organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S*,3S*,8S*,10S*)-10-Fluoro-15-oxa­tetra­cyclo­[6.6.1.01,10.03,8]penta­deca-5,12-dien-3-ol

aDepartment of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: gmsc@uohyd.ernet.in

(Received 23 June 2011; accepted 5 July 2011; online 9 July 2011)

The title compound, C14H17FO2, was obtained from anti-4a,9a:8a,10a-diep­oxy-1,4,4a,5,8,8a,9,9a,10,10a-deca­hydro­anthra­cene via tandem hydrogen-fluoride-mediated epoxide ring-opening and transannular oxacyclization. With the two cyclo­hexene rings folded towards the oxygen bridge, the title tetra­cyclic fluoro­alcohol mol­ecule displays a conformation remin­iscent of a pagoda. The crystal packing is effected via inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into a zigzag chain along the b axis.

Related literature

For applications of organofluorine compounds as pharmaceuticals, see: Kirsch (2004[Kirsch, P. (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH.]); Bégué & Bonnet-Delpon (2006[Bégué, J.-P. & Bonnet-Delpon, D. (2006). J. Fluorine Chem. 127, 992-1012.]); Müller et al. (2007[Müller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881-1886.]). For the use of diethyl­amino­sulfur trifluoride, 1-chloro­methyl-4-fluoro­diazo­niabicyclo­[2.2.2]octane bis­(tetra­fluoro­borate) and pyridinium poly(hydrogen fluoride) as reagents for selective introduction of C—F bonds, see: Middleton (1975[Middleton, W. J. (1975). J. Org. Chem. 40, 574-578.]); Olah et al. (1979[Olah, G. A., Welch, J. T., Vankar, Y. D., Nojima, M., Kerekes, I. & Olah, J. A. (1979). J. Org. Chem. 44, 3872-3881.]); Banks et al. (1992[Banks, R. E., Mohialdin-Khaffaf, S. N., Lal, G. S., Sharif, I. & Syvret, R. G. (1992). J. Chem. Soc. Chem. Commun. pp. 595-596.]). For the preparation of the title compound, see: Mehta et al. (2007[Mehta, G., Sen, S. & Ramesh, S. S. (2007). Eur. J. Org. Chem. pp. 423-436.]); Mehta & Sen (2010[Mehta, G. & Sen, S. (2010). Eur. J. Org. Chem. pp. 3387-3394.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17FO2

  • Mr = 236.28

  • Monoclinic, P 21 /c

  • a = 8.1603 (6) Å

  • b = 10.9148 (8) Å

  • c = 13.5558 (10) Å

  • β = 96.285 (3)°

  • V = 1200.13 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.989

  • 10752 measured reflections

  • 2454 independent reflections

  • 2038 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.03

  • 2454 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.14 2.9554 (14) 177
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc. Madison. Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc. Madison. Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organofluorine compounds, while rarely occurring naturally, constitute around 20% of all known pharmaceuticals (Bégué & Bonnet-Delpon, 2006; Müller et al., 2007). The wide- spread applications of fluorinated organic compounds in the therapeutic arena has been attributed to the fact that incorporating fluorine in a drug can significantly enhance its lipophilicity and in vitro stability towards cytochrome P450 enzymatic oxidation (Kirsch, 2004; Müller et al., 2007).

Not surprisingly, various reagents, such as diethylaminosulfur trifluoride (DAST) (Middleton, 1975) and 1-chloromethyl-4-fluorodiazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor) (Banks et al., 1992) have been developed over the years for achieving controlled and selective introduction of C—F bonds. The Olah's reagent [pyridinium poly(hydrogen fluoride)] was, in this context, among the first such fluorinating agents to be reported (Olah et al., 1979; Müller et al., 2007).

In a recent endeavor, we employed this reagent as means of accessing the difluorodiol 1 via one-pot HF-mediated ring-opening in the syn-diepoxide 2 (Fig. 1; Mehta & Sen, 2010). The complete regio- and stereoselectivity, observed in this bis-fluorination step, was intriguing and goaded us to investigate the outcome of reacting pyridine poly(hydrogen fluoride) with the anti-diepoxide 3 (Fig. 2; Mehta et al., 2007).

The title compound 4, bearing a 7-oxanorbornane core inscribed in a 1,4,4a,5,8,8a,9,9a,10,10a-decahydroanthracene framework, was obtained as the major product. Formation of the tetracyclic fluoroalcohol 4 can be explained by an initial HF-mediated epoxide ring opening in 3 to yield the fluorohydrin 5, followed by a novel variant of a hydroxy-mediated bishomo-Payne rearrangement in 5 to afford 4 (Fig. 3).

The crystal structure of 4 was solved and refined in the centrosymmetric monoclinic space group P21/c (Z = 4). The two flanking cyclohexene rings, folded towards the oxa bridge of the bicyclic core, and the pendant syn-4-fluoro-butan-1-ol moiety afforded the molecule an interesting pagoda-like architecture (Fig. 4). Crystal packing in 4 was effected via the agency of intermolecular O—H···O hydrogen bonds which linked the tetraacetate molecules into zigzag chains along the b axis (Fig. 5).

Related literature top

For applications of organofluorine compounds as pharmaceuticals, see: Kirsch (2004); Bégué & Bonnet-Delpon (2006); Müller et al. (2007). For diethylaminosulfur trifluoride, 1-chloromethyl-4-fluorodiazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) and pyridinium poly(hydrogen fluoride) as reagents for selective introduction of C—F bonds, see: Middleton (1975); Olah et al. (1979); Banks et al. (1992). For the preparation of the title compound, see: Mehta et al. (2007); Mehta & Sen (2010).

Experimental top

A solution of the anti-diepoxide 3 (35 mg, 0.162 mmol) in 1 ml of dry THF was treated with pyridine- poly(hydrogen fluoride) (0.5 ml, 27.5 mmol) at 273 K. The reaction was allowed to proceed for 7 h at ambient temperature. The mixture was then quenched with saturated sodium bicarbonate solution. The product was extracted with ethyl acetate; the combined extracts were washed with brine and then dried over anhydrous sodium sulfate. Removal of solvent, column chromatography over silica gel and subsequent recrystallization using 20% EtOAc-petroleum ether afforded 4 (25 mg, 65%) as a colorless crystalline solid.

Refinement top

The methine (CH) and methylene (CH2) H atoms were placed in geometrically idealized positions with C—H distances 0.93 and 0.97 Å respectively, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The hydroxyl hydrogen atom was constrained to an ideal geometry with the O—H distance fixed at 0.82 Å and Uiso(H) = 1.5Ueq(O). During refinement, the hydroxyl group was however allowed to rotate freely about its C—O bond.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Chemical structural diagrams of 1 and 2.
[Figure 2] Fig. 2. Chemical structural diagram of 3.
[Figure 3] Fig. 3. Preparation of the title compound, fluoroalcohol 4, from the anti- diepoxide 3.
[Figure 4] Fig. 4. The molecular structure of the title compound 4, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 5] Fig. 5. A packing diagram of the title compound 4, viewed along the c axis. Non-interacting hydrogen atoms have been removed for clarity. Dotted lines indicate the O—H···O hydrogen bonds.
(1S*,3S*,8S*,10S*)-10-Fluoro-15- oxatetracyclo[6.6.1.01,10.03,8]pentadeca-5,12-dien-3-ol top
Crystal data top
C14H17FO2F(000) = 504
Mr = 236.28Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4978 reflections
a = 8.1603 (6) Åθ = 2.4–26.4°
b = 10.9148 (8) ŵ = 0.10 mm1
c = 13.5558 (10) ÅT = 291 K
β = 96.285 (3)°Block, colorless
V = 1200.13 (15) Å30.26 × 0.22 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2454 independent reflections
Radiation source: fine-focus sealed tube2038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.976, Tmax = 0.989k = 1312
10752 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.3336P]
where P = (Fo2 + 2Fc2)/3
2454 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H17FO2V = 1200.13 (15) Å3
Mr = 236.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1603 (6) ŵ = 0.10 mm1
b = 10.9148 (8) ÅT = 291 K
c = 13.5558 (10) Å0.26 × 0.22 × 0.12 mm
β = 96.285 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2454 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2038 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.989Rint = 0.020
10752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
2454 reflectionsΔρmin = 0.21 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.50293 (10)0.03822 (8)0.17755 (7)0.0539 (3)
O10.92031 (13)0.15772 (9)0.33199 (8)0.0491 (3)
O20.86964 (11)0.13521 (8)0.21690 (6)0.0368 (2)
C10.61016 (16)0.05894 (12)0.20951 (11)0.0395 (3)
C101.2213 (2)0.0155 (2)0.34728 (15)0.0648 (5)
C111.1499 (2)0.08929 (18)0.40684 (13)0.0614 (5)
C120.96990 (19)0.11773 (14)0.39499 (11)0.0466 (4)
C130.87362 (16)0.05869 (11)0.30592 (9)0.0340 (3)
C140.68963 (16)0.03854 (13)0.31557 (10)0.0392 (3)
C20.5123 (2)0.17729 (15)0.19553 (13)0.0553 (4)
C30.4910 (3)0.21989 (19)0.09124 (16)0.0818 (7)
C40.5907 (3)0.18950 (17)0.02523 (15)0.0786 (7)
C50.7339 (2)0.10512 (18)0.04581 (11)0.0610 (5)
C60.76146 (17)0.05679 (12)0.15111 (10)0.0392 (3)
C70.84679 (18)0.06886 (13)0.16311 (11)0.0442 (3)
C80.94747 (17)0.05946 (12)0.26624 (11)0.0388 (3)
C91.13154 (18)0.04261 (15)0.25771 (13)0.0531 (4)
H10.97700.21670.31970.074*
H2A0.40450.16500.21780.066*
H2B0.56830.24050.23670.066*
H30.40220.27090.07130.098*
H40.57050.22270.03810.094*
H5A0.83270.14780.03130.073*
H5B0.71840.03600.00080.073*
H7A0.91820.08250.11150.053*
H7B0.76660.13460.16140.053*
H9A1.18030.12200.24730.064*
H9B1.14480.00780.20020.064*
H101.33310.00100.36200.078*
H111.21560.12570.45920.074*
H12A0.95610.20580.38980.056*
H12B0.92340.09130.45430.056*
H14A0.66920.04380.33820.047*
H14B0.64920.09710.36100.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0442 (5)0.0448 (5)0.0715 (6)0.0124 (4)0.0006 (4)0.0057 (4)
O10.0522 (6)0.0300 (5)0.0669 (7)0.0054 (4)0.0147 (5)0.0108 (5)
O20.0422 (5)0.0291 (5)0.0387 (5)0.0068 (4)0.0022 (4)0.0038 (4)
C10.0360 (7)0.0309 (7)0.0508 (8)0.0029 (5)0.0007 (6)0.0021 (6)
C20.0473 (8)0.0422 (9)0.0736 (11)0.0093 (7)0.0056 (7)0.0028 (8)
C30.1079 (17)0.0514 (11)0.0764 (13)0.0268 (11)0.0331 (12)0.0016 (10)
C40.1288 (19)0.0463 (10)0.0522 (10)0.0003 (11)0.0282 (11)0.0103 (8)
C50.0777 (12)0.0640 (11)0.0400 (8)0.0165 (9)0.0000 (8)0.0061 (8)
C60.0445 (7)0.0343 (7)0.0382 (7)0.0062 (6)0.0023 (6)0.0016 (5)
C70.0470 (8)0.0374 (7)0.0498 (8)0.0010 (6)0.0127 (6)0.0089 (6)
C80.0374 (7)0.0297 (7)0.0503 (8)0.0017 (5)0.0096 (6)0.0032 (6)
C90.0374 (8)0.0498 (9)0.0742 (11)0.0044 (7)0.0153 (7)0.0081 (8)
C100.0351 (8)0.0794 (13)0.0784 (12)0.0069 (8)0.0007 (8)0.0220 (11)
C110.0535 (9)0.0697 (12)0.0568 (10)0.0230 (9)0.0128 (8)0.0114 (9)
C120.0585 (9)0.0369 (7)0.0423 (8)0.0066 (7)0.0036 (6)0.0018 (6)
C130.0378 (7)0.0270 (6)0.0371 (7)0.0016 (5)0.0040 (5)0.0036 (5)
C140.0395 (7)0.0354 (7)0.0442 (7)0.0028 (6)0.0112 (6)0.0001 (6)
Geometric parameters (Å, º) top
F1—C11.4126 (15)C7—H7A0.9700
O1—C81.4272 (16)C7—H7B0.9700
O1—H10.8200C8—C71.545 (2)
O2—C131.4650 (15)C8—C91.530 (2)
O2—C61.4611 (16)C9—C101.490 (3)
C1—C141.527 (2)C9—H9A0.9700
C1—C21.520 (2)C9—H9B0.9700
C2—C31.480 (3)C10—H100.9300
C2—H2A0.9700C11—C101.320 (3)
C2—H2B0.9700C11—H110.9300
C3—H30.9300C12—C111.493 (2)
C4—C31.316 (3)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C41.490 (3)C13—C121.5109 (19)
C5—H5A0.9700C13—C141.5371 (18)
C5—H5B0.9700C13—C81.5448 (18)
C6—C11.538 (2)C14—H14A0.9700
C6—C51.515 (2)C14—H14B0.9700
C6—C71.5387 (19)
F1—C1—C14111.36 (11)C6—C7—H7A111.2
F1—C1—C2107.49 (11)C6—C7—H7B111.2
F1—C1—C6109.63 (11)C6—O2—C1397.25 (9)
O1—C8—C13108.46 (11)C8—C7—H7A111.2
O1—C8—C7114.30 (11)C8—C7—H7B111.2
O1—C8—C9111.00 (12)C8—C9—H9A109.0
O2—C13—C12112.20 (10)C8—C9—H9B109.0
O2—C13—C14102.58 (10)C8—O1—H1109.5
O2—C13—C899.41 (10)C9—C10—H10118.4
O2—C6—C198.18 (10)C9—C8—C13110.46 (12)
O2—C6—C5112.86 (12)C9—C8—C7111.63 (12)
O2—C6—C7102.79 (11)C10—C11—C12123.78 (15)
C1—C14—C13102.54 (10)C10—C11—H11118.1
C1—C14—H14A111.3C10—C9—C8112.88 (14)
C1—C14—H14B111.3C10—C9—H9A109.0
C1—C2—H2A109.0C10—C9—H9B109.0
C1—C2—H2B109.0C11—C10—C9123.21 (15)
C1—C6—C7109.80 (11)C11—C10—H10118.4
C2—C1—C14113.86 (12)C11—C12—C13114.63 (14)
C2—C1—C6112.91 (12)C11—C12—H12A108.6
C2—C3—H3118.2C11—C12—H12B108.6
C3—C2—C1113.04 (15)C12—C11—H11118.1
C3—C2—H2A109.0C12—C13—C14114.86 (12)
C3—C2—H2B109.0C12—C13—C8116.47 (12)
C3—C4—C5124.00 (17)C13—C12—H12A108.6
C3—C4—H4118.0C13—C12—H12B108.6
C4—C3—C2123.59 (18)C13—C14—H14A111.3
C4—C3—H3118.2C13—C14—H14B111.3
C4—C5—C6115.07 (16)C13—C8—C7100.45 (10)
C4—C5—H5A108.5C14—C1—C6101.55 (10)
C4—C5—H5B108.5C14—C13—C8109.40 (10)
C5—C4—H4118.0H12A—C12—H12B107.6
C5—C6—C1115.79 (13)H14A—C14—H14B109.2
C5—C6—C7115.37 (13)H2A—C2—H2B107.8
C6—C5—H5A108.5H5A—C5—H5B107.5
C6—C5—H5B108.5H7A—C7—H7B109.1
C6—C7—C8103.06 (11)H9A—C9—H9B107.8
F1—C1—C14—C13129.67 (11)C6—O2—C13—C1452.46 (11)
F1—C1—C2—C378.24 (18)C6—O2—C13—C859.99 (11)
O1—C8—C7—C6127.74 (11)C7—C6—C1—C1461.64 (13)
O1—C8—C9—C1074.33 (17)C7—C6—C1—C2176.04 (12)
O2—C13—C12—C1188.81 (15)C7—C6—C1—F156.23 (14)
O2—C13—C14—C123.37 (12)C7—C6—C5—C4152.45 (15)
O2—C13—C8—C743.94 (11)C7—C8—C9—C10156.88 (14)
O2—C13—C8—C974.02 (13)C8—C13—C12—C1124.79 (18)
O2—C13—C8—O1164.13 (10)C8—C13—C14—C181.47 (12)
O2—C6—C1—C1445.18 (11)C8—C9—C10—C1126.7 (2)
O2—C6—C1—C277.13 (13)C9—C8—C7—C6105.25 (13)
O2—C6—C1—F1163.06 (10)C12—C11—C10—C93.5 (3)
O2—C6—C5—C489.78 (17)C12—C13—C14—C1145.38 (11)
O2—C6—C7—C824.13 (13)C12—C13—C8—C7164.63 (11)
C1—C2—C3—C423.8 (3)C12—C13—C8—C946.66 (16)
C1—C6—C5—C422.3 (2)C12—C13—C8—O175.19 (14)
C1—C6—C7—C879.56 (13)C13—C12—C11—C102.2 (2)
C2—C1—C14—C13108.60 (13)C13—C8—C7—C611.85 (13)
C5—C4—C3—C22.2 (4)C13—C8—C9—C1046.01 (18)
C5—C6—C1—C14165.54 (13)C13—O2—C6—C160.29 (11)
C5—C6—C1—C243.22 (17)C13—O2—C6—C5177.19 (12)
C5—C6—C1—F176.59 (15)C13—O2—C6—C752.26 (11)
C5—C6—C7—C8147.40 (13)C14—C1—C2—C3157.92 (15)
C6—C1—C14—C1313.05 (12)C14—C13—C12—C11154.56 (13)
C6—C1—C2—C342.79 (19)C14—C13—C8—C763.06 (13)
C6—C5—C4—C31.3 (3)C14—C13—C8—C9178.98 (12)
C6—O2—C13—C12176.26 (11)C14—C13—C8—O157.12 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.142.9554 (14)177
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H17FO2
Mr236.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)8.1603 (6), 10.9148 (8), 13.5558 (10)
β (°) 96.285 (3)
V3)1200.13 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.22 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.976, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
10752, 2454, 2038
Rint0.020
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.03
No. of reflections2454
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.142.9554 (14)177
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology (DST), India, for the CCD facility at the Indian Institute of Science (IISc), Bangalore. GM thanks the Council for Scientific and Industrial Research (CSIR), India, for research support and the award of a Bhatnagar Fellowship.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBanks, R. E., Mohialdin-Khaffaf, S. N., Lal, G. S., Sharif, I. & Syvret, R. G. (1992). J. Chem. Soc. Chem. Commun. pp. 595–596.  CrossRef Web of Science Google Scholar
First citationBégué, J.-P. & Bonnet-Delpon, D. (2006). J. Fluorine Chem. 127, 992–1012.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc. Madison. Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKirsch, P. (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationMehta, G. & Sen, S. (2010). Eur. J. Org. Chem. pp. 3387–3394.  Web of Science CSD CrossRef Google Scholar
First citationMehta, G., Sen, S. & Ramesh, S. S. (2007). Eur. J. Org. Chem. pp. 423–436.  Web of Science CSD CrossRef Google Scholar
First citationMiddleton, W. J. (1975). J. Org. Chem. 40, 574–578.  CrossRef CAS Web of Science Google Scholar
First citationMüller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886.  Web of Science PubMed Google Scholar
First citationOlah, G. A., Welch, J. T., Vankar, Y. D., Nojima, M., Kerekes, I. & Olah, J. A. (1979). J. Org. Chem. 44, 3872–3881.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds