organic compounds
(R)-Methyl {[(2-carboxybicyclo[2.2.2]octan-1-yl)ammonio]methyl}phosphonate dichloromethane 0.25-solvate
aDepartment of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski blvd, Sofia 1756, Bulgaria, bInstitut des Biomolecules Max Mousseron (IBMM) UMR 5247, CNRS-Universite Montpellier 1 et 2, Universite Montpellier 2, Place E. Bataillon, 34095 Montpellier Cedex 5, France, and cInstitute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 107, 1113 Sofia, Bulgaria
*Correspondence e-mail: rosica.pn@clmc.bas.bg
The carboxylic acid molecule of the title compound, C11H20NO5P·0.25CH2Cl2, exists as a zwitterion with the H atom of the phosphonate group being transferred to the imine N atom. In the there are two crystallographically independent acid molecules adopting the same and differing slightly in their geometrical parameters. In each molecule, the imino and carboxyl groups are connected via an intramolecular N—H⋯O hydrogen bond. Intermolecular O—H⋯O and N—H⋯O hydrogen bonds induce the formation of layers parallel to the ab plane. The dichloromethane solvent molecule, with a site occupancy of 0.5, is located between the layers.
Related literature
For general background of the use of aminophosphonic acid derivatives in organic synthesis and as biologically active compounds, see: Kafarski & Lejczak (2001); Orsini et al. (2010); Troev (2006); Naydenova et al. (2008, 2010).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008).
Supporting information
10.1107/S1600536811029503/is2751sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811029503/is2751Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811029503/is2751Isup3.cml
Paraformaldehyde (1.827 mmol), methanol (5 ml), and triethylamine (190 υl) were put into a three-necked flask equipped with a condenser, magnetic stirrer, thermometer and dropping funnel and argon inert. The reaction mixture was heated to reflux temperature and held there for 45 min, after which it became a clear solution. (R)-1-Aminobicyclo[2.2.2]octane-2-carboxylic acid (1.175 mmol) and triethylamine (0.24 ml) were added to this solution. The suspension was heated at 65 - 70 °C and after 3.5 h it became a clear solution. Dimethyl hydrogen phosphonate 122 µl (146.5 mg, 1.331 mmol) was added to this solution for approximately 10 min. This reaction mixture was heated at 65–70 °C and after maintaining this temperature for 5.5 h, it was cooled to room temperature and concentrated under reduced pressure. The crude compound was dissolved in methanol and the non-reacting (R)-1-aminobicyclo[2.2.2]octane-2-carboxylic acid was removed by precipitation with diethyl ether and collected by filtration. The filtrate was evaporated to give a residue which was purified by flash on silica gel using a mixture of dichloromethane/methanol (9.5/0.5) with 0.1% acetic acid as to yield the 1-(N-methoxyphosphonomethyl)aminobicyclo[2.2.2]octane- 2-carboxylic acid.
1H NMR (400 MHz, CDCl3), δ = 1.19–1.75 (m, 9 H, 4-H, 5-H, 6-H, 8-H, 3-H, 6-H), 2.34 (br.d, J = 12.9 Hz, 1H, 7-H), 2.48 (br.d, J = 10.9 Hz, 1H, 2-H), 2.92 (AB part of ABX system, 2H, 2JP—H = 15.0 Hz, P—CH2), 3.85 (d, 6H, 3JP—H = 10.9 Hz, O—CH3), 7.45 (br.s, 1H, COOH).
13C NMR (100 MHz, CD3OD), δ = 25.25 (C-4), 26.41, 26.79, 26.87, 28.90 and 30.09 (CH2), 43.10 (C-2), 57.29 (C-1), 35.10 (d, 21JP—C = 156.0 Hz, P—CH2), 54.14 (d, 2JP—C = 10.6 Hz, O—CH3), 179.66 (C=O).
31P NMR (161.97 MHz, CDCl3),δ = 25.19.
For NMR numbering see Fig.3
All H atoms bonded to C, N and O were placed in idealized positions (C—Hmethyl = 0.96 Å, C—Hmethylene = 0.97 Å, C—Hmethyne = 0.98 Å, N—H = 0.86 Å and O—H = 0.82 Å) and were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C or N) or 1.5Ueq(O or Cmethyl).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008).C11H20NO5P·0.25CH2Cl2 | F(000) = 1268 |
Mr = 298.48 | Dx = 1.378 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5494 reflections |
a = 9.3520 (2) Å | θ = 3.5–62.6° |
b = 12.7553 (3) Å | µ = 2.70 mm−1 |
c = 24.1148 (8) Å | T = 290 K |
V = 2876.60 (13) Å3 | Prism, colorless |
Z = 8 | 0.32 × 0.24 × 0.20 mm |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4532 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3305 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.088 |
Detector resolution: 10.3974 pixels mm-1 | θmax = 62.6°, θmin = 3.7° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −14→14 |
Tmin = 0.151, Tmax = 0.582 | l = −27→26 |
11759 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.070 | H-atom parameters constrained |
wR(F2) = 0.205 | w = 1/[σ2(Fo2) + (0.1029P)2 + 1.5603P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
4532 reflections | Δρmax = 0.36 e Å−3 |
356 parameters | Δρmin = −0.34 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1914 Friedel paris |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (4) |
C11H20NO5P·0.25CH2Cl2 | V = 2876.60 (13) Å3 |
Mr = 298.48 | Z = 8 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 9.3520 (2) Å | µ = 2.70 mm−1 |
b = 12.7553 (3) Å | T = 290 K |
c = 24.1148 (8) Å | 0.32 × 0.24 × 0.20 mm |
Agilent SuperNova Dual diffractometer with an Atlas detector | 4532 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 3305 reflections with I > 2σ(I) |
Tmin = 0.151, Tmax = 0.582 | Rint = 0.088 |
11759 measured reflections |
R[F2 > 2σ(F2)] = 0.070 | H-atom parameters constrained |
wR(F2) = 0.205 | Δρmax = 0.36 e Å−3 |
S = 1.02 | Δρmin = −0.34 e Å−3 |
4532 reflections | Absolute structure: Flack (1983), 1914 Friedel paris |
356 parameters | Absolute structure parameter: 0.04 (4) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | −0.1337 (7) | 0.3754 (5) | 0.3764 (3) | 0.0544 (16) | |
H1 | −0.2314 | 0.3609 | 0.3639 | 0.065* | |
C2 | −0.1299 (10) | 0.3581 (7) | 0.4400 (3) | 0.088 (3) | |
H2A | −0.1011 | 0.4225 | 0.4582 | 0.106* | |
H2B | −0.2247 | 0.3397 | 0.4531 | 0.106* | |
C3 | −0.0267 (9) | 0.2721 (6) | 0.4544 (3) | 0.078 (2) | |
H3 | −0.0215 | 0.2620 | 0.4946 | 0.094* | |
C4 | 0.1183 (8) | 0.3043 (10) | 0.4311 (4) | 0.104 (3) | |
H4A | 0.1903 | 0.2549 | 0.4436 | 0.124* | |
H4B | 0.1435 | 0.3729 | 0.4455 | 0.124* | |
C5 | 0.1193 (6) | 0.3083 (5) | 0.3675 (3) | 0.0546 (15) | |
H5A | 0.1567 | 0.3751 | 0.3549 | 0.066* | |
H5B | 0.1791 | 0.2528 | 0.3528 | 0.066* | |
C6 | −0.0345 (6) | 0.2944 (4) | 0.3481 (2) | 0.0427 (12) | |
C7 | −0.0851 (7) | 0.1847 (5) | 0.3641 (3) | 0.0623 (18) | |
H7A | −0.1841 | 0.1754 | 0.3531 | 0.075* | |
H7B | −0.0279 | 0.1324 | 0.3451 | 0.075* | |
C8 | −0.0712 (12) | 0.1713 (6) | 0.4255 (4) | 0.102 (3) | |
H8A | −0.0008 | 0.1173 | 0.4331 | 0.123* | |
H8B | −0.1620 | 0.1480 | 0.4405 | 0.123* | |
C9 | −0.0977 (7) | 0.4880 (5) | 0.3593 (3) | 0.0566 (16) | |
C10 | 0.0450 (6) | 0.2480 (5) | 0.2480 (2) | 0.0478 (14) | |
H10A | 0.0197 | 0.1743 | 0.2499 | 0.057* | |
H10B | 0.1438 | 0.2551 | 0.2596 | 0.057* | |
C11 | 0.2109 (7) | 0.4460 (6) | 0.1910 (4) | 0.093 (3) | |
H11A | 0.2119 | 0.5114 | 0.2107 | 0.139* | |
H11B | 0.2574 | 0.4546 | 0.1558 | 0.139* | |
H11C | 0.2604 | 0.3938 | 0.2123 | 0.139* | |
C12 | −0.098 (2) | 0.3952 (18) | 0.5960 (10) | 0.134 (9) | 0.50 |
H12A | −0.0840 | 0.3587 | 0.6309 | 0.161* | 0.50 |
H12B | −0.1257 | 0.3432 | 0.5688 | 0.161* | 0.50 |
C21 | 0.5079 (6) | 0.5691 (5) | 0.4133 (3) | 0.0538 (16) | |
H21 | 0.5952 | 0.5949 | 0.3954 | 0.065* | |
C22 | 0.5372 (7) | 0.5643 (7) | 0.4775 (3) | 0.072 (2) | |
H22A | 0.5465 | 0.4918 | 0.4891 | 0.086* | |
H22B | 0.6261 | 0.6001 | 0.4859 | 0.086* | |
C23 | 0.4134 (8) | 0.6165 (6) | 0.5092 (3) | 0.0646 (18) | |
H23 | 0.4219 | 0.6029 | 0.5490 | 0.078* | |
C24 | 0.2722 (7) | 0.5731 (6) | 0.4870 (3) | 0.0608 (17) | |
H24A | 0.2734 | 0.4971 | 0.4888 | 0.073* | |
H24B | 0.1937 | 0.5981 | 0.5097 | 0.073* | |
C25 | 0.2507 (6) | 0.6079 (5) | 0.4276 (3) | 0.0523 (16) | |
H25A | 0.1764 | 0.6608 | 0.4260 | 0.063* | |
H25B | 0.2205 | 0.5487 | 0.4052 | 0.063* | |
C26 | 0.3902 (5) | 0.6526 (4) | 0.4044 (2) | 0.0422 (13) | |
C27 | 0.4266 (8) | 0.7527 (5) | 0.4352 (3) | 0.0643 (18) | |
H27A | 0.3602 | 0.8078 | 0.4249 | 0.077* | |
H27B | 0.5224 | 0.7754 | 0.4255 | 0.077* | |
C28 | 0.4176 (10) | 0.7321 (6) | 0.4980 (3) | 0.082 (2) | |
H28A | 0.4999 | 0.7628 | 0.5163 | 0.098* | |
H28B | 0.3322 | 0.7649 | 0.5128 | 0.098* | |
C29 | 0.4765 (7) | 0.4605 (5) | 0.3898 (3) | 0.0581 (16) | |
C30 | 0.4830 (6) | 0.7393 (5) | 0.3151 (2) | 0.0523 (15) | |
H30A | 0.5762 | 0.7141 | 0.3268 | 0.063* | |
H30B | 0.4748 | 0.8120 | 0.3265 | 0.063* | |
C31 | 0.6373 (13) | 0.5596 (10) | 0.2371 (8) | 0.196 (8) | |
H31A | 0.6546 | 0.5112 | 0.2073 | 0.293* | |
H31B | 0.6415 | 0.5231 | 0.2719 | 0.293* | |
H31C | 0.7087 | 0.6136 | 0.2365 | 0.293* | |
N1 | −0.0493 (5) | 0.3092 (4) | 0.28655 (19) | 0.0476 (11) | |
H1A | −0.1406 | 0.2946 | 0.2775 | 0.057* | |
H1B | −0.0353 | 0.3777 | 0.2793 | 0.057* | |
N21 | 0.3695 (4) | 0.6765 (4) | 0.3434 (2) | 0.0475 (12) | |
H21A | 0.3609 | 0.6151 | 0.3253 | 0.057* | |
H21B | 0.2860 | 0.7108 | 0.3396 | 0.057* | |
O1 | −0.0342 (6) | 0.5114 (3) | 0.3167 (2) | 0.0776 (15) | |
O2 | −0.1409 (5) | 0.5589 (3) | 0.3936 (2) | 0.0646 (13) | |
H2 | −0.1349 | 0.6168 | 0.3790 | 0.097* | |
O3 | 0.0658 (5) | 0.4134 (3) | 0.1823 (2) | 0.0641 (13) | |
O4 | 0.1387 (5) | 0.2392 (3) | 0.14410 (18) | 0.0602 (12) | |
O5 | −0.1266 (4) | 0.2891 (4) | 0.16076 (19) | 0.0639 (12) | |
O21 | 0.4858 (7) | 0.3804 (4) | 0.4138 (3) | 0.100 (2) | |
O22 | 0.4354 (6) | 0.4666 (4) | 0.3379 (2) | 0.0729 (14) | |
H22 | 0.4600 | 0.4135 | 0.3213 | 0.109* | |
O23 | 0.4943 (7) | 0.6072 (5) | 0.2303 (2) | 0.107 (2) | |
O24 | 0.3242 (5) | 0.7561 (7) | 0.2252 (2) | 0.128 (3) | |
O25 | 0.5913 (4) | 0.7934 (4) | 0.21767 (19) | 0.0665 (13) | |
P1 | 0.02660 (16) | 0.29346 (12) | 0.17764 (7) | 0.0495 (4) | |
P21 | 0.47115 (16) | 0.73176 (16) | 0.24091 (7) | 0.0615 (5) | |
Cl1 | −0.2400 (7) | 0.4823 (5) | 0.6043 (3) | 0.139 (2) | 0.50 |
Cl2 | 0.0552 (7) | 0.4434 (7) | 0.5772 (3) | 0.159 (3) | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.049 (4) | 0.055 (4) | 0.059 (4) | 0.001 (3) | 0.004 (3) | 0.002 (3) |
C2 | 0.110 (7) | 0.090 (6) | 0.065 (6) | 0.019 (5) | 0.022 (5) | 0.010 (4) |
C3 | 0.097 (6) | 0.087 (5) | 0.050 (4) | −0.016 (5) | −0.004 (4) | 0.016 (4) |
C4 | 0.062 (5) | 0.172 (10) | 0.077 (6) | −0.024 (6) | −0.017 (4) | 0.001 (6) |
C5 | 0.044 (3) | 0.062 (4) | 0.058 (4) | −0.004 (3) | −0.012 (3) | −0.005 (3) |
C6 | 0.042 (3) | 0.042 (3) | 0.044 (3) | 0.002 (3) | −0.004 (2) | −0.004 (2) |
C7 | 0.058 (4) | 0.046 (3) | 0.083 (5) | −0.014 (3) | −0.006 (3) | 0.007 (3) |
C8 | 0.164 (9) | 0.064 (5) | 0.080 (6) | −0.025 (6) | 0.006 (6) | 0.021 (4) |
C9 | 0.058 (4) | 0.052 (4) | 0.059 (4) | 0.002 (3) | 0.008 (3) | 0.002 (3) |
C10 | 0.038 (3) | 0.055 (3) | 0.051 (4) | 0.006 (3) | −0.001 (2) | −0.007 (3) |
C11 | 0.044 (4) | 0.065 (4) | 0.170 (9) | −0.025 (4) | −0.034 (5) | 0.014 (5) |
C12 | 0.131 (18) | 0.131 (18) | 0.14 (2) | −0.060 (16) | 0.064 (15) | −0.039 (15) |
C21 | 0.030 (3) | 0.076 (4) | 0.055 (4) | 0.013 (3) | −0.004 (3) | 0.005 (3) |
C22 | 0.047 (4) | 0.106 (6) | 0.063 (5) | 0.012 (4) | −0.007 (3) | 0.013 (4) |
C23 | 0.074 (5) | 0.078 (4) | 0.042 (4) | 0.000 (4) | −0.008 (3) | 0.001 (3) |
C24 | 0.048 (4) | 0.073 (4) | 0.062 (5) | −0.002 (3) | 0.004 (3) | 0.006 (4) |
C25 | 0.036 (3) | 0.065 (4) | 0.055 (4) | 0.002 (3) | 0.007 (3) | 0.001 (3) |
C26 | 0.029 (3) | 0.051 (3) | 0.047 (4) | 0.002 (2) | 0.000 (2) | 0.006 (3) |
C27 | 0.071 (4) | 0.056 (4) | 0.066 (5) | −0.011 (3) | −0.014 (3) | −0.008 (3) |
C28 | 0.101 (6) | 0.079 (5) | 0.066 (5) | −0.010 (4) | 0.000 (4) | −0.017 (4) |
C29 | 0.052 (3) | 0.072 (4) | 0.051 (4) | 0.009 (3) | −0.004 (3) | 0.004 (3) |
C30 | 0.034 (3) | 0.064 (4) | 0.059 (4) | −0.012 (3) | −0.003 (3) | 0.020 (3) |
C31 | 0.118 (10) | 0.106 (8) | 0.36 (2) | 0.020 (8) | 0.138 (13) | 0.024 (11) |
N1 | 0.035 (2) | 0.049 (3) | 0.059 (3) | 0.000 (2) | −0.013 (2) | −0.004 (2) |
N21 | 0.023 (2) | 0.069 (3) | 0.051 (3) | 0.001 (2) | −0.0021 (19) | 0.007 (2) |
O1 | 0.113 (4) | 0.047 (2) | 0.073 (3) | 0.015 (3) | 0.032 (3) | 0.001 (2) |
O2 | 0.066 (3) | 0.053 (2) | 0.076 (3) | 0.004 (2) | 0.024 (2) | −0.005 (2) |
O3 | 0.054 (3) | 0.036 (2) | 0.102 (4) | −0.0116 (18) | −0.023 (2) | 0.013 (2) |
O4 | 0.061 (3) | 0.062 (2) | 0.058 (3) | −0.009 (2) | 0.017 (2) | −0.003 (2) |
O5 | 0.044 (2) | 0.081 (3) | 0.067 (3) | −0.018 (2) | −0.019 (2) | 0.008 (2) |
O21 | 0.142 (6) | 0.057 (3) | 0.102 (4) | 0.026 (3) | −0.012 (4) | 0.014 (3) |
O22 | 0.080 (3) | 0.059 (3) | 0.080 (4) | 0.005 (3) | −0.008 (3) | −0.008 (2) |
O23 | 0.115 (5) | 0.105 (4) | 0.101 (5) | −0.058 (4) | 0.028 (4) | −0.022 (3) |
O24 | 0.030 (2) | 0.279 (10) | 0.073 (4) | 0.000 (4) | −0.013 (2) | 0.060 (5) |
O25 | 0.042 (2) | 0.086 (3) | 0.071 (3) | −0.007 (2) | 0.007 (2) | 0.030 (2) |
P1 | 0.0394 (7) | 0.0521 (8) | 0.0569 (10) | −0.0083 (7) | −0.0040 (7) | 0.0004 (7) |
P21 | 0.0294 (7) | 0.0956 (13) | 0.0596 (11) | −0.0111 (9) | −0.0006 (7) | 0.0131 (9) |
Cl1 | 0.115 (4) | 0.117 (4) | 0.185 (7) | −0.017 (4) | −0.031 (4) | 0.044 (4) |
Cl2 | 0.107 (4) | 0.199 (7) | 0.171 (6) | −0.050 (5) | 0.002 (4) | −0.003 (5) |
C1—C9 | 1.532 (9) | C22—C23 | 1.539 (10) |
C1—C6 | 1.546 (8) | C22—H22A | 0.9700 |
C1—C2 | 1.550 (10) | C22—H22B | 0.9700 |
C1—H1 | 0.9800 | C23—C28 | 1.500 (10) |
C2—C3 | 1.502 (11) | C23—C24 | 1.528 (9) |
C2—H2A | 0.9700 | C23—H23 | 0.9800 |
C2—H2B | 0.9700 | C24—C25 | 1.515 (9) |
C3—C8 | 1.521 (11) | C24—H24A | 0.9700 |
C3—C4 | 1.524 (11) | C24—H24B | 0.9700 |
C3—H3 | 0.9800 | C25—C26 | 1.529 (7) |
C4—C5 | 1.533 (10) | C25—H25A | 0.9700 |
C4—H4A | 0.9700 | C25—H25B | 0.9700 |
C4—H4B | 0.9700 | C26—N21 | 1.515 (7) |
C5—C6 | 1.523 (7) | C26—C27 | 1.516 (8) |
C5—H5A | 0.9700 | C27—C28 | 1.537 (10) |
C5—H5B | 0.9700 | C27—H27A | 0.9700 |
C6—N1 | 1.503 (7) | C27—H27B | 0.9700 |
C6—C7 | 1.527 (8) | C28—H28A | 0.9700 |
C7—C8 | 1.495 (10) | C28—H28B | 0.9700 |
C7—H7A | 0.9700 | C29—O21 | 1.177 (8) |
C7—H7B | 0.9700 | C29—O22 | 1.313 (7) |
C8—H8A | 0.9700 | C30—N21 | 1.495 (7) |
C8—H8B | 0.9700 | C30—P21 | 1.795 (6) |
C9—O1 | 1.223 (7) | C30—H30A | 0.9700 |
C9—O2 | 1.291 (7) | C30—H30B | 0.9700 |
C10—N1 | 1.501 (7) | C31—O23 | 1.478 (13) |
C10—P1 | 1.802 (6) | C31—H31A | 0.9600 |
C10—H10A | 0.9700 | C31—H31B | 0.9600 |
C10—H10B | 0.9700 | C31—H31C | 0.9600 |
C11—O3 | 1.434 (7) | N1—H1A | 0.9000 |
C11—H11A | 0.9600 | N1—H1B | 0.9000 |
C11—H11B | 0.9600 | N21—H21A | 0.9000 |
C11—H11C | 0.9600 | N21—H21B | 0.9000 |
C12—Cl2 | 1.622 (19) | O2—H2 | 0.8200 |
C12—Cl1 | 1.74 (2) | O3—P1 | 1.578 (4) |
C12—H12A | 0.9700 | O4—P1 | 1.494 (4) |
C12—H12B | 0.9700 | O5—P1 | 1.491 (4) |
C21—C29 | 1.525 (9) | O22—H22 | 0.8200 |
C21—C26 | 1.547 (8) | O23—P21 | 1.624 (7) |
C21—C22 | 1.572 (9) | O24—P21 | 1.459 (5) |
C21—H21 | 0.9800 | O25—P21 | 1.481 (4) |
C9—C1—C6 | 112.1 (5) | H22A—C22—H22B | 108.2 |
C9—C1—C2 | 113.2 (6) | C28—C23—C24 | 108.5 (6) |
C6—C1—C2 | 109.1 (5) | C28—C23—C22 | 108.5 (7) |
C9—C1—H1 | 107.4 | C24—C23—C22 | 108.6 (6) |
C6—C1—H1 | 107.4 | C28—C23—H23 | 110.4 |
C2—C1—H1 | 107.4 | C24—C23—H23 | 110.4 |
C3—C2—C1 | 110.3 (6) | C22—C23—H23 | 110.4 |
C3—C2—H2A | 109.6 | C25—C24—C23 | 109.8 (5) |
C1—C2—H2A | 109.6 | C25—C24—H24A | 109.7 |
C3—C2—H2B | 109.6 | C23—C24—H24A | 109.7 |
C1—C2—H2B | 109.6 | C25—C24—H24B | 109.7 |
H2A—C2—H2B | 108.1 | C23—C24—H24B | 109.7 |
C2—C3—C8 | 109.6 (7) | H24A—C24—H24B | 108.2 |
C2—C3—C4 | 106.8 (7) | C24—C25—C26 | 110.0 (5) |
C8—C3—C4 | 107.6 (8) | C24—C25—H25A | 109.7 |
C2—C3—H3 | 110.9 | C26—C25—H25A | 109.7 |
C8—C3—H3 | 110.9 | C24—C25—H25B | 109.7 |
C4—C3—H3 | 110.9 | C26—C25—H25B | 109.7 |
C3—C4—C5 | 112.5 (6) | H25A—C25—H25B | 108.2 |
C3—C4—H4A | 109.1 | N21—C26—C27 | 109.6 (5) |
C5—C4—H4A | 109.1 | N21—C26—C25 | 108.7 (4) |
C3—C4—H4B | 109.1 | C27—C26—C25 | 109.1 (5) |
C5—C4—H4B | 109.1 | N21—C26—C21 | 111.3 (5) |
H4A—C4—H4B | 107.8 | C27—C26—C21 | 110.6 (5) |
C6—C5—C4 | 107.4 (5) | C25—C26—C21 | 107.4 (5) |
C6—C5—H5A | 110.2 | C26—C27—C28 | 109.0 (6) |
C4—C5—H5A | 110.2 | C26—C27—H27A | 109.9 |
C6—C5—H5B | 110.2 | C28—C27—H27A | 109.9 |
C4—C5—H5B | 110.2 | C26—C27—H27B | 109.9 |
H5A—C5—H5B | 108.5 | C28—C27—H27B | 109.9 |
N1—C6—C5 | 112.1 (5) | H27A—C27—H27B | 108.3 |
N1—C6—C7 | 109.6 (5) | C23—C28—C27 | 110.3 (6) |
C5—C6—C7 | 108.8 (5) | C23—C28—H28A | 109.6 |
N1—C6—C1 | 107.2 (4) | C27—C28—H28A | 109.6 |
C5—C6—C1 | 110.7 (5) | C23—C28—H28B | 109.6 |
C7—C6—C1 | 108.3 (5) | C27—C28—H28B | 109.6 |
C8—C7—C6 | 109.1 (6) | H28A—C28—H28B | 108.1 |
C8—C7—H7A | 109.9 | O21—C29—O22 | 122.9 (7) |
C6—C7—H7A | 109.9 | O21—C29—C21 | 126.2 (6) |
C8—C7—H7B | 109.9 | O22—C29—C21 | 110.9 (5) |
C6—C7—H7B | 109.9 | N21—C30—P21 | 112.5 (4) |
H7A—C7—H7B | 108.3 | N21—C30—H30A | 109.1 |
C7—C8—C3 | 112.4 (6) | P21—C30—H30A | 109.1 |
C7—C8—H8A | 109.1 | N21—C30—H30B | 109.1 |
C3—C8—H8A | 109.1 | P21—C30—H30B | 109.1 |
C7—C8—H8B | 109.1 | H30A—C30—H30B | 107.8 |
C3—C8—H8B | 109.1 | O23—C31—H31A | 109.5 |
H8A—C8—H8B | 107.9 | O23—C31—H31B | 109.5 |
O1—C9—O2 | 121.3 (6) | H31A—C31—H31B | 109.5 |
O1—C9—C1 | 124.1 (6) | O23—C31—H31C | 109.5 |
O2—C9—C1 | 114.6 (6) | H31A—C31—H31C | 109.5 |
N1—C10—P1 | 111.1 (4) | H31B—C31—H31C | 109.5 |
N1—C10—H10A | 109.4 | C10—N1—C6 | 119.5 (4) |
P1—C10—H10A | 109.4 | C10—N1—H1A | 107.5 |
N1—C10—H10B | 109.4 | C6—N1—H1A | 107.5 |
P1—C10—H10B | 109.4 | C10—N1—H1B | 107.5 |
H10A—C10—H10B | 108.0 | C6—N1—H1B | 107.5 |
O3—C11—H11A | 109.5 | H1A—N1—H1B | 107.0 |
O3—C11—H11B | 109.5 | C30—N21—C26 | 117.4 (4) |
H11A—C11—H11B | 109.5 | C30—N21—H21A | 107.9 |
O3—C11—H11C | 109.5 | C26—N21—H21A | 107.9 |
H11A—C11—H11C | 109.5 | C30—N21—H21B | 107.9 |
H11B—C11—H11C | 109.5 | C26—N21—H21B | 107.9 |
Cl2—C12—Cl1 | 117.6 (14) | H21A—N21—H21B | 107.2 |
Cl2—C12—H12A | 107.9 | C9—O2—H2 | 109.5 |
Cl1—C12—H12A | 107.9 | C11—O3—P1 | 120.8 (4) |
Cl2—C12—H12B | 107.9 | C29—O22—H22 | 109.5 |
Cl1—C12—H12B | 107.9 | C31—O23—P21 | 120.3 (6) |
H12A—C12—H12B | 107.2 | O5—P1—O4 | 120.6 (3) |
C29—C21—C26 | 115.9 (5) | O5—P1—O3 | 106.2 (3) |
C29—C21—C22 | 111.3 (5) | O4—P1—O3 | 108.9 (3) |
C26—C21—C22 | 106.7 (5) | O5—P1—C10 | 109.7 (3) |
C29—C21—H21 | 107.5 | O4—P1—C10 | 107.1 (3) |
C26—C21—H21 | 107.5 | O3—P1—C10 | 102.9 (3) |
C22—C21—H21 | 107.5 | O24—P21—O25 | 120.2 (3) |
C23—C22—C21 | 109.9 (5) | O24—P21—O23 | 107.0 (4) |
C23—C22—H22A | 109.7 | O25—P21—O23 | 111.0 (3) |
C21—C22—H22A | 109.7 | O24—P21—C30 | 107.8 (3) |
C23—C22—H22B | 109.7 | O25—P21—C30 | 107.6 (3) |
C21—C22—H22B | 109.7 | O23—P21—C30 | 101.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O24i | 0.90 | 1.79 | 2.673 (6) | 168 |
N1—H1B···O1 | 0.90 | 1.93 | 2.683 (6) | 140 |
N21—H21A···O22 | 0.90 | 2.04 | 2.750 (7) | 135 |
N21—H21B···O5ii | 0.90 | 1.79 | 2.690 (6) | 173 |
O2—H2···O4ii | 0.82 | 1.66 | 2.474 (6) | 172 |
O22—H22···O25iii | 0.82 | 1.86 | 2.596 (6) | 149 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H20NO5P·0.25CH2Cl2 |
Mr | 298.48 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 290 |
a, b, c (Å) | 9.3520 (2), 12.7553 (3), 24.1148 (8) |
V (Å3) | 2876.60 (13) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 2.70 |
Crystal size (mm) | 0.32 × 0.24 × 0.20 |
Data collection | |
Diffractometer | Agilent SuperNova Dual diffractometer with an Atlas detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.151, 0.582 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11759, 4532, 3305 |
Rint | 0.088 |
(sin θ/λ)max (Å−1) | 0.576 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.205, 1.02 |
No. of reflections | 4532 |
No. of parameters | 356 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.34 |
Absolute structure | Flack (1983), 1914 Friedel paris |
Absolute structure parameter | 0.04 (4) |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O24i | 0.90 | 1.79 | 2.673 (6) | 167.6 |
N1—H1B···O1 | 0.90 | 1.93 | 2.683 (6) | 140.2 |
N21—H21A···O22 | 0.90 | 2.04 | 2.750 (7) | 134.8 |
N21—H21B···O5ii | 0.90 | 1.79 | 2.690 (6) | 172.8 |
O2—H2···O4ii | 0.82 | 1.66 | 2.474 (6) | 172.2 |
O22—H22···O25iii | 0.82 | 1.86 | 2.596 (6) | 148.7 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors gratefully acknowledge the Ministry of Education and Science (Bulgaria), grants DPOSTDOC 02/3 and DRNF 02/1, for financial support.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kafarski, P. & Lejczak, B. (2001). Curr. Med. Chem. 1, 301–312. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Naydenova, E. D., Todorov, P. T., Topashka-Ancheva, M. N., Momekov, G. Ts., Yordanova, T. Z., Konstantinov, S. M. & Troev, K. D. (2008). Eur. J. Med. Chem. 43, 1199–1205. Web of Science CrossRef PubMed CAS Google Scholar
Naydenova, E. D., Todorov, P. T. & Troev, K. D. (2010). Amino Acids, 38, 23–30. Web of Science CrossRef PubMed CAS Google Scholar
Orsini, F., Sello, G. & Sisti, M. (2010). Curr. Med. Chem. 17, 264–289. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Troev, K. D. (2006). In Chemistry and Application of H-Phosphonates. Amsterdam: Elsevier. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
α-Aminophosphonic acids occupy an important place amongst the various compounds containing a P—C bond and an amino group, because they are analogues of natural α-amino acids, the building blocks of peptides and proteins. Since stereochemistry at the α-carbon atom plays an important role in the biological activity of the molecule, the synthesis of chiral α-aminophosphonates and α-aminophosphonic acids has been a focus of considerable attention in synthetic organic chemistry as well as in modern pharmaceutical chemistry. This is underlined by an increasing number of industrial applications in the field of the synthesis of enantio enriched α-aminophosphonic acid derivatives (Kafarski & Lejczak, 2001; Troev, 2006; Naydenova et al., 2010). This, together with their low mammalian toxicity makes the α-aminophosphonic acids an important class of antimetabolites and a potential source of medicinal lead compounds (Naydenova et al., 2008; Orsini et al., 2010).
The title compound has been obtained in an enantiopure form. Herein, we synthesized and characterized a new α-aminophosphonate containing bicyclo[2.2.2]octane-moiety by Kabachnik-Fields reaction. This reaction is performed without epimerization. The optically active (R)-1-(N-(methoxyphosphonomethyl)aminobicyclo [2.2.2]octane-2-carboxylic acid was purified by column chromatography on silica gel using a mixture of dichloromethane/methanol (9.5/0.5) with 0.1% acetic acid as eluent to give the title compound.
The studied compound C11H10NPO5 crystallizes as a dichloromethane 0.5 solvate with two crystallographically nonequivalent molecules (molecules A and B in Fig. 1). NMR analyses (1H, 13C and 31P) has been applied for compositional and geometrical characterization of the organic molecule. The 1H-NMR data were not indicative for the presence of NH2 or P—OH groups. From the other hand the difference Fourier analyses around imine N and PO3 group show presence of two hydrogen atoms around the nitrogen. More over the P—O distances of 1.491 (4), 1.494 (4) Å and 1.459 (5), 1.481 (4) Å for molecules A and B, respectively, suppose charge distribution between the phosphonate O atoms. This suggests that both molecules exist as zwitterions with H atom of the phosphonate group being transferred to the imine N atom. The absolute configuration of the independent C11H10NPO5 molecules is identical as deduced by the Flack parameter. The rotation of the bicyclo[2.2.2]octane-2-carboxylic fragment along axis described by N1,C6, C3 and N21, C26, C23 atoms for A and B molecules respectively differ by less than 10° [57.6 (2)° for A and 64.7 (1) ° for B molecule].
The imino and carboxylic groups are involved in intramolecular hydrogen bond in both of the molecules. The O—H···O and N—H···O intermolecular interactions induce the formation of layers parallel to the crystallographic ab plane. The dichloromethane moieties are located in the cavities near by the zigzag layer.