metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline)zinc]-μ-2,2′-oxydibenzoato]

aDepartment of Chemistry, Mudanjiang Normal College, Mudanjiang 157012, Heilongjiang Province, People's Republic of China
*Correspondence e-mail: xuecai@mail.sdu.edu.cn

(Received 7 July 2011; accepted 16 July 2011; online 30 July 2011)

In the title one-dimensional coordination polymer, [Zn(C14H8O5)(C12H8N2)]n, the ZnII ion is in a distorted octa­hedral coordination geometry with four O atoms from two carboxyl­ate groups in bidentate chelating modes and two N atoms from a 1,10-phenanthroline ligand. The two terminal carboxyl­ate groups bind the ZnII ions, leading to a chain along the c axis. Adjacent chains are further linked by inter­molecular ππ inter­actions with a shortest centroid–centroid distance of 3.586 (3) Å, forming a two-dimensional supra­molecular architecture with (6,3)-network topology.

Related literature

For related structures and the properties of coordination polymers, see, for example: Evans et al. (1999[Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536-538.]); Yaghi et al. (1998[Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]); Wang et al. (2005[Wang, X.-L., Qin, C., Wang, E.-B., Li, Y.-G., Su, Z.-M., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824-5827.]); Li et al. (2003[Li, J., Zhang, R. & Bu, X. (2003). Cryst. Growth Des. 3, 829-835.]). For the synthesis of 3-(4-carb­oxy­phen­oxy)phthalic acid, see: Wang et al. (2009[Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L.-F., Tian, J., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. 9, 5273-5282.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C14H8O5)(C12H8N2)]

  • Mr = 501.78

  • Monoclinic, P 21 /n

  • a = 7.7033 (18) Å

  • b = 17.403 (4) Å

  • c = 16.230 (4) Å

  • β = 90.184 (4)°

  • V = 2175.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.15 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.901, Tmax = 0.913

  • 10511 measured reflections

  • 3843 independent reflections

  • 2320 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 0.94

  • 3843 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2 2.011 (2)
Zn1—N1 2.114 (3)
Zn1—N2 2.129 (3)
Zn1—O4i 2.143 (3)
Zn1—O5i 2.172 (3)
Zn1—O1 2.395 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of coordination polymers in supramolecular chemistry and crystal engineering, have been emerging as an ongoing field owing to their structural aesthetics and topologies as well as diverse functional properties (Evans et al., 1999; Yaghi et al., 1998) The semirigid V-shaped multicarboxylate ligands with two benzene rings bridged by an oxygen atom as central molecular framework are of increasing flexibility and therefore able to lead to metal complexes with diverse structures because of the free rotation of two benzene rings around the bridged atom (Wang et al., 2005).

The compound (I) crystallizes in the monoclinic system. As shown in Fig. 1, the Zn(II) ion is located in a distorted octahedral coordination geometry completed by four oxygen atoms from two carboxyl substituents of organic carboxylic acid in a bidentate chelating mode and two nitrogen atoms from the 1,10-phenanthroline ligand. The head and terminal carboxylate groups bind Zn(II) ions to lead to a one-dimensional chain. The neighboring chains are further linked by an intermolecular ππ interaction between the phenanthroline ring systems with a shortest centroid-centroid distance 3.586 (3) Å, forming a two-dimensional supramolecular architecture (Fig. 2) with 3-connect (6,3) network topology (Li et al., 2003)

Related literature top

For related structures and the properties of coordination polymers, see, for example: Evans et al. (1999); Yaghi et al. (1998); Wang et al. (2005); Li et al. (2003). For the synthesis of 3-(4-carboxyphenoxy)phthalic acid, see: Wang et al. (2009).

Experimental top

The mixture of Zn(OAc)2.2H2O (0.044 g, 0.2 mmol), 1,10-phenanthroline (0.0360 g, 0.2 mmol), 3-(4-carboxyphenoxy)phthalic acid (H3L, 0.0302 g, 0.1 mmol), KOH (0.0168 g, 0.3 mmol) and H2O (15 ml) was sealed in 25 ml Teflon-lined stainless steel reactor, which was heated to 160 °C. Colourless block-shaped crystals suitable for X-ray diffraction analysis were separated by filtration with the yield of 0.022 g.

Refinement top

All H atoms were refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at 30% probability level. All hydrogen atoms have been omitted. The suffix A corresponds to symmetry code (i) in Table 1.
[Figure 2] Fig. 2. A view of the two-dimensional supramolecular architecture of the title compound.
catena-Poly[[(1,10-phenanthroline)zinc]-µ-2,2'-oxydibenzoato] top
Crystal data top
[Zn(C14H8O5)(C12H8N2)]F(000) = 1024
Mr = 501.78Dx = 1.532 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1776 reflections
a = 7.7033 (18) Åθ = 2.3–21.9°
b = 17.403 (4) ŵ = 1.17 mm1
c = 16.230 (4) ÅT = 293 K
β = 90.184 (4)°Block, colourless
V = 2175.8 (9) Å30.15 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3843 independent reflections
Radiation source: fine-focus sealed tube2320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.7°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2016
Tmin = 0.901, Tmax = 0.913l = 1819
10511 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
3843 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn(C14H8O5)(C12H8N2)]V = 2175.8 (9) Å3
Mr = 501.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7033 (18) ŵ = 1.17 mm1
b = 17.403 (4) ÅT = 293 K
c = 16.230 (4) Å0.15 × 0.08 × 0.06 mm
β = 90.184 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3843 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2320 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.913Rint = 0.056
10511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.94Δρmax = 0.49 e Å3
3843 reflectionsΔρmin = 0.41 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.13817 (6)0.13631 (3)0.83696 (3)0.04575 (18)
O30.2343 (3)0.10169 (15)0.42299 (15)0.0501 (7)
O40.1006 (3)0.32154 (16)0.33955 (16)0.0508 (7)
N10.2187 (4)0.02020 (18)0.83600 (18)0.0427 (8)
O50.3157 (3)0.24285 (15)0.36218 (17)0.0576 (8)
O20.0997 (3)0.14036 (15)0.78576 (15)0.0505 (7)
C250.2064 (5)0.0400 (2)0.9814 (2)0.0449 (10)
O10.1008 (3)0.14258 (19)0.69057 (16)0.0687 (9)
N20.1358 (4)0.1102 (2)0.96511 (19)0.0488 (8)
C180.3184 (5)0.0821 (3)0.9262 (3)0.0527 (11)
C260.2485 (4)0.0083 (2)0.9126 (2)0.0431 (10)
C10.0532 (5)0.1416 (2)0.7110 (2)0.0446 (10)
C100.2189 (6)0.0738 (3)0.3682 (3)0.0603 (12)
H100.29960.03400.36750.072*
C130.0274 (4)0.1917 (2)0.3654 (2)0.0366 (9)
C110.2659 (5)0.1464 (3)0.3426 (2)0.0568 (12)
H110.37930.15610.32620.068*
C50.4461 (5)0.1157 (2)0.5263 (3)0.0558 (11)
H50.53050.10670.48640.067*
C210.2411 (5)0.0138 (3)1.0612 (3)0.0599 (13)
C120.1449 (4)0.2045 (2)0.3413 (2)0.0431 (9)
H120.17810.25330.32420.052*
C30.1465 (4)0.1308 (2)0.5634 (2)0.0379 (9)
H30.03040.13450.54830.046*
C140.1562 (5)0.2555 (2)0.3559 (2)0.0403 (9)
C20.1942 (4)0.1381 (2)0.6454 (2)0.0369 (8)
C40.2722 (5)0.1181 (2)0.5043 (2)0.0407 (9)
C150.2555 (5)0.0236 (3)0.7719 (3)0.0528 (11)
H150.23650.00420.71930.063*
C90.0534 (6)0.0604 (2)0.3947 (2)0.0559 (11)
H90.02220.01160.41270.067*
C170.3525 (5)0.1265 (3)0.8556 (3)0.0688 (13)
H170.39660.17600.86130.083*
C220.2001 (6)0.0634 (4)1.1255 (3)0.0769 (16)
H220.21930.04821.17970.092*
C80.0682 (5)0.1189 (2)0.3951 (2)0.0400 (9)
C160.3218 (5)0.0979 (3)0.7799 (3)0.0649 (13)
H160.34460.12740.73340.078*
C200.3170 (6)0.0615 (3)1.0716 (3)0.0721 (15)
H200.34150.07931.12440.086*
C240.0998 (6)0.1566 (3)1.0270 (3)0.0647 (13)
H240.05250.20481.01640.078*
C60.4932 (5)0.1267 (3)0.6066 (3)0.0585 (12)
H60.61000.12750.62080.070*
C230.1324 (7)0.1338 (4)1.1098 (3)0.0764 (15)
H230.10730.16711.15300.092*
C70.3675 (5)0.1366 (2)0.6669 (2)0.0484 (10)
H70.39980.14220.72180.058*
C190.3527 (6)0.1059 (3)1.0072 (3)0.0713 (14)
H190.40170.15411.01610.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0362 (3)0.0535 (3)0.0475 (3)0.0081 (2)0.0086 (2)0.0039 (2)
O30.0465 (17)0.0655 (19)0.0382 (15)0.0152 (14)0.0071 (13)0.0035 (13)
O40.0418 (16)0.0465 (17)0.0641 (18)0.0019 (13)0.0034 (13)0.0047 (14)
N10.0335 (17)0.056 (2)0.0385 (19)0.0111 (15)0.0066 (14)0.0001 (17)
O50.0310 (16)0.0534 (18)0.088 (2)0.0039 (13)0.0074 (14)0.0064 (15)
O20.0432 (16)0.074 (2)0.0344 (15)0.0024 (14)0.0046 (12)0.0032 (14)
C250.031 (2)0.060 (3)0.044 (2)0.0180 (19)0.0070 (18)0.005 (2)
O10.0240 (15)0.129 (3)0.0530 (17)0.0026 (16)0.0029 (13)0.0030 (18)
N20.042 (2)0.060 (2)0.045 (2)0.0138 (17)0.0019 (16)0.0062 (18)
C180.033 (2)0.065 (3)0.060 (3)0.008 (2)0.009 (2)0.011 (2)
C260.027 (2)0.057 (3)0.046 (2)0.0136 (18)0.0087 (17)0.007 (2)
C10.038 (2)0.052 (3)0.044 (2)0.0057 (19)0.0039 (19)0.002 (2)
C100.055 (3)0.061 (3)0.065 (3)0.025 (2)0.017 (2)0.012 (3)
C130.033 (2)0.046 (2)0.030 (2)0.0025 (17)0.0037 (16)0.0015 (17)
C110.037 (2)0.084 (4)0.049 (3)0.013 (2)0.0012 (19)0.010 (2)
C50.035 (2)0.081 (3)0.051 (3)0.003 (2)0.015 (2)0.003 (2)
C210.037 (2)0.102 (4)0.040 (3)0.025 (2)0.006 (2)0.009 (3)
C120.032 (2)0.052 (2)0.045 (2)0.002 (2)0.0015 (17)0.004 (2)
C30.0273 (19)0.047 (2)0.039 (2)0.0002 (17)0.0036 (16)0.0049 (18)
C140.035 (2)0.049 (3)0.036 (2)0.0019 (19)0.0065 (17)0.0057 (18)
C20.0287 (19)0.042 (2)0.040 (2)0.0005 (17)0.0034 (16)0.0002 (18)
C40.036 (2)0.047 (2)0.039 (2)0.0042 (17)0.0059 (17)0.0071 (18)
C150.040 (2)0.069 (3)0.049 (3)0.006 (2)0.0082 (19)0.005 (2)
C90.064 (3)0.051 (3)0.053 (3)0.012 (2)0.014 (2)0.001 (2)
C170.040 (3)0.059 (3)0.107 (4)0.004 (2)0.008 (3)0.005 (3)
C220.058 (3)0.133 (5)0.040 (3)0.032 (3)0.002 (2)0.007 (3)
C80.039 (2)0.051 (3)0.030 (2)0.0003 (19)0.0073 (17)0.0003 (18)
C160.040 (3)0.074 (3)0.081 (3)0.002 (2)0.010 (2)0.020 (3)
C200.043 (3)0.111 (5)0.062 (3)0.016 (3)0.014 (2)0.047 (3)
C240.053 (3)0.081 (4)0.060 (3)0.017 (2)0.008 (2)0.012 (3)
C60.025 (2)0.089 (3)0.062 (3)0.001 (2)0.004 (2)0.002 (3)
C230.064 (3)0.120 (5)0.045 (3)0.028 (3)0.007 (2)0.024 (3)
C70.038 (2)0.063 (3)0.044 (2)0.005 (2)0.0032 (18)0.001 (2)
C190.043 (3)0.091 (4)0.080 (4)0.005 (3)0.009 (3)0.032 (3)
Geometric parameters (Å, º) top
Zn1—O22.011 (2)C11—H110.9300
Zn1—N12.114 (3)C5—C61.369 (6)
Zn1—N22.129 (3)C5—C41.387 (5)
Zn1—O4i2.143 (3)C5—H50.9300
Zn1—O5i2.172 (3)C21—C221.391 (7)
Zn1—O12.395 (3)C21—C201.446 (7)
O3—C41.383 (4)C12—H120.9300
O3—C81.392 (4)C3—C41.378 (5)
O4—C141.255 (4)C3—C21.389 (5)
N1—C151.321 (5)C3—H30.9300
N1—C261.358 (4)C2—C71.381 (5)
O5—C141.253 (4)C15—C161.396 (6)
O2—C11.266 (4)C15—H150.9300
C25—N21.362 (5)C9—C81.383 (5)
C25—C211.398 (5)C9—H90.9300
C25—C261.437 (5)C17—C161.345 (6)
O1—C11.233 (4)C17—H170.9300
N2—C241.319 (5)C22—C231.355 (7)
C18—C191.402 (6)C22—H220.9300
C18—C171.407 (6)C16—H160.9300
C18—C261.410 (6)C20—C191.329 (6)
C1—C21.520 (5)C20—H200.9300
C10—C91.367 (6)C24—C231.423 (6)
C10—C111.379 (6)C24—H240.9300
C10—H100.9300C6—C71.385 (5)
C13—C81.393 (5)C6—H60.9300
C13—C121.403 (5)C23—H230.9300
C13—C141.496 (5)C7—H70.9300
C11—C121.375 (5)C19—H190.9300
O2—Zn1—N1107.31 (11)C25—C21—C20118.6 (4)
O2—Zn1—N2113.60 (11)C11—C12—C13121.4 (4)
N1—Zn1—N278.85 (13)C11—C12—H12119.3
O2—Zn1—O4i148.31 (11)C13—C12—H12119.3
N1—Zn1—O4i92.97 (11)C4—C3—C2119.6 (3)
N2—Zn1—O4i93.73 (11)C4—C3—H3120.2
O2—Zn1—O5i101.10 (10)C2—C3—H3120.2
N1—Zn1—O5i151.55 (10)O5—C14—O4120.9 (3)
N2—Zn1—O5i91.41 (12)O5—C14—C13120.8 (4)
O4i—Zn1—O5i60.75 (10)O4—C14—C13118.3 (3)
O2—Zn1—O158.81 (10)O5—C14—Zn1ii61.1 (2)
N1—Zn1—O194.05 (11)O4—C14—Zn1ii59.79 (19)
N2—Zn1—O1167.82 (11)C13—C14—Zn1ii177.9 (3)
O4i—Zn1—O196.52 (10)C7—C2—C3119.9 (3)
O5i—Zn1—O199.32 (11)C7—C2—C1120.9 (3)
C4—O3—C8117.7 (3)C3—C2—C1119.0 (3)
C14—O4—Zn1ii89.8 (2)C3—C4—O3123.2 (3)
C15—N1—C26118.3 (4)C3—C4—C5120.2 (4)
C15—N1—Zn1128.4 (3)O3—C4—C5116.5 (3)
C26—N1—Zn1113.1 (3)N1—C15—C16122.7 (4)
C14—O5—Zn1ii88.5 (2)N1—C15—H15118.6
C1—O2—Zn197.8 (2)C16—C15—H15118.6
N2—C25—C21123.2 (4)C10—C9—C8120.6 (4)
N2—C25—C26117.7 (3)C10—C9—H9119.7
C21—C25—C26119.1 (4)C8—C9—H9119.7
C1—O1—Zn181.1 (2)C16—C17—C18120.5 (4)
C24—N2—C25119.0 (4)C16—C17—H17119.8
C24—N2—Zn1128.0 (3)C18—C17—H17119.8
C25—N2—Zn1112.1 (3)C23—C22—C21120.5 (5)
C19—C18—C17124.5 (5)C23—C22—H22119.7
C19—C18—C26119.1 (4)C21—C22—H22119.7
C17—C18—C26116.5 (4)C9—C8—O3117.8 (4)
N1—C26—C18122.7 (4)C9—C8—C13121.0 (4)
N1—C26—C25117.4 (4)O3—C8—C13121.1 (3)
C18—C26—C25120.0 (4)C17—C16—C15119.4 (5)
O1—C1—O2122.3 (3)C17—C16—H16120.3
O1—C1—C2119.9 (3)C15—C16—H16120.3
O2—C1—C2117.8 (3)C19—C20—C21121.4 (4)
O1—C1—Zn170.0 (2)C19—C20—H20119.3
O2—C1—Zn152.30 (17)C21—C20—H20119.3
C2—C1—Zn1169.3 (3)N2—C24—C23120.8 (5)
C9—C10—C11119.8 (4)N2—C24—H24119.6
C9—C10—H10120.1C23—C24—H24119.6
C11—C10—H10120.1C5—C6—C7120.3 (4)
C8—C13—C12117.1 (3)C5—C6—H6119.9
C8—C13—C14124.1 (3)C7—C6—H6119.9
C12—C13—C14118.8 (3)C22—C23—C24119.8 (5)
C12—C11—C10120.0 (4)C22—C23—H23120.1
C12—C11—H11120.0C24—C23—H23120.1
C10—C11—H11120.0C2—C7—C6119.9 (4)
C6—C5—C4120.0 (4)C2—C7—H7120.1
C6—C5—H5120.0C6—C7—H7120.1
C4—C5—H5120.0C20—C19—C18121.8 (5)
C22—C21—C25116.7 (5)C20—C19—H19119.1
C22—C21—C20124.7 (5)C18—C19—H19119.1
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C14H8O5)(C12H8N2)]
Mr501.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.7033 (18), 17.403 (4), 16.230 (4)
β (°) 90.184 (4)
V3)2175.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.15 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.901, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
10511, 3843, 2320
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 0.94
No. of reflections3843
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.41

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O22.011 (2)Zn1—O4i2.143 (3)
Zn1—N12.114 (3)Zn1—O5i2.172 (3)
Zn1—N22.129 (3)Zn1—O12.395 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the Excellent Young Scholars in Higher Universities of Heilongjiang Province, China (1155 G57), the Natural Science Foundation of Heilongjiang Province, China (B201016), the Doctoral Research Fund of Mudanjiang Teachers College, China (MSB: 200902) and the Research Fund of Mudanjiang Teachers College, China (KY: 200902).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEvans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536–538.  CrossRef CAS Google Scholar
First citationLi, J., Zhang, R. & Bu, X. (2003). Cryst. Growth Des. 3, 829–835.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Qin, C., Wang, E.-B., Li, Y.-G., Su, Z.-M., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824–5827.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L.-F., Tian, J., Jiang, J. & Ni, Z.-H. (2009). Cryst. Growth Des. 9, 5273–5282.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds