organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Meth­­oxy-1-(4-nitro­benzo­yl)naph­thalen-2-yl 4-nitro­benzoate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 9 July 2011; accepted 10 July 2011; online 16 July 2011)

In the title compound, C25H16N2O8, the dihedral angle between the naphthalene ring system and the benzene ring of the nitro­phenyl ketone unit is 82.64 (7)°. The bridging ester O—C(=O)—C plane makes dihedral angles of 42.12 (8) and 11.47 (9)°, respectively, with the naphthalene ring system and the benzene ring of the nitro­phenyl ester unit. In the crystal, two types of weak inter­molecular C—H⋯O inter­actions are observed.

Related literature

For electrophilic aromatic substitution of naphthalene deriv­atives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Mitsui, Nakaema, Noguchi & Yonezawa (2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]); Mitsui et al. (2009[Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.]); Nagasawa et al. (2010[Nagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2820-o2821.]); Watanabe et al. (2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16N2O8

  • Mr = 472.40

  • Triclinic, [P \overline 1]

  • a = 7.30691 (15) Å

  • b = 10.2555 (2) Å

  • c = 14.7645 (3) Å

  • α = 84.750 (1)°

  • β = 86.278 (1)°

  • γ = 74.079 (1)°

  • V = 1058.57 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.95 mm−1

  • T = 193 K

  • 0.60 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.599, Tmax = 0.911

  • 19272 measured reflections

  • 3818 independent reflections

  • 2769 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.09

  • 3818 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O7i 0.95 2.58 3.211 (3) 124
C23—H23⋯O4ii 0.95 2.55 3.435 (2) 154
Symmetry codes: (i) x, y, z+1; (ii) -x+3, -y, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twistedly connected in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. The crystal structures of 1-monoaroylated naphthalene compounds such as 2,7-dimethoxy-1-(4-nitrobenzoyl)naphthalene (Watanabe et al., 2010) also exhibit essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. Furthermore, the crystal structures of several 1-monoaroylated naphthalene derivatives have revealed. For example, (2-hydroxy-7-methoxynaphthalen-1-yl)(4-methylphenyl)methanone (Nagasawa et al., 2010) and (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008) prepared by regioselective demethylation form intramolecular hydrogen bond between the carbonyl group and the adjacent hydroxy one. Besides, (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009) has similar non-coplanar configuration to 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008). As a part of our continuous studies on the molecular structures of this kind of homologous molecules, the crystal structure of the title compound, 1-monoaroylated naphthalene bearing 4-nitrobenzoyloxy group at 2-position is discussed in this report.

The molecular structure of the title compound is displayed in Fig. 1. The benzene ring of nitrophenyl ketone moiety (C12–C17) is out of the plane of the naphthalene ring. The dihedral angle between the best planes of the benzene ring (C12–C17) and the naphthalene ring system (C1–C10) is 82.64 (7)° [C2–C1–C11–O1 torsion angle = -79.8 (2)°]. However, the carbonyl group (C11O1) and the benzene ring (C12–C17) have almost coplanar configuration [O1–C11–C12–C17 torsion angle = 5.0 (2)°]. Besides, the dihedral angle between the benzene ring (C12–C17) and the nitro group plane (O4/N1/O5) is 29.35 (9)°. On the other hand, the benzene ring of nitrophenyl ester moiety (C19–C24) makes a rather small dihedral angle with naphthalene ring system (C1–C10) than that with the benzene ring of nitrophenyl ketone moiety (C12–C17), i.e., 31.38 (7)°. Moreover, the dihedral angles of the benzene ring (C19–C24) and the naphthalene ring system (C1–C10) with the ester plane (O2—C18( O6)—C19) are 11.47 (9)° and 42.12 (8)°, respectively. The nitro group plane (O7/N2/O8) makes a small dihedral angle of 6.47 (10)° with the benzene ring (C19–C24). In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. The crystal packing is additionally stabilized by intermolecular C—H···O interaction between the oxygen atom (O7) of the nitro group in nitrophenyl ester and one hydrogen atom (H6) of the naphthalene ring of the adjacent molecule (C6—H6···O7i; Fig. 2 and Table 1). Moreover, there is also intermolecular C—H···O interaction between the oxygen atom (O4) of the nitro group in nitrophenyl ketone and one hydrogen atom (H23) of the nitrophenyl ester of the adjacent molecule (C23—H23···O4ii; Fig. 3 and Table 1).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Muto et al. (2010); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008); Mitsui et al. (2009); Nagasawa et al. (2010); Watanabe et al. (2010).

Experimental top

To a 100 ml flask, 4-nitrobenzoyl chloride (17 mmol, 3.173 g), aluminium chloride (18.7 mmol, 2.495 g) and methylene chloride (21 ml) were placed and stirred at 273 K. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (8.5 mmol, 1.599 g) was added. After the reaction mixture was stirred at 273 K for 60 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by silica-gel chromatography from CHCl3. Yellow platelet single crystals suitable for X-ray diffraction were obtained by crystallization from ethanol (10 mg, 0.2% yield).

1H NMR δ (300 MHz, CDCl3); 3.75 (3H, s), 6.91 (1H, d, J = 2.4 Hz), 7.24 (1H, dd, J = 2.4, 9.0 Hz), 7.34 (1H, d, J = 8.4 Hz), 7.89 (1H, d, J = 9.0 Hz), 7.98 (2H, d, J = 9.0 Hz), 8.00 (2H, d, J = 8.4 Hz), 8.04 (1H, d, J = 9.0 Hz), 8.21 (2H, d, J = 8.4 Hz), 8.22 (2H, d, J = 9.3 Hz) p.p.m..

13C NMR δ (75 MHz, CDCl3); 55.32, 103.27, 118.37, 119.57, 123.65, 123.93, 125.45, 127.27, 130.14, 130.39, 131.00, 132.03, 132.54, 133.55, 141.98, 146.62, 150.55, 150.96, 159.37, 162.57, 194.18 p.p.m..

IR (KBr); 1746, 1679, 1619, 1525, 1349, 1234, 1208 cm-1

HRMS (m/z); [M + H]+ Calcd for C25H17N2O8, 473.0985; found, 473.0977.

m.p. = 452.0–454.0 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at 50% probability.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, showing intermolecular C6—H6···O7i interactions [symmetry code: (i) x, y, 1 + z].
[Figure 3] Fig. 3. A partial packing diagram of the title compound, showing intermolecular C23—H23···O4ii interactions [symmetry code: (ii) 3 - x, -y, -z].
7-Methoxy-1-(4-nitrobenzoyl)naphthalen-2-yl 4-nitrobenzoate top
Crystal data top
C25H16N2O8Z = 2
Mr = 472.40F(000) = 488
Triclinic, P1Dx = 1.482 Mg m3
Hall symbol: -P 1Melting point = 452.0–454.0 K
a = 7.30691 (15) ÅCu Kα radiation, λ = 1.54187 Å
b = 10.2555 (2) ÅCell parameters from 13543 reflections
c = 14.7645 (3) Åθ = 3.0–68.2°
α = 84.750 (1)°µ = 0.95 mm1
β = 86.278 (1)°T = 193 K
γ = 74.079 (1)°Platelet, yellow
V = 1058.57 (4) Å30.60 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3818 independent reflections
Radiation source: rotating anode2769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 3.0°
ω scansh = 88
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1212
Tmin = 0.599, Tmax = 0.911l = 1717
19272 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3818 reflectionsΔρmax = 0.25 e Å3
319 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0109 (9)
Crystal data top
C25H16N2O8γ = 74.079 (1)°
Mr = 472.40V = 1058.57 (4) Å3
Triclinic, P1Z = 2
a = 7.30691 (15) ÅCu Kα radiation
b = 10.2555 (2) ŵ = 0.95 mm1
c = 14.7645 (3) ÅT = 193 K
α = 84.750 (1)°0.60 × 0.20 × 0.10 mm
β = 86.278 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3818 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2769 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.911Rint = 0.046
19272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.09Δρmax = 0.25 e Å3
3818 reflectionsΔρmin = 0.22 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72939 (15)0.14056 (11)0.14376 (8)0.0481 (3)
O20.81352 (16)0.41705 (10)0.13883 (8)0.0441 (3)
O30.7430 (2)0.05991 (14)0.52467 (9)0.0626 (4)
O41.72999 (17)0.14620 (12)0.21963 (9)0.0572 (4)
O51.69619 (17)0.13852 (12)0.07413 (10)0.0550 (4)
O60.57830 (17)0.61275 (11)0.12164 (8)0.0497 (3)
O70.8971 (2)0.37502 (16)0.32155 (10)0.0792 (5)
O80.7462 (2)0.58713 (17)0.34326 (9)0.0801 (5)
N11.6332 (2)0.11728 (13)0.15166 (11)0.0460 (4)
N20.8126 (2)0.48522 (19)0.29361 (11)0.0587 (4)
C10.7879 (2)0.26316 (16)0.26282 (11)0.0383 (4)
C20.7743 (2)0.39621 (16)0.23280 (12)0.0416 (4)
C30.7412 (2)0.50013 (18)0.29209 (13)0.0498 (5)
H30.73550.59100.26980.060*
C40.7176 (3)0.46701 (19)0.38256 (14)0.0525 (5)
H40.69690.53620.42370.063*
C50.7230 (2)0.33340 (18)0.41736 (12)0.0468 (4)
C60.6962 (3)0.2986 (2)0.51139 (13)0.0568 (5)
H60.67120.36760.55280.068*
C70.7053 (3)0.1694 (2)0.54338 (13)0.0595 (5)
H70.68820.14870.60690.071*
C80.7402 (3)0.0650 (2)0.48347 (12)0.0500 (5)
C90.7681 (2)0.09310 (17)0.39186 (12)0.0437 (4)
H90.79330.02230.35180.052*
C100.7594 (2)0.22823 (17)0.35694 (12)0.0415 (4)
C110.8441 (2)0.15771 (15)0.19458 (11)0.0380 (4)
C121.0499 (2)0.07968 (15)0.18749 (11)0.0372 (4)
C131.1798 (2)0.09503 (16)0.24817 (11)0.0420 (4)
H131.13720.15200.29680.050*
C141.3706 (2)0.02737 (16)0.23747 (11)0.0432 (4)
H141.45970.03510.27930.052*
C151.4283 (2)0.05105 (15)0.16524 (12)0.0403 (4)
C161.3033 (2)0.06977 (17)0.10467 (12)0.0468 (4)
H161.34750.12550.05550.056*
C171.1129 (2)0.00550 (16)0.11758 (12)0.0444 (4)
H171.02360.01960.07820.053*
C180.6997 (2)0.52340 (16)0.08865 (12)0.0412 (4)
C190.7424 (2)0.51149 (16)0.01015 (12)0.0405 (4)
C200.6551 (2)0.62210 (17)0.06911 (13)0.0449 (4)
H200.57850.70310.04510.054*
C210.6792 (2)0.61456 (17)0.16166 (13)0.0468 (5)
H210.62100.68980.20220.056*
C220.7898 (2)0.49528 (18)0.19427 (12)0.0451 (4)
C230.8803 (2)0.38428 (18)0.13809 (13)0.0475 (5)
H230.95700.30380.16270.057*
C240.8563 (2)0.39339 (17)0.04519 (12)0.0448 (4)
H240.91770.31870.00500.054*
C250.7807 (3)0.1711 (2)0.46867 (14)0.0637 (6)
H25A0.77730.25420.50640.076*
H25B0.90690.18310.43830.076*
H25C0.68380.15250.42280.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0423 (7)0.0422 (7)0.0595 (8)0.0068 (6)0.0133 (6)0.0083 (6)
O20.0433 (7)0.0352 (6)0.0505 (7)0.0052 (5)0.0038 (5)0.0019 (5)
O30.0694 (9)0.0699 (9)0.0509 (8)0.0263 (7)0.0071 (7)0.0083 (7)
O40.0444 (8)0.0506 (8)0.0703 (9)0.0003 (6)0.0121 (7)0.0036 (6)
O50.0492 (8)0.0476 (7)0.0659 (9)0.0096 (6)0.0103 (7)0.0117 (6)
O60.0436 (7)0.0381 (7)0.0632 (8)0.0028 (6)0.0013 (6)0.0088 (6)
O70.0857 (11)0.0800 (11)0.0672 (10)0.0038 (9)0.0163 (8)0.0293 (8)
O80.0850 (11)0.0858 (11)0.0592 (9)0.0083 (9)0.0114 (8)0.0088 (8)
N10.0425 (9)0.0341 (8)0.0600 (10)0.0082 (6)0.0006 (8)0.0052 (7)
N20.0486 (10)0.0684 (11)0.0592 (11)0.0123 (9)0.0103 (8)0.0101 (9)
C10.0298 (9)0.0371 (9)0.0473 (10)0.0061 (7)0.0052 (7)0.0066 (7)
C20.0346 (9)0.0393 (9)0.0489 (10)0.0053 (7)0.0041 (8)0.0060 (8)
C30.0452 (11)0.0389 (9)0.0642 (13)0.0061 (8)0.0076 (9)0.0110 (9)
C40.0468 (11)0.0499 (11)0.0606 (12)0.0070 (9)0.0056 (9)0.0201 (9)
C50.0356 (10)0.0528 (11)0.0512 (11)0.0068 (8)0.0050 (8)0.0136 (9)
C60.0481 (12)0.0726 (14)0.0499 (12)0.0116 (10)0.0045 (9)0.0192 (10)
C70.0546 (12)0.0812 (15)0.0444 (11)0.0202 (11)0.0055 (9)0.0062 (10)
C80.0419 (10)0.0619 (12)0.0476 (11)0.0170 (9)0.0075 (8)0.0016 (9)
C90.0359 (9)0.0471 (10)0.0474 (10)0.0090 (8)0.0056 (8)0.0044 (8)
C100.0301 (9)0.0464 (10)0.0474 (10)0.0072 (7)0.0059 (7)0.0071 (8)
C110.0381 (9)0.0345 (8)0.0422 (9)0.0109 (7)0.0078 (8)0.0011 (7)
C120.0389 (9)0.0312 (8)0.0406 (9)0.0081 (7)0.0048 (7)0.0011 (7)
C130.0379 (10)0.0419 (9)0.0453 (10)0.0071 (8)0.0027 (7)0.0087 (8)
C140.0394 (10)0.0422 (9)0.0481 (11)0.0091 (8)0.0085 (8)0.0056 (8)
C150.0357 (9)0.0307 (8)0.0516 (10)0.0049 (7)0.0012 (8)0.0014 (7)
C160.0460 (11)0.0414 (10)0.0502 (11)0.0044 (8)0.0004 (8)0.0133 (8)
C170.0422 (10)0.0423 (9)0.0481 (10)0.0068 (8)0.0097 (8)0.0089 (8)
C180.0361 (9)0.0309 (8)0.0582 (11)0.0109 (7)0.0063 (8)0.0021 (8)
C190.0351 (9)0.0337 (9)0.0539 (11)0.0102 (7)0.0041 (8)0.0053 (8)
C200.0400 (10)0.0338 (9)0.0597 (12)0.0070 (7)0.0057 (8)0.0042 (8)
C210.0402 (10)0.0423 (10)0.0576 (12)0.0104 (8)0.0098 (8)0.0016 (8)
C220.0377 (10)0.0490 (10)0.0500 (11)0.0123 (8)0.0063 (8)0.0062 (8)
C230.0409 (10)0.0419 (10)0.0596 (12)0.0079 (8)0.0043 (8)0.0112 (8)
C240.0398 (10)0.0364 (9)0.0566 (11)0.0070 (7)0.0071 (8)0.0018 (8)
C250.0671 (14)0.0584 (13)0.0665 (14)0.0216 (11)0.0093 (11)0.0094 (10)
Geometric parameters (Å, º) top
O1—C111.2181 (17)C9—C101.420 (2)
O2—C181.3654 (19)C9—H90.9500
O2—C21.407 (2)C11—C121.499 (2)
O3—C81.362 (2)C12—C171.387 (2)
O3—C251.425 (2)C12—C131.395 (2)
O4—N11.2319 (17)C13—C141.382 (2)
O5—N11.2214 (18)C13—H130.9500
O6—C181.2016 (19)C14—C151.369 (2)
O7—N21.224 (2)C14—H140.9500
O8—N21.222 (2)C15—C161.380 (2)
N1—C151.474 (2)C16—C171.375 (2)
N2—C221.475 (2)C16—H160.9500
C1—C21.374 (2)C17—H170.9500
C1—C101.419 (2)C18—C191.481 (2)
C1—C111.502 (2)C19—C241.390 (2)
C2—C31.401 (2)C19—C201.395 (2)
C3—C41.360 (3)C20—C211.373 (2)
C3—H30.9500C20—H200.9500
C4—C51.410 (2)C21—C221.377 (2)
C4—H40.9500C21—H210.9500
C5—C61.416 (2)C22—C231.381 (2)
C5—C101.420 (2)C23—C241.380 (2)
C6—C71.351 (3)C23—H230.9500
C6—H60.9500C24—H240.9500
C7—C81.410 (3)C25—H25A0.9800
C7—H70.9500C25—H25B0.9800
C8—C91.371 (2)C25—H25C0.9800
C18—O2—C2120.25 (13)C13—C12—C11121.03 (15)
C8—O3—C25117.74 (14)C14—C13—C12120.00 (16)
O5—N1—O4124.40 (15)C14—C13—H13120.0
O5—N1—C15118.15 (15)C12—C13—H13120.0
O4—N1—C15117.45 (15)C15—C14—C13118.59 (15)
O8—N2—O7123.76 (19)C15—C14—H14120.7
O8—N2—C22118.23 (17)C13—C14—H14120.7
O7—N2—C22118.01 (17)C14—C15—C16122.86 (16)
C2—C1—C10119.72 (15)C14—C15—N1118.25 (15)
C2—C1—C11118.15 (15)C16—C15—N1118.89 (16)
C10—C1—C11122.03 (14)C17—C16—C15118.09 (16)
C1—C2—C3122.62 (17)C17—C16—H16121.0
C1—C2—O2114.39 (14)C15—C16—H16121.0
C3—C2—O2122.75 (15)C16—C17—C12120.77 (15)
C4—C3—C2117.97 (17)C16—C17—H17119.6
C4—C3—H3121.0C12—C17—H17119.6
C2—C3—H3121.0O6—C18—O2123.46 (17)
C3—C4—C5122.17 (17)O6—C18—C19125.18 (15)
C3—C4—H4118.9O2—C18—C19111.34 (15)
C5—C4—H4118.9C24—C19—C20119.88 (17)
C4—C5—C6122.42 (17)C24—C19—C18122.59 (15)
C4—C5—C10119.49 (17)C20—C19—C18117.44 (15)
C6—C5—C10118.08 (16)C21—C20—C19120.39 (16)
C7—C6—C5121.38 (18)C21—C20—H20119.8
C7—C6—H6119.3C19—C20—H20119.8
C5—C6—H6119.3C20—C21—C22118.35 (16)
C6—C7—C8120.66 (18)C20—C21—H21120.8
C6—C7—H7119.7C22—C21—H21120.8
C8—C7—H7119.7C21—C22—C23122.92 (17)
O3—C8—C9125.24 (17)C21—C22—N2118.69 (16)
O3—C8—C7114.50 (17)C23—C22—N2118.39 (16)
C9—C8—C7120.26 (17)C24—C23—C22118.21 (17)
C8—C9—C10119.91 (17)C24—C23—H23120.9
C8—C9—H9120.0C22—C23—H23120.9
C10—C9—H9120.0C23—C24—C19120.22 (16)
C1—C10—C9122.34 (15)C23—C24—H24119.9
C1—C10—C5117.96 (15)C19—C24—H24119.9
C9—C10—C5119.70 (16)O3—C25—H25A109.5
O1—C11—C12121.01 (15)O3—C25—H25B109.5
O1—C11—C1121.49 (14)H25A—C25—H25B109.5
C12—C11—C1117.41 (13)O3—C25—H25C109.5
C17—C12—C13119.59 (15)H25A—C25—H25C109.5
C17—C12—C11119.35 (14)H25B—C25—H25C109.5
C10—C1—C2—C32.9 (2)O1—C11—C12—C13177.25 (14)
C11—C1—C2—C3173.59 (14)C1—C11—C12—C136.3 (2)
C10—C1—C2—O2177.35 (13)C17—C12—C13—C141.1 (2)
C11—C1—C2—O20.9 (2)C11—C12—C13—C14176.67 (14)
C18—O2—C2—C1135.88 (14)C12—C13—C14—C151.7 (2)
C18—O2—C2—C349.7 (2)C13—C14—C15—C162.6 (2)
C1—C2—C3—C41.5 (3)C13—C14—C15—N1176.96 (14)
O2—C2—C3—C4175.56 (15)O5—N1—C15—C14150.67 (15)
C2—C3—C4—C50.9 (3)O4—N1—C15—C1428.6 (2)
C3—C4—C5—C6179.22 (16)O5—N1—C15—C1628.9 (2)
C3—C4—C5—C101.8 (3)O4—N1—C15—C16151.83 (15)
C4—C5—C6—C7178.77 (17)C14—C15—C16—C170.6 (3)
C10—C5—C6—C70.2 (3)N1—C15—C16—C17179.02 (14)
C5—C6—C7—C80.7 (3)C15—C16—C17—C122.4 (3)
C25—O3—C8—C90.9 (3)C13—C12—C17—C163.2 (2)
C25—O3—C8—C7178.95 (16)C11—C12—C17—C16174.59 (14)
C6—C7—C8—O3179.10 (17)C2—O2—C18—O69.5 (2)
C6—C7—C8—C91.0 (3)C2—O2—C18—C19168.93 (12)
O3—C8—C9—C10179.26 (16)O6—C18—C19—C24166.57 (15)
C7—C8—C9—C100.9 (3)O2—C18—C19—C2411.9 (2)
C2—C1—C10—C9178.82 (14)O6—C18—C19—C2010.0 (2)
C11—C1—C10—C94.9 (2)O2—C18—C19—C20171.59 (13)
C2—C1—C10—C51.8 (2)C24—C19—C20—C210.7 (2)
C11—C1—C10—C5174.53 (13)C18—C19—C20—C21175.95 (14)
C8—C9—C10—C1179.79 (14)C19—C20—C21—C220.5 (2)
C8—C9—C10—C50.4 (2)C20—C21—C22—C231.3 (3)
C4—C5—C10—C10.5 (2)C20—C21—C22—N2178.58 (14)
C6—C5—C10—C1179.47 (14)O8—N2—C22—C216.3 (2)
C4—C5—C10—C9178.94 (15)O7—N2—C22—C21173.67 (15)
C6—C5—C10—C90.1 (2)O8—N2—C22—C23173.82 (16)
C2—C1—C11—O179.86 (19)O7—N2—C22—C236.2 (2)
C10—C1—C11—O1103.77 (18)C21—C22—C23—C240.8 (3)
C2—C1—C11—C1296.63 (17)N2—C22—C23—C24179.08 (15)
C10—C1—C11—C1279.75 (18)C22—C23—C24—C190.5 (2)
O1—C11—C12—C175.0 (2)C20—C19—C24—C231.2 (2)
C1—C11—C12—C17171.52 (14)C18—C19—C24—C23175.27 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O7i0.952.583.211 (3)124
C23—H23···O4ii0.952.553.435 (2)154
Symmetry codes: (i) x, y, z+1; (ii) x+3, y, z.

Experimental details

Crystal data
Chemical formulaC25H16N2O8
Mr472.40
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)7.30691 (15), 10.2555 (2), 14.7645 (3)
α, β, γ (°)84.750 (1), 86.278 (1), 74.079 (1)
V3)1058.57 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.95
Crystal size (mm)0.60 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.599, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
19272, 3818, 2769
Rint0.046
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.09
No. of reflections3818
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O7i0.952.583.211 (3)124
C23—H23···O4ii0.952.553.435 (2)154
Symmetry codes: (i) x, y, z+1; (ii) x+3, y, z.
 

Acknowledgements

The authors express their gratitude to Masters Yuichi Kato and Atsushi Nagasawa, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2820–o2821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds