organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1876-o1877

9-(4-Hy­dr­oxy­phen­yl)-3,3,6,6-tetra­methyl-4,5,6,9-tetra­hydro-3H-xanthene-1,8(2H,7H)-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 June 2011; accepted 27 June 2011; online 2 July 2011)

In the title compound, C23H26O4, the two cyclo­hexene rings adopt envelope conformations whereas the pyran ring adopts a boat conformation. In the crystal, pairs of inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into inversion dimers.

Related literature

For background to xanthene derivatives and their microbial activity, see: Jonathan et al. (1988[Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111-117.]); Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). Chem. Commun. pp. 1202-1204.]); Shchekotikhin & Nikolaeva (2006[Shchekotikhin, Y. M. & Nikolaeva, T. G. (2006). Chem. Heterocycl. Compd, 42, 28-33.]); Hilderbrand & Weissleder (2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]); Pohlers & Scaiano (1997[Pohlers, G. & Scaiano, J. C. (1997). Chem. Mater. 9, 3222-3230.]); Knight & Stephens (1989[Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683-689.]); Reddy et al. (2010[Reddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658-o659.]); Rathore et al. (2009[Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375-381.]); Rajesh et al. (2010[Rajesh, K., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o985.]); Mookiah et al. (2009[Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Odabaşoğlu et al. (2008[Odabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E64, o681.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26O4

  • Mr = 366.44

  • Triclinic, [P \overline 1]

  • a = 9.3525 (1) Å

  • b = 10.2140 (1) Å

  • c = 11.6913 (1) Å

  • α = 67.271 (1)°

  • β = 76.119 (1)°

  • γ = 69.419 (1)°

  • V = 957.32 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.43 × 0.37 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.979

  • 31226 measured reflections

  • 8415 independent reflections

  • 7287 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.119

  • S = 1.05

  • 8415 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O2i 0.851 (18) 1.910 (17) 2.7423 (9) 165.6 (17)
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Xanthenes are known for possessing various biological properties including antibacterial, antiviral and anti-inflammatory activities (Jonathan et al., 1988). In particular, xanthenedione derivatives constitute a structural unit in several natural products (Hatakeyama et al., 1988), and they are valuable synthons because of the inherent reactivity of the inbuilt pyran ring (Shchekotikhin et al., 2006). Xanthene derivatives are also very useful and important organic compounds widely used as dye (Hilderbrand et al., 2007), in laser technologies (Pohlers et al., 1997), and fluorescent materials for visualization of biomolecules (Knight et al., 1989). The structural resemblance of xanthenes to 1,4-dihydropyridines which was our area of interest (Reddy et al., 2010; Rathore et al., 2009; Rajesh et al., 2010; Mookiah et al., 2009), and which can function as calcium channel blockers made us to focus on xanthenes and its synthesis.

In the title compound (Fig. 1), the cyclohexene (C1–C6 & C8–C13) and the pyran (O1/C1/C6–C8/C13) rings are not planar, having puckering amplitudes, Q of 0.4840 (8), 0.4538 (8) and 0.1049 (8) Å, respectively. The cyclohexene rings (C1–C6 & C8–C13) adopt envelope conformations [ϕ = 118.78 (11)° and Θ = 58.70 (9)°; ϕ = 3.56 (12)° and Θ = 120.92 (10)°] whereas the pyran ring adopts a boat conformation [ϕ = 355.6 (5)° and 114.4 (4)°; Cremer & Pople, 1975). Bond lengths and angles are comparable to the related structure (Odabaşoğlu et al., 2008).

In the crystal packing (Fig. 2), intermolecular O4—H1O4···O2 hydrogen bonds (Table 1) link the molecules into dimers.

Related literature top

For background to xanthene derivatives and their microbial activity, see: Jonathan et al. (1988); Hatakeyama et al. (1988); Shchekotikhin et al. (2006); Hilderbrand et al. (2007); Pohlers et al. (1997); Knight & Stephens (1989); Reddy et al. (2010); Rathore et al. (2009); Rajesh et al. (2010); Mookiah et al. (2009). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For a related structure, see: Odabaşoğlu et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of p-hydroxybenzaldehyde (0.5 g, 8 mmol) and 5,5-dimethyl-1,3-cyclohexanedione (1.15 g, 1.6 mmol) were mixed along with 15 ml of ethylene glycol and then heated at 70 °C for about 1.5 h. The progress of the reaction was monitored by TLC. After confirming that the reaction was completed, the reaction mixture was allowed to cool to room temperature and poured it onto water. The solid obtained was filtered, dried and recrystalized from chloroform/methanol (1:1) to yield colourless crystals (m.p. 519–521 K).

Refinement top

Atom H1O4 was located in a difference Fourier map and was refined freely [O—H = 0.851 (17) Å]. The remaining H atoms were positioned geometrically (C—H = 0.96 or 0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
9-(4-Hydroxyphenyl)-3,3,6,6-tetramethyl-4,5,6,9-tetrahydro-3H- xanthene-1,8(2H,7H)-dione top
Crystal data top
C23H26O4Z = 2
Mr = 366.44F(000) = 392
Triclinic, P1Dx = 1.271 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3525 (1) ÅCell parameters from 9935 reflections
b = 10.2140 (1) Åθ = 2.3–35.1°
c = 11.6913 (1) ŵ = 0.09 mm1
α = 67.271 (1)°T = 100 K
β = 76.119 (1)°Block, colourless
γ = 69.419 (1)°0.43 × 0.37 × 0.25 mm
V = 957.32 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8415 independent reflections
Radiation source: fine-focus sealed tube7287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 35.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.964, Tmax = 0.979k = 1416
31226 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.1943P]
where P = (Fo2 + 2Fc2)/3
8415 reflections(Δ/σ)max = 0.001
252 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C23H26O4γ = 69.419 (1)°
Mr = 366.44V = 957.32 (2) Å3
Triclinic, P1Z = 2
a = 9.3525 (1) ÅMo Kα radiation
b = 10.2140 (1) ŵ = 0.09 mm1
c = 11.6913 (1) ÅT = 100 K
α = 67.271 (1)°0.43 × 0.37 × 0.25 mm
β = 76.119 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7287 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.979Rint = 0.019
31226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.59 e Å3
8415 reflectionsΔρmin = 0.21 e Å3
252 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34521 (6)0.83032 (6)0.99915 (5)0.01579 (9)
O20.02841 (7)1.17532 (6)0.69020 (5)0.02010 (11)
O30.10300 (7)0.70038 (7)1.02725 (5)0.02242 (11)
O40.16175 (7)0.64603 (6)0.49102 (5)0.02133 (11)
C10.30785 (8)0.95394 (7)0.89677 (6)0.01442 (11)
C20.42026 (8)1.04139 (8)0.85853 (6)0.01674 (12)
H2A0.52170.97420.87620.020*
H2B0.39151.10680.90740.020*
C30.42656 (8)1.13402 (7)0.71914 (6)0.01599 (11)
C40.26065 (9)1.22259 (8)0.69255 (7)0.01843 (12)
H4A0.22411.29770.73260.022*
H4B0.26041.27330.60320.022*
C50.14947 (8)1.13060 (7)0.73661 (6)0.01591 (11)
C60.18373 (8)0.98961 (7)0.83917 (6)0.01459 (11)
C70.08188 (8)0.88931 (7)0.87495 (6)0.01454 (11)
H7A0.02570.94740.88700.017*
C80.12303 (8)0.76682 (7)0.99633 (6)0.01441 (11)
C90.02202 (8)0.67001 (8)1.06217 (6)0.01635 (11)
C100.07186 (8)0.53779 (8)1.17715 (7)0.01825 (12)
H10A0.04040.45661.17760.022*
H10B0.01740.56391.25070.022*
C110.24508 (8)0.48275 (7)1.18770 (6)0.01565 (11)
C120.30063 (8)0.61720 (7)1.16306 (6)0.01557 (11)
H12A0.26260.65211.23410.019*
H12B0.41220.58661.15510.019*
C130.24825 (8)0.74137 (7)1.04798 (6)0.01417 (11)
C140.10119 (8)0.82609 (7)0.77113 (6)0.01428 (11)
C150.01107 (8)0.87860 (7)0.69164 (6)0.01535 (11)
H15A0.10040.95260.70270.018*
C160.00783 (8)0.82251 (7)0.59602 (6)0.01557 (11)
H16A0.06770.86010.54310.019*
C170.14000 (8)0.70988 (7)0.57955 (6)0.01580 (11)
C180.25476 (8)0.65753 (8)0.65697 (7)0.01858 (12)
H18A0.34420.58390.64570.022*
C190.23478 (8)0.71605 (8)0.75134 (6)0.01734 (12)
H19A0.31200.68110.80230.021*
C200.50082 (11)1.03502 (10)0.63814 (8)0.02510 (15)
H20A0.50581.09560.55160.038*
H20B0.44050.96970.65300.038*
H20C0.60290.97750.65880.038*
C210.52047 (10)1.24087 (8)0.69189 (7)0.02181 (14)
H21A0.52221.30130.60530.033*
H21B0.62381.18540.71040.033*
H21C0.47451.30310.74290.033*
C220.33171 (9)0.40175 (8)1.09396 (7)0.02121 (13)
H22A0.29590.31781.11160.032*
H22B0.43990.36871.10070.032*
H22C0.31360.46801.01080.032*
C230.27504 (9)0.37755 (8)1.32038 (7)0.02137 (13)
H23A0.24170.29221.33800.032*
H23B0.21910.42781.37920.032*
H23C0.38310.34671.32710.032*
H1O40.0906 (19)0.6959 (18)0.4441 (15)0.049 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0185 (2)0.0151 (2)0.0139 (2)0.00786 (17)0.00582 (16)0.00009 (16)
O20.0238 (3)0.0185 (2)0.0186 (2)0.00527 (19)0.01005 (19)0.00298 (18)
O30.0192 (2)0.0266 (3)0.0221 (2)0.0106 (2)0.00590 (19)0.0033 (2)
O40.0263 (3)0.0223 (2)0.0170 (2)0.0028 (2)0.00794 (19)0.00877 (19)
C10.0185 (3)0.0136 (2)0.0116 (2)0.0058 (2)0.0037 (2)0.0025 (2)
C20.0210 (3)0.0167 (3)0.0145 (3)0.0092 (2)0.0052 (2)0.0022 (2)
C30.0206 (3)0.0154 (3)0.0131 (2)0.0077 (2)0.0017 (2)0.0040 (2)
C40.0225 (3)0.0157 (3)0.0155 (3)0.0072 (2)0.0050 (2)0.0005 (2)
C50.0208 (3)0.0147 (2)0.0126 (2)0.0050 (2)0.0049 (2)0.0034 (2)
C60.0178 (3)0.0143 (2)0.0121 (2)0.0057 (2)0.0042 (2)0.0026 (2)
C70.0156 (3)0.0156 (2)0.0129 (2)0.0051 (2)0.00397 (19)0.0033 (2)
C80.0163 (3)0.0155 (2)0.0119 (2)0.0062 (2)0.00282 (19)0.0031 (2)
C90.0173 (3)0.0177 (3)0.0148 (3)0.0072 (2)0.0019 (2)0.0044 (2)
C100.0176 (3)0.0173 (3)0.0177 (3)0.0072 (2)0.0021 (2)0.0018 (2)
C110.0175 (3)0.0142 (2)0.0152 (3)0.0060 (2)0.0028 (2)0.0032 (2)
C120.0195 (3)0.0150 (2)0.0128 (2)0.0070 (2)0.0047 (2)0.0018 (2)
C130.0169 (3)0.0145 (2)0.0121 (2)0.0066 (2)0.0024 (2)0.0032 (2)
C140.0157 (3)0.0156 (2)0.0125 (2)0.0058 (2)0.0036 (2)0.0034 (2)
C150.0158 (3)0.0156 (2)0.0150 (3)0.0046 (2)0.0048 (2)0.0036 (2)
C160.0176 (3)0.0162 (3)0.0137 (2)0.0059 (2)0.0055 (2)0.0027 (2)
C170.0197 (3)0.0164 (3)0.0120 (2)0.0065 (2)0.0035 (2)0.0033 (2)
C180.0182 (3)0.0204 (3)0.0161 (3)0.0019 (2)0.0052 (2)0.0065 (2)
C190.0164 (3)0.0206 (3)0.0151 (3)0.0035 (2)0.0051 (2)0.0057 (2)
C200.0305 (4)0.0256 (3)0.0223 (3)0.0114 (3)0.0047 (3)0.0130 (3)
C210.0256 (3)0.0196 (3)0.0213 (3)0.0121 (3)0.0028 (3)0.0029 (3)
C220.0220 (3)0.0194 (3)0.0239 (3)0.0048 (2)0.0029 (3)0.0100 (3)
C230.0250 (3)0.0172 (3)0.0187 (3)0.0082 (2)0.0058 (2)0.0011 (2)
Geometric parameters (Å, º) top
O1—C11.3680 (8)C11—C221.5314 (10)
O1—C131.3798 (8)C11—C231.5324 (10)
O2—C51.2348 (9)C11—C121.5371 (9)
O3—C91.2273 (9)C12—C131.4897 (9)
O4—C171.3658 (8)C12—H12A0.9700
O4—H1O40.851 (17)C12—H12B0.9700
C1—C61.3498 (9)C14—C151.3931 (9)
C1—C21.4930 (9)C14—C191.3974 (10)
C2—C31.5349 (9)C15—C161.3922 (9)
C2—H2A0.9700C15—H15A0.9300
C2—H2B0.9700C16—C171.3948 (10)
C3—C201.5272 (10)C16—H16A0.9300
C3—C211.5280 (10)C17—C181.3950 (10)
C3—C41.5330 (10)C18—C191.3934 (10)
C4—C51.5116 (10)C18—H18A0.9300
C4—H4A0.9700C19—H19A0.9300
C4—H4B0.9700C20—H20A0.9600
C5—C61.4628 (9)C20—H20B0.9600
C6—C71.5152 (9)C20—H20C0.9600
C7—C81.5096 (9)C21—H21A0.9600
C7—C141.5302 (9)C21—H21B0.9600
C7—H7A0.9800C21—H21C0.9600
C8—C131.3445 (9)C22—H22A0.9600
C8—C91.4773 (9)C22—H22B0.9600
C9—C101.5177 (10)C22—H22C0.9600
C10—C111.5354 (10)C23—H23A0.9600
C10—H10A0.9700C23—H23B0.9600
C10—H10B0.9700C23—H23C0.9600
C1—O1—C13118.25 (5)C10—C11—C12108.40 (6)
C17—O4—H1O4108.2 (11)C13—C12—C11112.63 (5)
C6—C1—O1122.95 (6)C13—C12—H12A109.1
C6—C1—C2125.29 (6)C11—C12—H12A109.1
O1—C1—C2111.76 (5)C13—C12—H12B109.1
C1—C2—C3112.06 (5)C11—C12—H12B109.1
C1—C2—H2A109.2H12A—C12—H12B107.8
C3—C2—H2A109.2C8—C13—O1123.08 (6)
C1—C2—H2B109.2C8—C13—C12125.63 (6)
C3—C2—H2B109.2O1—C13—C12111.29 (5)
H2A—C2—H2B107.9C15—C14—C19118.00 (6)
C20—C3—C21109.14 (6)C15—C14—C7121.39 (6)
C20—C3—C4110.88 (6)C19—C14—C7120.59 (6)
C21—C3—C4109.50 (6)C16—C15—C14121.28 (6)
C20—C3—C2111.08 (6)C16—C15—H15A119.4
C21—C3—C2109.08 (6)C14—C15—H15A119.4
C4—C3—C2107.12 (6)C15—C16—C17120.04 (6)
C5—C4—C3114.58 (6)C15—C16—H16A120.0
C5—C4—H4A108.6C17—C16—H16A120.0
C3—C4—H4A108.6O4—C17—C16122.64 (6)
C5—C4—H4B108.6O4—C17—C18117.87 (6)
C3—C4—H4B108.6C16—C17—C18119.48 (6)
H4A—C4—H4B107.6C19—C18—C17119.72 (7)
O2—C5—C6119.90 (6)C19—C18—H18A120.1
O2—C5—C4120.92 (6)C17—C18—H18A120.1
C6—C5—C4119.14 (6)C18—C19—C14121.44 (6)
C1—C6—C5117.69 (6)C18—C19—H19A119.3
C1—C6—C7122.86 (6)C14—C19—H19A119.3
C5—C6—C7119.44 (6)C3—C20—H20A109.5
C8—C7—C6108.86 (5)C3—C20—H20B109.5
C8—C7—C14111.06 (5)H20A—C20—H20B109.5
C6—C7—C14110.30 (5)C3—C20—H20C109.5
C8—C7—H7A108.9H20A—C20—H20C109.5
C6—C7—H7A108.9H20B—C20—H20C109.5
C14—C7—H7A108.9C3—C21—H21A109.5
C13—C8—C9118.04 (6)C3—C21—H21B109.5
C13—C8—C7122.91 (6)H21A—C21—H21B109.5
C9—C8—C7119.05 (6)C3—C21—H21C109.5
O3—C9—C8120.20 (6)H21A—C21—H21C109.5
O3—C9—C10120.86 (6)H21B—C21—H21C109.5
C8—C9—C10118.87 (6)C11—C22—H22A109.5
C9—C10—C11115.38 (6)C11—C22—H22B109.5
C9—C10—H10A108.4H22A—C22—H22B109.5
C11—C10—H10A108.4C11—C22—H22C109.5
C9—C10—H10B108.4H22A—C22—H22C109.5
C11—C10—H10B108.4H22B—C22—H22C109.5
H10A—C10—H10B107.5C11—C23—H23A109.5
C22—C11—C23109.53 (6)C11—C23—H23B109.5
C22—C11—C10110.09 (6)H23A—C23—H23B109.5
C23—C11—C10110.01 (6)C11—C23—H23C109.5
C22—C11—C12110.94 (6)H23A—C23—H23C109.5
C23—C11—C12107.83 (5)H23B—C23—H23C109.5
C13—O1—C1—C62.38 (10)C7—C8—C9—C10174.00 (6)
C13—O1—C1—C2177.69 (6)O3—C9—C10—C11161.59 (7)
C6—C1—C2—C325.58 (10)C8—C9—C10—C1121.61 (9)
O1—C1—C2—C3154.34 (6)C9—C10—C11—C2273.51 (7)
C1—C2—C3—C2069.86 (8)C9—C10—C11—C23165.69 (6)
C1—C2—C3—C21169.79 (6)C9—C10—C11—C1248.00 (8)
C1—C2—C3—C451.36 (7)C22—C11—C12—C1372.05 (7)
C20—C3—C4—C569.49 (8)C23—C11—C12—C13168.01 (6)
C21—C3—C4—C5170.02 (6)C10—C11—C12—C1348.94 (7)
C2—C3—C4—C551.86 (7)C9—C8—C13—O1175.73 (6)
C3—C4—C5—O2157.76 (6)C7—C8—C13—O14.22 (10)
C3—C4—C5—C624.75 (9)C9—C8—C13—C124.00 (10)
O1—C1—C6—C5175.35 (6)C7—C8—C13—C12176.05 (6)
C2—C1—C6—C54.74 (10)C1—O1—C13—C83.14 (10)
O1—C1—C6—C75.68 (10)C1—O1—C13—C12176.62 (5)
C2—C1—C6—C7174.24 (6)C11—C12—C13—C825.26 (9)
O2—C5—C6—C1172.19 (6)C11—C12—C13—O1154.98 (6)
C4—C5—C6—C15.34 (9)C8—C7—C14—C15134.11 (6)
O2—C5—C6—C78.80 (10)C6—C7—C14—C15105.11 (7)
C4—C5—C6—C7173.67 (6)C8—C7—C14—C1947.61 (8)
C1—C6—C7—C811.35 (9)C6—C7—C14—C1973.17 (8)
C5—C6—C7—C8169.70 (6)C19—C14—C15—C160.67 (10)
C1—C6—C7—C14110.74 (7)C7—C14—C15—C16178.99 (6)
C5—C6—C7—C1468.21 (8)C14—C15—C16—C171.03 (10)
C6—C7—C8—C1310.62 (9)C15—C16—C17—O4177.02 (6)
C14—C7—C8—C13111.01 (7)C15—C16—C17—C182.02 (10)
C6—C7—C8—C9169.33 (6)O4—C17—C18—C19177.79 (6)
C14—C7—C8—C969.04 (8)C16—C17—C18—C191.30 (11)
C13—C8—C9—O3170.78 (7)C17—C18—C19—C140.43 (11)
C7—C8—C9—O39.17 (10)C15—C14—C19—C181.40 (10)
C13—C8—C9—C106.04 (9)C7—C14—C19—C18179.74 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.851 (18)1.910 (17)2.7423 (9)165.6 (17)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC23H26O4
Mr366.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3525 (1), 10.2140 (1), 11.6913 (1)
α, β, γ (°)67.271 (1), 76.119 (1), 69.419 (1)
V3)957.32 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.37 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.964, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
31226, 8415, 7287
Rint0.019
(sin θ/λ)max1)0.811
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.05
No. of reflections8415
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.851 (18)1.910 (17)2.7423 (9)165.6 (17)
Symmetry code: (i) x, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). Chem. Commun. pp. 1202–1204.  CrossRef Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111–117.  Google Scholar
First citationKnight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–689.  CAS PubMed Web of Science Google Scholar
First citationMookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E64, o681.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPohlers, G. & Scaiano, J. C. (1997). Chem. Mater. 9, 3222–3230.  Web of Science CrossRef CAS Google Scholar
First citationRajesh, K., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o985.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658–o659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShchekotikhin, Y. M. & Nikolaeva, T. G. (2006). Chem. Heterocycl. Compd, 42, 28–33.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1876-o1877
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds