organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{1-[4-(2-Methyl­prop­yl)phen­yl]eth­yl}-4-phenyl-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 June 2011; accepted 29 June 2011; online 9 July 2011)

In the title compound, C20H23N3S, the central 1,2,4-triazole ring makes dihedral angles of 69.76 (9) and 81.69 (8)°, respectively, with the phenyl and benzene rings. In the crystal, mol­ecules are linked into a centrosymmetric dimer by a pair of inter­molecular N—H⋯S hydrogen bonds, generating an R22(8) ring motif.

Related literature

For general background to and applications of 1,2,4-triazole derivatives, see: Holla et al. (1998[Holla, B. S., Gonsalves, R. & Shenoy, S. (1998). Farmaco, 53, 574-578.], 2003[Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759-767.]); Maxwell et al. (1994[Maxwell J. R., Wasdahl D. A. & Wolfson A. C. (1994). J. Med. Chem. 27, 1565-1570.]); Turan-Zitouni et al. (1999[Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218-223.]); Demirbas & Demirbas (2002[Demirbas, N. & Demirbas, U. A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253-257.]); Burch & Smith (1966[Burch, H. A. & Smith, W. O. (1966). J. Med. Chem. 9, 405-408.]); Kalyoncuoglu et al. (1992[Kalyoncuoglu, N., Rollas, S., Sür-Altiner, D., Yegenoglu, Y. & Ang, Ö. (1992). Pharmazie, 47, 796-797.]); Mir et al. (1970[Mir, I., Siddiqui, M. T. & Comrie, A. (1970). Tetrahedron, 26, 5235-5238.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23N3S

  • Mr = 337.47

  • Triclinic, [P \overline 1]

  • a = 6.3249 (2) Å

  • b = 12.4958 (5) Å

  • c = 12.9125 (4) Å

  • α = 77.649 (1)°

  • β = 78.133 (1)°

  • γ = 76.551 (1)°

  • V = 956.44 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 297 K

  • 0.57 × 0.29 × 0.16 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 0.973

  • 30772 measured reflections

  • 8473 independent reflections

  • 5131 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.190

  • S = 1.05

  • 8473 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.90 2.43 3.2982 (11) 161
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,4-Triazole derivatives possess comprehensive bioactivities such as antimicrobial (Holla et al., 1998), anti-inflammatory (Maxwell et al., 1994), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas & Demirbas, 2002) and antiviral activities (Kritsanida et al., 2002). Among the 1,2,4-triazoles, the mercapto-thione-substituted 1,2,4-triazole ring systems have been well studied and so far, a variety of biological activities have been reported for a large number of their derivatives, such as antibacterial (Burch & Smith, 1966), antifungal (Kalyoncuoglu et al., 1992), antitubercular (Mir et al., 1970) and anticancer properties (Holla et al., 2003).

The central 1,2,4-triazole ring makes dihedral angles of 69.76 (9) and 81.69 (8)°, respectively, with the phenyl C1–C6 ring and the benzene C10–C15 rings (Fig. 1). In the crystal structure, the molecules are linked into a centrosymmetric dimer by intermolecular N2—H1N2···S1 hydrogen bonds (Table 1 and Fig. 2) generating an R22(8) ring motif (Bernstein et al., 1995).

Related literature top

For general background to and applications of 1,2,4-triazole derivatives, see: Holla et al. (1998, 2003); Maxwell et al. (1994); Turan-Zitouni et al. (1999); Demirbas & Demirbas (2002); Kritsanida et al. (2002); Burch & Smith (1966); Kalyoncuoglu et al. (1992); Mir et al. (1970). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 2-{2-[4-isobutylphenyl] propanoyl}-N-phenylhydrazinecarbothioamide (0.1 mol) and 5% sodium hydroxide (100 ml) was refluxed for 6 h. The reaction mixture was then poured into ice cold water and acidified with dilute hydrochloric acid. The precipitate thus obtained was filtered, dried and re-crystallized from ethanol.

Refinement top

The N-bound hydrogen atom was located in a difference Fourier map and refined using a riding model, with Uiso(H) = 1.2Ueq(N). All C-bound hydrogen atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model were applied for methyl groups. Five reflections, 0 -3 3, 1 1 5, -1 0 4, -3 -1 6, and 3 5 0, were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the molecules linked into dimers stacked along the a axis. Hydrogen bonds (dashed lines) are shown.
3-{1-[4-(2-Methylpropyl)phenyl]ethyl}-4-phenyl-1H- 1,2,4-triazole-5(4H)-thione top
Crystal data top
C20H23N3SZ = 2
Mr = 337.47F(000) = 360
Triclinic, P1Dx = 1.172 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3249 (2) ÅCell parameters from 7323 reflections
b = 12.4958 (5) Åθ = 3.4–33.2°
c = 12.9125 (4) ŵ = 0.18 mm1
α = 77.649 (1)°T = 297 K
β = 78.133 (1)°Block, yellow
γ = 76.551 (1)°0.57 × 0.29 × 0.16 mm
V = 956.44 (6) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8473 independent reflections
Radiation source: fine-focus sealed tube5131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 35.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.907, Tmax = 0.973k = 2020
30772 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0928P)2 + 0.0747P]
where P = (Fo2 + 2Fc2)/3
8473 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C20H23N3Sγ = 76.551 (1)°
Mr = 337.47V = 956.44 (6) Å3
Triclinic, P1Z = 2
a = 6.3249 (2) ÅMo Kα radiation
b = 12.4958 (5) ŵ = 0.18 mm1
c = 12.9125 (4) ÅT = 297 K
α = 77.649 (1)°0.57 × 0.29 × 0.16 mm
β = 78.133 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8473 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5131 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.973Rint = 0.029
30772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
8473 reflectionsΔρmin = 0.27 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08075 (6)0.01849 (3)0.18539 (3)0.05785 (12)
N10.20563 (16)0.11866 (8)0.18008 (7)0.04246 (19)
N20.20973 (18)0.07739 (9)0.02809 (8)0.0521 (2)
H1N20.19120.04410.02400.062*
N30.35825 (18)0.14653 (10)0.00916 (9)0.0543 (2)
C10.2972 (3)0.08271 (16)0.35969 (12)0.0758 (5)
H1A0.43580.04310.33510.091*
C20.2366 (4)0.0957 (2)0.46651 (14)0.0993 (8)
H2A0.33700.06490.51350.119*
C30.0349 (3)0.15220 (18)0.50391 (13)0.0847 (6)
H3A0.00440.15800.57630.102*
C40.1105 (3)0.2006 (2)0.43437 (14)0.0882 (6)
H4A0.24770.24160.45890.106*
C50.0538 (2)0.18870 (16)0.32681 (12)0.0683 (4)
H5A0.15320.22100.27950.082*
C60.14823 (19)0.12949 (9)0.29125 (9)0.0447 (2)
C70.1115 (2)0.05877 (9)0.13045 (9)0.0444 (2)
C80.35300 (19)0.17053 (10)0.10269 (9)0.0465 (2)
C90.4782 (2)0.24956 (11)0.12384 (12)0.0538 (3)
H9A0.56110.21090.18200.065*
C100.3240 (2)0.35217 (11)0.15951 (11)0.0514 (3)
C110.3736 (3)0.40631 (16)0.23145 (16)0.0768 (5)
H11A0.49920.37590.26280.092*
C120.2420 (3)0.50401 (16)0.25793 (18)0.0815 (5)
H12A0.28100.53820.30650.098*
C130.0531 (2)0.55268 (11)0.21409 (13)0.0621 (3)
C140.0013 (3)0.49653 (14)0.14492 (14)0.0685 (4)
H14A0.13020.52540.11600.082*
C150.1316 (3)0.39832 (13)0.11773 (12)0.0628 (3)
H15A0.09090.36290.07060.075*
C160.0877 (3)0.66265 (13)0.23725 (17)0.0775 (5)
H16A0.01220.69460.27770.093*
H16B0.10120.71320.16950.093*
C170.3145 (3)0.65684 (16)0.29847 (17)0.0830 (5)
H17A0.38270.61690.26090.100*
C180.3071 (7)0.5916 (2)0.4111 (2)0.1563 (16)
H18A0.45470.59200.44900.234*
H18B0.23010.62540.44810.234*
H18C0.23190.51590.40770.234*
C190.4555 (4)0.7724 (2)0.2994 (2)0.1071 (8)
H19A0.45930.81110.22680.161*
H19B0.39440.81320.33710.161*
H19C0.60250.76640.33470.161*
C200.6445 (3)0.28229 (17)0.02293 (16)0.0785 (5)
H20A0.74160.21610.00250.118*
H20B0.72900.32990.03840.118*
H20C0.56640.32120.03480.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0759 (2)0.0634 (2)0.04339 (17)0.03438 (17)0.00472 (14)0.01132 (13)
N10.0465 (5)0.0467 (5)0.0371 (4)0.0112 (4)0.0079 (3)0.0105 (3)
N20.0607 (6)0.0613 (6)0.0401 (5)0.0211 (5)0.0017 (4)0.0180 (4)
N30.0545 (6)0.0665 (6)0.0446 (5)0.0202 (5)0.0000 (4)0.0140 (5)
C10.0783 (10)0.0904 (11)0.0531 (8)0.0225 (8)0.0283 (7)0.0263 (7)
C20.1055 (14)0.1307 (17)0.0557 (9)0.0281 (13)0.0401 (10)0.0338 (10)
C30.0979 (13)0.1126 (14)0.0452 (7)0.0087 (11)0.0106 (8)0.0313 (9)
C40.0690 (10)0.1325 (17)0.0594 (9)0.0050 (10)0.0025 (8)0.0440 (10)
C50.0541 (7)0.0994 (11)0.0485 (7)0.0027 (7)0.0115 (6)0.0237 (7)
C60.0515 (6)0.0486 (5)0.0372 (5)0.0106 (4)0.0097 (4)0.0112 (4)
C70.0522 (6)0.0451 (5)0.0386 (5)0.0112 (4)0.0075 (4)0.0118 (4)
C80.0440 (6)0.0524 (6)0.0442 (5)0.0114 (4)0.0063 (4)0.0098 (4)
C90.0451 (6)0.0584 (7)0.0622 (7)0.0169 (5)0.0124 (5)0.0093 (5)
C100.0509 (6)0.0551 (6)0.0541 (7)0.0213 (5)0.0118 (5)0.0074 (5)
C110.0578 (8)0.0883 (11)0.1032 (13)0.0129 (7)0.0314 (9)0.0415 (10)
C120.0699 (10)0.0860 (11)0.1100 (14)0.0250 (8)0.0201 (9)0.0476 (11)
C130.0638 (8)0.0529 (7)0.0696 (8)0.0249 (6)0.0022 (6)0.0089 (6)
C140.0738 (9)0.0646 (8)0.0661 (9)0.0039 (7)0.0249 (8)0.0072 (7)
C150.0684 (8)0.0658 (8)0.0600 (8)0.0090 (7)0.0266 (7)0.0126 (6)
C160.0772 (10)0.0588 (8)0.0919 (12)0.0259 (7)0.0129 (9)0.0153 (8)
C170.0817 (11)0.0830 (11)0.0885 (13)0.0356 (9)0.0170 (9)0.0327 (9)
C180.206 (4)0.110 (2)0.105 (2)0.033 (2)0.059 (2)0.0048 (16)
C190.0893 (14)0.1154 (17)0.1069 (17)0.0089 (13)0.0160 (13)0.0416 (14)
C200.0566 (8)0.0913 (11)0.0899 (12)0.0339 (8)0.0087 (8)0.0195 (9)
Geometric parameters (Å, º) top
S1—C71.6766 (12)C11—C121.374 (2)
N1—C71.3766 (13)C11—H11A0.9300
N1—C81.3815 (15)C12—C131.382 (2)
N1—C61.4341 (14)C12—H12A0.9300
N2—C71.3361 (15)C13—C141.384 (2)
N2—N31.3716 (15)C13—C161.506 (2)
N2—H1N20.9023C14—C151.385 (2)
N3—C81.2975 (15)C14—H14A0.9300
C1—C61.3695 (17)C15—H15A0.9300
C1—C21.388 (2)C16—C171.498 (2)
C1—H1A0.9300C16—H16A0.9700
C2—C31.354 (3)C16—H16B0.9700
C2—H2A0.9300C17—C181.511 (4)
C3—C41.366 (3)C17—C191.512 (3)
C3—H3A0.9300C17—H17A0.9800
C4—C51.392 (2)C18—H18A0.9600
C4—H4A0.9300C18—H18B0.9600
C5—C61.3620 (19)C18—H18C0.9600
C5—H5A0.9300C19—H19A0.9600
C8—C91.4982 (17)C19—H19B0.9600
C9—C101.5145 (19)C19—H19C0.9600
C9—C201.543 (2)C20—H20A0.9600
C9—H9A0.9800C20—H20B0.9600
C10—C111.3808 (19)C20—H20C0.9600
C10—C151.3836 (18)
C7—N1—C8107.80 (9)C11—C12—C13121.61 (15)
C7—N1—C6125.16 (10)C11—C12—H12A119.2
C8—N1—C6126.94 (10)C13—C12—H12A119.2
C7—N2—N3113.85 (10)C12—C13—C14116.87 (14)
C7—N2—H1N2124.5C12—C13—C16122.73 (16)
N3—N2—H1N2121.5C14—C13—C16120.39 (15)
C8—N3—N2104.11 (10)C13—C14—C15121.57 (14)
C6—C1—C2118.49 (15)C13—C14—H14A119.2
C6—C1—H1A120.8C15—C14—H14A119.2
C2—C1—H1A120.8C10—C15—C14121.04 (14)
C3—C2—C1121.58 (15)C10—C15—H15A119.5
C3—C2—H2A119.2C14—C15—H15A119.5
C1—C2—H2A119.2C17—C16—C13115.34 (13)
C2—C3—C4119.39 (15)C17—C16—H16A108.4
C2—C3—H3A120.3C13—C16—H16A108.4
C4—C3—H3A120.3C17—C16—H16B108.4
C3—C4—C5120.11 (16)C13—C16—H16B108.4
C3—C4—H4A119.9H16A—C16—H16B107.5
C5—C4—H4A119.9C16—C17—C18111.5 (2)
C6—C5—C4119.58 (14)C16—C17—C19111.03 (16)
C6—C5—H5A120.2C18—C17—C19111.5 (2)
C4—C5—H5A120.2C16—C17—H17A107.5
C5—C6—C1120.81 (12)C18—C17—H17A107.5
C5—C6—N1119.09 (10)C19—C17—H17A107.5
C1—C6—N1120.09 (11)C17—C18—H18A109.5
N2—C7—N1103.26 (10)C17—C18—H18B109.5
N2—C7—S1128.48 (9)H18A—C18—H18B109.5
N1—C7—S1128.26 (9)C17—C18—H18C109.5
N3—C8—N1110.98 (10)H18A—C18—H18C109.5
N3—C8—C9124.99 (12)H18B—C18—H18C109.5
N1—C8—C9123.92 (11)C17—C19—H19A109.5
C8—C9—C10111.30 (10)C17—C19—H19B109.5
C8—C9—C20110.08 (12)H19A—C19—H19B109.5
C10—C9—C20110.99 (12)C17—C19—H19C109.5
C8—C9—H9A108.1H19A—C19—H19C109.5
C10—C9—H9A108.1H19B—C19—H19C109.5
C20—C9—H9A108.1C9—C20—H20A109.5
C11—C10—C15117.19 (14)C9—C20—H20B109.5
C11—C10—C9121.54 (12)H20A—C20—H20B109.5
C15—C10—C9121.21 (12)C9—C20—H20C109.5
C12—C11—C10121.64 (14)H20A—C20—H20C109.5
C12—C11—H11A119.2H20B—C20—H20C109.5
C10—C11—H11A119.2
C7—N2—N3—C80.55 (15)C6—N1—C8—C90.56 (18)
C6—C1—C2—C30.6 (4)N3—C8—C9—C10113.63 (14)
C1—C2—C3—C42.1 (4)N1—C8—C9—C1062.26 (15)
C2—C3—C4—C52.1 (4)N3—C8—C9—C209.86 (18)
C3—C4—C5—C60.7 (3)N1—C8—C9—C20174.25 (13)
C4—C5—C6—C10.8 (3)C8—C9—C10—C11147.05 (15)
C4—C5—C6—N1179.42 (17)C20—C9—C10—C1189.98 (18)
C2—C1—C6—C50.8 (3)C8—C9—C10—C1535.72 (18)
C2—C1—C6—N1179.43 (18)C20—C9—C10—C1587.25 (16)
C7—N1—C6—C568.30 (17)C15—C10—C11—C122.2 (3)
C8—N1—C6—C5107.57 (15)C9—C10—C11—C12175.17 (16)
C7—N1—C6—C1113.07 (16)C10—C11—C12—C130.2 (3)
C8—N1—C6—C171.06 (18)C11—C12—C13—C142.0 (3)
N3—N2—C7—N10.83 (14)C11—C12—C13—C16176.77 (17)
N3—N2—C7—S1178.99 (9)C12—C13—C14—C152.3 (2)
C8—N1—C7—N20.77 (12)C16—C13—C14—C15176.50 (15)
C6—N1—C7—N2177.31 (10)C11—C10—C15—C141.8 (2)
C8—N1—C7—S1179.06 (9)C9—C10—C15—C14175.50 (14)
C6—N1—C7—S12.52 (17)C13—C14—C15—C100.4 (3)
N2—N3—C8—N10.02 (13)C12—C13—C16—C17114.2 (2)
N2—N3—C8—C9176.36 (12)C14—C13—C16—C1767.1 (2)
C7—N1—C8—N30.49 (13)C13—C16—C17—C1865.7 (3)
C6—N1—C8—N3176.95 (11)C13—C16—C17—C19169.34 (19)
C7—N1—C8—C9175.90 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.902.433.2982 (11)161
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC20H23N3S
Mr337.47
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)6.3249 (2), 12.4958 (5), 12.9125 (4)
α, β, γ (°)77.649 (1), 78.133 (1), 76.551 (1)
V3)956.44 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.57 × 0.29 × 0.16
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.907, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
30772, 8473, 5131
Rint0.029
(sin θ/λ)max1)0.813
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.190, 1.05
No. of reflections8473
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.902.433.2982 (11)161
Symmetry code: (i) x, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF and CSY thank Universiti Sains Malaysia for the Research University Grant 1001/PFIZIK/811160.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurch, H. A. & Smith, W. O. (1966). J. Med. Chem. 9, 405–408.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDemirbas, N. & Demirbas, U. A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolla, B. S., Gonsalves, R. & Shenoy, S. (1998). Farmaco, 53, 574–578.  CrossRef PubMed CAS Google Scholar
First citationHolla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem. 38, 759–767.  Web of Science CrossRef PubMed Google Scholar
First citationKalyoncuoglu, N., Rollas, S., Sür-Altiner, D., Yegenoglu, Y. & Ang, Ö. (1992). Pharmazie, 47, 796–797.  PubMed CAS Web of Science Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaxwell J. R., Wasdahl D. A. & Wolfson A. C. (1994). J. Med. Chem. 27, 1565–1570.  Google Scholar
First citationMir, I., Siddiqui, M. T. & Comrie, A. (1970). Tetrahedron, 26, 5235–5238.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuran-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218–223.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds