.73597 (3)0.09732 (3)0.01691 (8)
F1B0.43727 (7)1.00519 (7)0.19386 (7)0.02408 (19)
O1B0.50193 (9)0.63422 (8)0.34200 (8)0.0209 (2)
O2B0.61941 (9)0.25875 (8)0.46823 (8)0.0207 (2)
O3B0.78696 (9)0.20771 (8)0.40519 (8)0.0236 (2)
O4B0.21975 (9)0.37224 (9)0.19460 (8)0.0222 (2)
O5B0.63291 (10)1.27590 (8)0.10488 (8)0.0250 (2)
N1B0.64551 (10)0.56854 (9)0.26041 (9)0.0151 (2)
N2B0.81022 (10)0.53686 (9)0.16058 (9)0.0173 (2)
C1B0.73321 (11)0.59824 (11)0.17804 (10)0.0157 (2)
C2B0.80789 (11)0.42898 (11)0.23771 (10)0.0160 (2)
C3B0.71905 (11)0.38889 (11)0.31656 (10)0.0151 (2)
C4B0.61373 (11)0.45619 (10)0.32381 (10)0.0147 (2)
H4BA0.59240.44110.39870.018*
C5B0.57923 (11)0.64961 (11)0.27055 (10)0.0160 (2)
C6B0.61960 (11)0.75356 (11)0.18334 (10)0.0161 (2)
C7B0.56982 (12)0.84384 (11)0.17922 (10)0.0164 (3)
H7BA0.50930.83430.23450.020*
C8B0.59422 (12)0.95327 (11)0.10361 (10)0.0162 (3)
C9B0.52370 (12)1.03373 (11)0.11276 (11)0.0176 (3)
C10B0.53657 (12)1.13969 (11)0.04417 (11)0.0194 (3)
H10B0.48591.19100.05350.023*
C11B0.62607 (13)1.17023 (11)0.03983 (11)0.0189 (3)
C12B0.70110 (13)1.09380 (12)0.05141 (11)0.0214 (3)
H12B0.76301.11420.10740.026*
C13B0.68413 (13)0.98811 (12)0.01961 (11)0.0202 (3)
H13B0.73570.93680.01110.024*
C14B0.91448 (12)0.37015 (12)0.22093 (12)0.0206 (3)
H14D0.90230.29380.26330.031*
H14E0.97960.39040.24200.031*
H14F0.93140.38780.14650.031*
C15B0.71571 (12)0.27668 (11)0.39846 (10)0.0166 (3)
C16B0.60587 (14)0.15225 (12)0.55346 (12)0.0261 (3)
H16D0.52950.14580.59440.039*
H16E0.66560.13690.59890.039*
H16F0.61340.10190.52490.039*
C17B0.51005 (11)0.43441 (10)0.28660 (10)0.0150 (2)
C18B0.51751 (12)0.44252 (12)0.18702 (11)0.0193 (3)
H18B0.58860.46180.14150.023*
C19B0.42220 (12)0.42283 (12)0.15258 (11)0.0202 (3)
H19B0.42820.42920.08400.024*
C20B0.31845 (12)0.39380 (11)0.21960 (11)0.0173 (3)
C21B0.31040 (12)0.38513 (12)0.32011 (11)0.0204 (3)
H21B0.23960.36550.36590.025*
C22B0.40572 (12)0.40517 (12)0.35291 (11)0.0187 (3)
H22B0.39980.39890.42140.022*
C23B0.22887 (14)0.37021 (14)0.09641 (13)0.0274 (3)
H23D0.15440.35090.08830.041*
H23E0.28800.31790.09470.041*
H23F0.25050.44040.03890.041*
C24B0.71782 (15)1.30983 (13)0.19621 (12)0.0299 (3)
H24D0.71141.38680.23900.045*
H24E0.70511.27480.23750.045*
H24F0.79501.29120.17460.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01787 (16)0.01556 (16)0.01531 (15)0.00280 (12)0.00011 (12)0.00582 (12)
F1A0.0188 (4)0.0223 (4)0.0273 (5)0.0011 (3)0.0040 (3)0.0074 (4)
O1A0.0270 (5)0.0179 (5)0.0206 (5)0.0025 (4)0.0056 (4)0.0069 (4)
O2A0.0240 (5)0.0152 (5)0.0208 (5)0.0008 (4)0.0003 (4)0.0029 (4)
O3A0.0318 (6)0.0199 (5)0.0287 (6)0.0079 (5)0.0022 (5)0.0080 (5)
O4A0.0152 (5)0.0293 (6)0.0234 (5)0.0021 (4)0.0046 (4)0.0130 (5)
O5A0.0272 (5)0.0144 (5)0.0213 (5)0.0013 (4)0.0024 (4)0.0039 (4)
N1A0.0160 (5)0.0137 (5)0.0146 (5)0.0019 (4)0.0014 (4)0.0050 (4)
N2A0.0163 (5)0.0179 (6)0.0197 (6)0.0016 (4)0.0016 (4)0.0082 (5)
C1A0.0153 (6)0.0177 (6)0.0145 (6)0.0031 (5)0.0027 (5)0.0064 (5)
C2A0.0146 (6)0.0185 (6)0.0197 (6)0.0003 (5)0.0040 (5)0.0096 (5)
C3A0.0150 (6)0.0149 (6)0.0181 (6)0.0010 (5)0.0048 (5)0.0064 (5)
C4A0.0153 (6)0.0141 (6)0.0153 (6)0.0012 (5)0.0028 (5)0.0057 (5)
C5A0.0187 (6)0.0152 (6)0.0166 (6)0.0017 (5)0.0022 (5)0.0069 (5)
C6A0.0177 (6)0.0169 (6)0.0141 (6)0.0036 (5)0.0020 (5)0.0059 (5)
C7A0.0177 (6)0.0180 (6)0.0156 (6)0.0032 (5)0.0015 (5)0.0076 (5)
C8A0.0180 (6)0.0156 (6)0.0162 (6)0.0021 (5)0.0031 (5)0.0074 (5)
C9A0.0157 (6)0.0192 (7)0.0165 (6)0.0024 (5)0.0013 (5)0.0074 (5)
C10A0.0178 (6)0.0173 (7)0.0199 (6)0.0008 (5)0.0050 (5)0.0081 (5)
C11A0.0221 (7)0.0153 (6)0.0156 (6)0.0022 (5)0.0054 (5)0.0059 (5)
C12A0.0188 (6)0.0185 (7)0.0159 (6)0.0033 (5)0.0001 (5)0.0071 (5)
C13A0.0184 (6)0.0160 (6)0.0185 (6)0.0002 (5)0.0029 (5)0.0089 (5)
C14A0.0172 (7)0.0217 (7)0.0290 (7)0.0012 (5)0.0004 (6)0.0126 (6)
C15A0.0191 (6)0.0181 (6)0.0170 (6)0.0003 (5)0.0060 (5)0.0072 (5)
C16A0.0381 (9)0.0171 (7)0.0230 (7)0.0027 (6)0.0011 (7)0.0026 (6)
C17A0.0137 (6)0.0119 (6)0.0159 (6)0.0000 (5)0.0023 (5)0.0044 (5)
C18A0.0139 (6)0.0182 (6)0.0187 (6)0.0001 (5)0.0003 (5)0.0093 (5)
C19A0.0178 (6)0.0185 (6)0.0184 (6)0.0003 (5)0.0027 (5)0.0099 (5)
C20A0.0152 (6)0.0156 (6)0.0198 (6)0.0002 (5)0.0046 (5)0.0064 (5)
C21A0.0144 (6)0.0227 (7)0.0196 (6)0.0012 (5)0.0004 (5)0.0080 (6)
C22A0.0167 (6)0.0200 (7)0.0155 (6)0.0008 (5)0.0004 (5)0.0069 (5)
C23A0.0233 (7)0.0404 (9)0.0285 (8)0.0028 (7)0.0067 (6)0.0211 (7)
C24A0.0280 (8)0.0154 (7)0.0258 (7)0.0013 (6)0.0098 (6)0.0056 (6)
S1B0.01764 (16)0.01579 (16)0.01431 (15)0.00132 (12)0.00060 (12)0.00518 (12)
F1B0.0216 (4)0.0228 (5)0.0226 (4)0.0024 (3)0.0026 (3)0.0085 (4)
O1B0.0198 (5)0.0194 (5)0.0198 (5)0.0009 (4)0.0035 (4)0.0079 (4)
O2B0.0187 (5)0.0172 (5)0.0186 (5)0.0001 (4)0.0003 (4)0.0027 (4)
O3B0.0252 (5)0.0203 (5)0.0223 (5)0.0070 (4)0.0052 (4)0.0080 (4)
O4B0.0151 (5)0.0271 (6)0.0270 (5)0.0020 (4)0.0050 (4)0.0139 (5)
O5B0.0336 (6)0.0162 (5)0.0198 (5)0.0040 (4)0.0040 (4)0.0033 (4)
N1B0.0144 (5)0.0144 (5)0.0146 (5)0.0011 (4)0.0009 (4)0.0054 (4)
N2B0.0156 (5)0.0175 (6)0.0162 (5)0.0001 (4)0.0004 (4)0.0064 (5)
C1B0.0144 (6)0.0184 (6)0.0140 (6)0.0021 (5)0.0018 (5)0.0070 (5)
C2B0.0143 (6)0.0174 (6)0.0174 (6)0.0004 (5)0.0037 (5)0.0088 (5)
C3B0.0140 (6)0.0158 (6)0.0157 (6)0.0013 (5)0.0039 (5)0.0071 (5)
C4B0.0135 (6)0.0141 (6)0.0140 (6)0.0008 (5)0.0008 (5)0.0047 (5)
C5B0.0153 (6)0.0165 (6)0.0162 (6)0.0005 (5)0.0031 (5)0.0073 (5)
C6B0.0153 (6)0.0173 (6)0.0142 (6)0.0019 (5)0.0018 (5)0.0059 (5)
C7B0.0153 (6)0.0181 (6)0.0152 (6)0.0014 (5)0.0019 (5)0.0071 (5)
C8B0.0172 (6)0.0162 (6)0.0160 (6)0.0000 (5)0.0047 (5)0.0073 (5)
C9B0.0171 (6)0.0205 (7)0.0150 (6)0.0013 (5)0.0028 (5)0.0076 (5)
C10B0.0211 (7)0.0186 (7)0.0200 (6)0.0019 (5)0.0068 (5)0.0093 (5)
C11B0.0241 (7)0.0151 (6)0.0171 (6)0.0031 (5)0.0066 (5)0.0056 (5)
C12B0.0236 (7)0.0208 (7)0.0176 (6)0.0046 (6)0.0006 (5)0.0074 (6)
C13B0.0219 (7)0.0185 (7)0.0198 (6)0.0012 (5)0.0008 (5)0.0090 (6)
C14B0.0166 (6)0.0204 (7)0.0238 (7)0.0016 (5)0.0002 (5)0.0105 (6)
C15B0.0173 (6)0.0182 (6)0.0152 (6)0.0001 (5)0.0044 (5)0.0078 (5)
C16B0.0261 (8)0.0194 (7)0.0212 (7)0.0025 (6)0.0013 (6)0.0002 (6)
C17B0.0135 (6)0.0137 (6)0.0155 (6)0.0006 (5)0.0024 (5)0.0050 (5)
C18B0.0151 (6)0.0240 (7)0.0176 (6)0.0035 (5)0.0002 (5)0.0088 (6)
C19B0.0187 (7)0.0244 (7)0.0181 (6)0.0013 (5)0.0034 (5)0.0098 (6)
C20B0.0144 (6)0.0149 (6)0.0222 (6)0.0007 (5)0.0050 (5)0.0078 (5)
C21B0.0146 (6)0.0233 (7)0.0216 (7)0.0025 (5)0.0003 (5)0.0094 (6)
C22B0.0161 (6)0.0216 (7)0.0165 (6)0.0011 (5)0.0000 (5)0.0079 (5)
C23B0.0211 (7)0.0368 (9)0.0344 (8)0.0011 (6)0.0071 (6)0.0238 (8)
C24B0.0373 (9)0.0222 (8)0.0219 (7)0.0080 (7)0.0019 (7)0.0028 (6)
Geometric parameters (Å, º) top
S1A—C6A1.7581 (14)S1B—C1B1.7565 (14)
S1A—C1A1.7597 (14)S1B—C6B1.7585 (14)
F1A—C9A1.3538 (15)F1B—C9B1.3515 (16)
O1A—C5A1.2131 (17)O1B—C5B1.2131 (16)
O2A—C15A1.3501 (17)O2B—C15B1.3469 (16)
O2A—C16A1.4425 (18)O2B—C16B1.4449 (17)
O3A—C15A1.2048 (18)O3B—C15B1.2126 (17)
O4A—C20A1.3700 (16)O4B—C20B1.3689 (16)
O4A—C23A1.4277 (18)O4B—C23B1.4297 (18)
O5A—C11A1.3580 (16)O5B—C11B1.3560 (17)
O5A—C24A1.4308 (18)O5B—C24B1.4322 (19)
N1A—C1A1.3715 (17)N1B—C1B1.3715 (17)
N1A—C5A1.3903 (18)N1B—C5B1.3912 (17)
N1A—C4A1.4784 (17)N1B—C4B1.4749 (17)
N2A—C1A1.2809 (18)N2B—C1B1.2836 (18)
N2A—C2A1.4224 (18)N2B—C2B1.4180 (17)
C2A—C3A1.3563 (19)C2B—C3B1.3557 (18)
C2A—C14A1.4958 (19)C2B—C14B1.4969 (19)
C3A—C15A1.4860 (19)C3B—C15B1.4817 (19)
C3A—C4A1.5216 (19)C3B—C4B1.5191 (18)
C4A—C17A1.5195 (18)C4B—C17B1.5195 (18)
C4A—H4AA1.0000C4B—H4BA1.0000
C5A—C6A1.4892 (19)C5B—C6B1.4848 (19)
C6A—C7A1.352 (2)C6B—C7B1.3479 (19)
C7A—C8A1.4507 (19)C7B—C8B1.4499 (19)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C9A1.391 (2)C8B—C13B1.4017 (19)
C8A—C13A1.4089 (19)C8B—C9B1.4023 (19)
C9A—C10A1.3800 (19)C9B—C10B1.3733 (19)
C10A—C11A1.3922 (19)C10B—C11B1.399 (2)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.405 (2)C11B—C12B1.398 (2)
C12A—C13A1.3763 (19)C12B—C13B1.383 (2)
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
C14A—H14A0.9800C14B—H14D0.9800
C14A—H14B0.9800C14B—H14E0.9800
C14A—H14C0.9800C14B—H14F0.9800
C16A—H16A0.9800C16B—H16D0.9800
C16A—H16B0.9800C16B—H16E0.9800
C16A—H16C0.9800C16B—H16F0.9800
C17A—C18A1.3905 (18)C17B—C18B1.3874 (18)
C17A—C22A1.3963 (18)C17B—C22B1.3927 (18)
C18A—C19A1.3987 (18)C18B—C19B1.3968 (19)
C18A—H18A0.9500C18B—H18B0.9500
C19A—C20A1.3895 (19)C19B—C20B1.3914 (19)
C19A—H19A0.9500C19B—H19B0.9500
C20A—C21A1.3985 (19)C20B—C21B1.3970 (19)
C21A—C22A1.3870 (19)C21B—C22B1.3853 (19)
C21A—H21A0.9500C21B—H21B0.9500
C22A—H22A0.9500C22B—H22B0.9500
C23A—H23A0.9800C23B—H23D0.9800
C23A—H23B0.9800C23B—H23E0.9800
C23A—H23C0.9800C23B—H23F0.9800
C24A—H24A0.9800C24B—H24D0.9800
C24A—H24B0.9800C24B—H24E0.9800
C24A—H24C0.9800C24B—H24F0.9800
C6A—S1A—C1A91.13 (6)C1B—S1B—C6B91.33 (6)
C15A—O2A—C16A115.45 (12)C15B—O2B—C16B116.22 (11)
C20A—O4A—C23A116.84 (11)C20B—O4B—C23B116.59 (11)
C11A—O5A—C24A117.68 (12)C11B—O5B—C24B116.97 (12)
C1A—N1A—C5A116.74 (11)C1B—N1B—C5B116.75 (11)
C1A—N1A—C4A119.51 (11)C1B—N1B—C4B120.30 (11)
C5A—N1A—C4A122.50 (11)C5B—N1B—C4B122.30 (11)
C1A—N2A—C2A116.50 (12)C1B—N2B—C2B116.32 (12)
N2A—C1A—N1A126.57 (13)N2B—C1B—N1B126.41 (13)
N2A—C1A—S1A121.71 (11)N2B—C1B—S1B122.14 (10)
N1A—C1A—S1A111.69 (10)N1B—C1B—S1B111.42 (10)
C3A—C2A—N2A121.64 (12)C3B—C2B—N2B122.00 (12)
C3A—C2A—C14A127.04 (13)C3B—C2B—C14B126.45 (13)
N2A—C2A—C14A111.32 (12)N2B—C2B—C14B111.53 (12)
C2A—C3A—C15A123.13 (13)C2B—C3B—C15B122.75 (12)
C2A—C3A—C4A121.29 (12)C2B—C3B—C4B121.57 (12)
C15A—C3A—C4A115.37 (12)C15B—C3B—C4B115.64 (11)
N1A—C4A—C17A109.69 (10)N1B—C4B—C3B108.06 (10)
N1A—C4A—C3A108.04 (11)N1B—C4B—C17B110.01 (10)
C17A—C4A—C3A112.26 (11)C3B—C4B—C17B113.02 (11)
N1A—C4A—H4AA108.9N1B—C4B—H4BA108.6
C17A—C4A—H4AA108.9C3B—C4B—H4BA108.6
C3A—C4A—H4AA108.9C17B—C4B—H4BA108.6
O1A—C5A—N1A123.89 (13)O1B—C5B—N1B123.30 (13)
O1A—C5A—C6A126.57 (13)O1B—C5B—C6B127.04 (13)
N1A—C5A—C6A109.53 (11)N1B—C5B—C6B109.65 (11)
C7A—C6A—C5A119.98 (12)C7B—C6B—C5B119.92 (12)
C7A—C6A—S1A129.08 (11)C7B—C6B—S1B129.49 (11)
C5A—C6A—S1A110.82 (10)C5B—C6B—S1B110.59 (10)
C6A—C7A—C8A129.12 (13)C6B—C7B—C8B130.12 (13)
C6A—C7A—H7AA115.4C6B—C7B—H7BA114.9
C8A—C7A—H7AA115.4C8B—C7B—H7BA114.9
C9A—C8A—C13A115.48 (12)C13B—C8B—C9B115.22 (13)
C9A—C8A—C7A119.74 (12)C13B—C8B—C7B125.77 (13)
C13A—C8A—C7A124.78 (13)C9B—C8B—C7B119.02 (12)
F1A—C9A—C10A117.14 (12)F1B—C9B—C10B117.93 (12)
F1A—C9A—C8A118.38 (12)F1B—C9B—C8B117.95 (12)
C10A—C9A—C8A124.49 (13)C10B—C9B—C8B124.12 (13)
C9A—C10A—C11A118.03 (13)C9B—C10B—C11B118.45 (13)
C9A—C10A—H10A121.0C9B—C10B—H10B120.8
C11A—C10A—H10A121.0C11B—C10B—H10B120.8
O5A—C11A—C10A124.32 (13)O5B—C11B—C12B124.75 (13)
O5A—C11A—C12A115.59 (12)O5B—C11B—C10B115.22 (13)
C10A—C11A—C12A120.09 (13)C12B—C11B—C10B120.03 (13)
C13A—C12A—C11A119.53 (13)C13B—C12B—C11B119.23 (13)
C13A—C12A—H12A120.2C13B—C12B—H12B120.4
C11A—C12A—H12A120.2C11B—C12B—H12B120.4
C12A—C13A—C8A122.35 (13)C12B—C13B—C8B122.92 (14)
C12A—C13A—H13A118.8C12B—C13B—H13B118.5
C8A—C13A—H13A118.8C8B—C13B—H13B118.5
C2A—C14A—H14A109.5C2B—C14B—H14D109.5
C2A—C14A—H14B109.5C2B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C2A—C14A—H14C109.5C2B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
O3A—C15A—O2A122.37 (13)O3B—C15B—O2B122.50 (13)
O3A—C15A—C3A127.66 (14)O3B—C15B—C3B127.07 (13)
O2A—C15A—C3A109.96 (12)O2B—C15B—C3B110.43 (11)
O2A—C16A—H16A109.5O2B—C16B—H16D109.5
O2A—C16A—H16B109.5O2B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
O2A—C16A—H16C109.5O2B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C18A—C17A—C22A118.73 (12)C18B—C17B—C22B118.95 (12)
C18A—C17A—C4A120.87 (12)C18B—C17B—C4B120.97 (12)
C22A—C17A—C4A120.39 (12)C22B—C17B—C4B120.08 (12)
C17A—C18A—C19A121.20 (12)C17B—C18B—C19B121.05 (13)
C17A—C18A—H18A119.4C17B—C18B—H18B119.5
C19A—C18A—H18A119.4C19B—C18B—H18B119.5
C20A—C19A—C18A119.35 (12)C20B—C19B—C18B119.40 (13)
C20A—C19A—H19A120.3C20B—C19B—H19B120.3
C18A—C19A—H19A120.3C18B—C19B—H19B120.3
O4A—C20A—C19A124.58 (12)O4B—C20B—C19B124.54 (13)
O4A—C20A—C21A115.46 (12)O4B—C20B—C21B115.59 (12)
C19A—C20A—C21A119.96 (12)C19B—C20B—C21B119.87 (12)
C22A—C21A—C20A120.02 (13)C22B—C21B—C20B119.97 (13)
C22A—C21A—H21A120.0C22B—C21B—H21B120.0
C20A—C21A—H21A120.0C20B—C21B—H21B120.0
C21A—C22A—C17A120.72 (13)C21B—C22B—C17B120.76 (13)
C21A—C22A—H22A119.6C21B—C22B—H22B119.6
C17A—C22A—H22A119.6C17B—C22B—H22B119.6
O4A—C23A—H23A109.5O4B—C23B—H23D109.5
O4A—C23A—H23B109.5O4B—C23B—H23E109.5
H23A—C23A—H23B109.5H23D—C23B—H23E109.5
O4A—C23A—H23C109.5O4B—C23B—H23F109.5
H23A—C23A—H23C109.5H23D—C23B—H23F109.5
H23B—C23A—H23C109.5H23E—C23B—H23F109.5
O5A—C24A—H24A109.5O5B—C24B—H24D109.5
O5A—C24A—H24B109.5O5B—C24B—H24E109.5
H24A—C24A—H24B109.5H24D—C24B—H24E109.5
O5A—C24A—H24C109.5O5B—C24B—H24F109.5
H24A—C24A—H24C109.5H24D—C24B—H24F109.5
H24B—C24A—H24C109.5H24E—C24B—H24F109.5
C2A—N2A—C1A—N1A4.0 (2)C2B—N2B—C1B—N1B4.0 (2)
C2A—N2A—C1A—S1A173.94 (9)C2B—N2B—C1B—S1B173.68 (9)
C5A—N1A—C1A—N2A175.05 (13)C5B—N1B—C1B—N2B173.17 (13)
C4A—N1A—C1A—N2A17.4 (2)C4B—N1B—C1B—N2B15.8 (2)
C5A—N1A—C1A—S1A3.11 (15)C5B—N1B—C1B—S1B4.76 (14)
C4A—N1A—C1A—S1A164.46 (9)C4B—N1B—C1B—S1B166.23 (9)
C6A—S1A—C1A—N2A175.33 (12)C6B—S1B—C1B—N2B173.17 (12)
C6A—S1A—C1A—N1A2.93 (10)C6B—S1B—C1B—N1B4.85 (10)
C1A—N2A—C2A—C3A10.65 (19)C1B—N2B—C2B—C3B10.35 (19)
C1A—N2A—C2A—C14A168.43 (12)C1B—N2B—C2B—C14B168.29 (12)
N2A—C2A—C3A—C15A178.59 (12)N2B—C2B—C3B—C15B179.35 (11)
C14A—C2A—C3A—C15A2.5 (2)C14B—C2B—C3B—C15B0.9 (2)
N2A—C2A—C3A—C4A4.1 (2)N2B—C2B—C3B—C4B3.03 (19)
C14A—C2A—C3A—C4A177.00 (13)C14B—C2B—C3B—C4B178.55 (12)
C1A—N1A—C4A—C17A94.47 (14)C1B—N1B—C4B—C3B25.68 (15)
C5A—N1A—C4A—C17A72.35 (15)C5B—N1B—C4B—C3B163.84 (11)
C1A—N1A—C4A—C3A28.20 (15)C1B—N1B—C4B—C17B98.13 (13)
C5A—N1A—C4A—C3A164.98 (11)C5B—N1B—C4B—C17B72.35 (15)
C2A—C3A—C4A—N1A22.18 (16)C2B—C3B—C4B—N1B19.80 (16)
C15A—C3A—C4A—N1A162.90 (11)C15B—C3B—C4B—N1B162.42 (10)
C2A—C3A—C4A—C17A98.90 (15)C2B—C3B—C4B—C17B102.17 (14)
C15A—C3A—C4A—C17A76.02 (14)C15B—C3B—C4B—C17B75.61 (14)
C1A—N1A—C5A—O1A180.00 (13)C1B—N1B—C5B—O1B177.26 (12)
C4A—N1A—C5A—O1A12.8 (2)C4B—N1B—C5B—O1B11.9 (2)
C1A—N1A—C5A—C6A1.46 (16)C1B—N1B—C5B—C6B1.79 (16)
C4A—N1A—C5A—C6A165.70 (11)C4B—N1B—C5B—C6B169.01 (11)
O1A—C5A—C6A—C7A1.3 (2)O1B—C5B—C6B—C7B1.1 (2)
N1A—C5A—C6A—C7A177.23 (12)N1B—C5B—C6B—C7B177.93 (12)
O1A—C5A—C6A—S1A177.66 (12)O1B—C5B—C6B—S1B179.03 (12)
N1A—C5A—C6A—S1A0.83 (14)N1B—C5B—C6B—S1B1.97 (13)
C1A—S1A—C6A—C7A178.09 (13)C1B—S1B—C6B—C7B176.05 (13)
C1A—S1A—C6A—C5A2.11 (10)C1B—S1B—C6B—C5B3.83 (10)
C5A—C6A—C7A—C8A178.41 (12)C5B—C6B—C7B—C8B179.49 (12)
S1A—C6A—C7A—C8A2.7 (2)S1B—C6B—C7B—C8B0.4 (2)
C6A—C7A—C8A—C9A164.72 (14)C6B—C7B—C8B—C13B4.7 (2)
C6A—C7A—C8A—C13A15.9 (2)C6B—C7B—C8B—C9B175.42 (14)
C13A—C8A—C9A—F1A178.69 (11)C13B—C8B—C9B—F1B178.35 (11)
C7A—C8A—C9A—F1A0.78 (19)C7B—C8B—C9B—F1B1.54 (18)
C13A—C8A—C9A—C10A1.7 (2)C13B—C8B—C9B—C10B2.0 (2)
C7A—C8A—C9A—C10A178.86 (12)C7B—C8B—C9B—C10B178.11 (12)
F1A—C9A—C10A—C11A179.58 (11)F1B—C9B—C10B—C11B179.72 (12)
C8A—C9A—C10A—C11A0.8 (2)C8B—C9B—C10B—C11B0.6 (2)
C24A—O5A—C11A—C10A5.89 (19)C24B—O5B—C11B—C12B5.1 (2)
C24A—O5A—C11A—C12A173.63 (12)C24B—O5B—C11B—C10B175.45 (12)
C9A—C10A—C11A—O5A179.63 (12)C9B—C10B—C11B—O5B179.39 (12)
C9A—C10A—C11A—C12A0.86 (19)C9B—C10B—C11B—C12B1.1 (2)
O5A—C11A—C12A—C13A178.95 (12)O5B—C11B—C12B—C13B179.19 (13)
C10A—C11A—C12A—C13A1.5 (2)C10B—C11B—C12B—C13B1.4 (2)
C11A—C12A—C13A—C8A0.5 (2)C11B—C12B—C13B—C8B0.1 (2)
C9A—C8A—C13A—C12A0.98 (19)C9B—C8B—C13B—C12B1.7 (2)
C7A—C8A—C13A—C12A179.59 (12)C7B—C8B—C13B—C12B178.40 (13)
C16A—O2A—C15A—O3A2.8 (2)C16B—O2B—C15B—O3B0.88 (19)
C16A—O2A—C15A—C3A175.94 (11)C16B—O2B—C15B—C3B179.27 (11)
C2A—C3A—C15A—O3A1.8 (2)C2B—C3B—C15B—O3B1.6 (2)
C4A—C3A—C15A—O3A173.06 (14)C4B—C3B—C15B—O3B176.18 (13)
C2A—C3A—C15A—O2A179.61 (12)C2B—C3B—C15B—O2B178.59 (12)
C4A—C3A—C15A—O2A5.58 (16)C4B—C3B—C15B—O2B3.66 (15)
N1A—C4A—C17A—C18A76.38 (15)N1B—C4B—C17B—C18B65.35 (16)
C3A—C4A—C17A—C18A43.75 (17)C3B—C4B—C17B—C18B55.52 (17)
N1A—C4A—C17A—C22A102.51 (14)N1B—C4B—C17B—C22B115.06 (14)
C3A—C4A—C17A—C22A137.36 (13)C3B—C4B—C17B—C22B124.07 (14)
C22A—C17A—C18A—C19A1.0 (2)C22B—C17B—C18B—C19B0.6 (2)
C4A—C17A—C18A—C19A177.95 (12)C4B—C17B—C18B—C19B179.81 (13)
C17A—C18A—C19A—C20A0.3 (2)C17B—C18B—C19B—C20B0.5 (2)
C23A—O4A—C20A—C19A2.7 (2)C23B—O4B—C20B—C19B6.1 (2)
C23A—O4A—C20A—C21A177.20 (13)C23B—O4B—C20B—C21B173.95 (13)
C18A—C19A—C20A—O4A179.44 (13)C18B—C19B—C20B—O4B179.75 (13)
C18A—C19A—C20A—C21A0.4 (2)C18B—C19B—C20B—C21B0.3 (2)
O4A—C20A—C21A—C22A179.41 (13)O4B—C20B—C21B—C22B179.88 (13)
C19A—C20A—C21A—C22A0.5 (2)C19B—C20B—C21B—C22B0.2 (2)
C20A—C21A—C22A—C17A0.2 (2)C20B—C21B—C22B—C17B0.2 (2)
C18A—C17A—C22A—C21A0.9 (2)C18B—C17B—C22B—C21B0.5 (2)
C4A—C17A—C22A—C21A178.01 (13)C4B—C17B—C22B—C21B179.95 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17A–C22A ring.
D—H···AD—HH···AD···AD—H···A
C12A—H12A···O1Bi0.952.523.4472 (18)166
C13A—H13A···S1A0.952.553.2321 (18)129
C13B—H13B···S1B0.952.543.2578 (19)133
C14A—H14A···O3A0.982.172.927 (2)133
C14B—H14D···O3B0.982.152.8820 (19)130
C18A—H18A···O3Bii0.952.583.249 (2)128
C21A—H21A···F1Biii0.952.483.2047 (18)134
C24A—H24C···O3B0.982.483.2724 (19)137
C24A—H24A···Cg1iv0.982.503.3612 (19)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H21FN2O5S
Mr468.49
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.7374 (2), 14.3062 (2), 14.5552 (2)
α, β, γ (°)61.939 (1), 80.791 (1), 84.878 (1)
V3)2128.69 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.37 × 0.33 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.929, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
46547, 12629, 10022
Rint0.031
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.04
No. of reflections12629
No. of parameters602
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17A–C22A ring.
D—H···AD—HH···AD···AD—H···A
C12A—H12A···O1Bi0.952.523.4472 (18)166
C13A—H13A···S1A0.952.553.2321 (18)129
C13B—H13B···S1B0.952.543.2578 (19)133
C14A—H14A···O3A0.982.172.927 (2)133
C14B—H14D···O3B0.982.152.8820 (19)130
C18A—H18A···O3Bii0.952.583.249 (2)128
C21A—H21A···F1Biii0.952.483.2047 (18)134
C24A—H24C···O3B0.982.483.2724 (19)137
C24A—H24A···Cg1iv0.982.503.3612 (19)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship. KU thanks P. A. College of Engin­eering for the research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrugnatelli, G. (1818). Ann. Chim. Phys. 8, 201–206.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFiller, R. & Kobayashi, Y. (1982). Biomedical Aspects of Fluorine Chemistry. Amsterdam: Elsevier.  Google Scholar
First citationFischer, A., Yathirajan, H. S., Mithun, A., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o1224–o1225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolla, B. S., Malini, K. V., Rao, B. S., Sarojini, B. K. & Suchethakumari, N. (2003). Eur. J. Med. Chem. 38, 313–318.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010). Acta Cryst. E66, o599–o600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLagu, B., Tian, D., Chiu, G., Nagarathnam, D., Fang, J., Shen, Q., Forray, C., Ransom, R. W., Chang, R. S., Vyas, K. P., Zhang, K. & Gluchowski, C. (2000). Bioorg. Med. Chem. Lett. 10, 175–178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayana, B., Vijayaraj, K. K., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2004). Eur. J. Med. Chem. 39, 867–872.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSarojini, B. K., Krishna, B. G., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Eur. J. Med. Chem. 45, 3490–3496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmee, D. F., McKernan, P. A., Nord, L. D., Willis, R. C., Petrie, C. R., Riley, T. M., Revankar, G. R., Robins, R. K. & Smith, R. A. (1987). Antimicrob. Agent. Chemother. 31, 1535–1541.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1913-o1914
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds