organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 2-cyano-3-(1H-pyrrol-2-yl)acrylate

aSchool of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea, bDepartment of Physics, Dr. M.G.R Educational and Research Institute University, Periyar E.V.R High Road, Maduravoyal, Chennai 600 095, India, cDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad 580 001, Karnataka, India, and dPost Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: yuvraj_pd@yahoo.co.in

(Received 12 July 2011; accepted 17 July 2011; online 23 July 2011)

All the non-H atoms of the title compound, C10H10N2O2, are nearly in the same plane with a maximum deviation of 0.093 (1) Å. In the crystal, adjacent mol­ecules are linked by pairs of inter­molecular N—H⋯O hydrogen bonds, generating inversion dimers with R22(14) ring motifs.

Related literature

For background to and applications of pyrrole derivatives, see: Fischer & Orth (1934[Fischer, H. & Orth, H. (1934). Die Chemie des Pyrrols, Vol. 1, pp. 333. Leipzig: Akademische Verlagsgesellschaft.]). For the Knoevenagel condensation reaction and its applications, see: Knoevenagel (1898[Knoevenagel, E. (1898). Berichte, 31, 2585-2595.]); Bigi et al. (1999[Bigi, F., Chesini, L., Maggi, R. & Sartori, G. (1999). J. Org. Chem. 64, 1033-1035.]). For the synthesis of related compounds, see: Knizhnikov et al. (2007[Knizhnikov, V. A., Borisova, N. E., Yurashevich, N. Y., Popova, L. A., Cherny, A. Yu., Zubreichuk, Z. P. & Reshetova, M. D. (2007). Russ. J. Org. Chem. 43, 855-860.]); Sarda et al. (2009[Sarda, S. R., Jadhav, W. N., Tekale, S. U., Jadhav, G. V., Patil, B. R., Suryawanshi, G. S. & Pawar, R. P. (2009). Lett. Org. Chem. 6, 481-484.]). For related structures, see: Ye et al. (2009[Ye, Y., Shen, W.-L. & Wei, X.-W. (2009). Acta Cryst. E65, o2636.]); Wang & Jian (2008[Wang, J.-G. & Jian, F.-F. (2008). Acta Cryst. E64, o2145.]); Zhang et al. (2009[Zhang, S.-J., Zheng, X.-M. & Hu, W.-X. (2009). Acta Cryst. E65, o2351.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O2

  • Mr = 190.20

  • Monoclinic, P 21 /n

  • a = 6.2811 (2) Å

  • b = 9.4698 (3) Å

  • c = 16.3936 (5) Å

  • β = 92.645 (3)°

  • V = 974.06 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.971, Tmax = 0.986

  • 18157 measured reflections

  • 1908 independent reflections

  • 1574 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.06

  • 1908 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.09 2.874 (2) 151
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of pyrrole compounds and biological activities of the related compounds has been extensively studied (Fischer & Orth, 1934). The Knoevenagel condensation is an important carbon–carbon bond forming reaction in organic synthesis (Knoevenagel, 1898). Ever since its discovery, the Knoevenagel reaction has been widely used in organic synthesis to prepare coumarins and their derivatives, which are important intermediates in the synthesis of cosmetics, perfumes and pharmaceuticals (Bigi et al., 1999). With the view of biological importance the title compound was synthesized and reported here its crystal structure.

Bond lengths and bond angles are comparable with the similar crystal structures solved earlier (Ye et al., 2009; Wang & Jian, 2008; Zhang et al., 2009). All the non-hydrogen atoms in the molecule are nearly in the same plane with the maximum out-of-plane deviation of 0.093 (1) Å (r.m.s. deviation = 0.04 Å). The crystal packing is stabilized by N—H···O intermolecular interactions, generating a centrosymmetric dimer of R22(14) ring.

Related literature top

For background to and applications of pyrrole derivatives, see: Fischer & Orth (1934). For the Knoevenagel condensation and its applications, see: Knoevenagel (1898); Bigi et al. (1999). For the synthesis of related compounds, see: Knizhnikov et al. (2007); Sarda et al. (2009). For related structures, see: Ye et al. (2009); Wang & Jian (2008); Zhang et al. (2009).

Experimental top

A solution of pyrrole-2-aldehyde (1 mol), ethyl cyanoacetate (1.2 mol) and piperidine (0.1 ml) in ethanol (20 ml) was stirred at room temperature for 8 h. After removal of the volatiles in vacuo, orange solid was obtained in quantitative yield. A sample for analysis was obtained by recrystallization from EtOAc as pale yellow needles: 1H NMR (300 MHz, CDCl3) δ p.p.m.: 1.38 t (3H, CH3), 4.35 q (2H, CH2), 6.41 m (1H, CH), 6.92 m (1H, CH), 7.22 m (1H, CH), 7.98 s (1H, HC=C), 9.92 s (1H, NH).

Refinement top

All H atoms were refined using a riding model, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3, and d(N—H) = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methylC)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A molecular packing view of the title compound, showing intermolecular interactions. For clarity, hydrogen atoms which are not involved in hydrogen bonding have been omitted.
(E)-Ethyl 2-cyano-3-(1H-pyrrol-2-yl)acrylate top
Crystal data top
C10H10N2O2F(000) = 400
Mr = 190.20Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7544 reflections
a = 6.2811 (2) Åθ = 3.5–29.0°
b = 9.4698 (3) ŵ = 0.09 mm1
c = 16.3936 (5) ÅT = 293 K
β = 92.645 (3)°Rectangular, light yellow
V = 974.06 (5) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1908 independent reflections
Radiation source: fine-focus sealed tube1574 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.971, Tmax = 0.986l = 2020
18157 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.1138P]
where P = (Fo2 + 2Fc2)/3
1908 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H10N2O2V = 974.06 (5) Å3
Mr = 190.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2811 (2) ŵ = 0.09 mm1
b = 9.4698 (3) ÅT = 293 K
c = 16.3936 (5) Å0.30 × 0.20 × 0.15 mm
β = 92.645 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1908 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1574 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.986Rint = 0.032
18157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.06Δρmax = 0.12 e Å3
1908 reflectionsΔρmin = 0.19 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1517 (2)0.73171 (17)0.56284 (9)0.0557 (4)
H10.22600.71700.60990.067*
C20.2045 (3)0.82705 (18)0.50230 (9)0.0596 (4)
H20.32080.88790.50070.072*
C30.0526 (2)0.81600 (16)0.44393 (9)0.0522 (4)
H30.04880.86870.39620.063*
C40.0926 (2)0.71274 (13)0.46903 (7)0.0403 (3)
C50.2764 (2)0.65298 (13)0.43588 (8)0.0403 (3)
H50.34410.58380.46790.048*
C60.36856 (19)0.68137 (13)0.36460 (7)0.0390 (3)
C70.2877 (2)0.78645 (15)0.30869 (8)0.0433 (3)
C80.5592 (2)0.60070 (14)0.34340 (7)0.0400 (3)
C90.8147 (2)0.56123 (16)0.24473 (8)0.0502 (4)
H9A0.78090.46140.24150.060*
H9B0.93630.57370.28270.060*
C100.8645 (3)0.61655 (18)0.16209 (9)0.0593 (4)
H10A0.74480.60080.12470.089*
H10B0.98700.56830.14290.089*
H10C0.89370.71590.16570.089*
N10.02503 (19)0.66332 (12)0.54287 (7)0.0472 (3)
H1A0.08730.59820.57170.057*
N20.2208 (2)0.87126 (15)0.26485 (8)0.0631 (4)
O10.63859 (15)0.50906 (11)0.38609 (6)0.0539 (3)
O20.63298 (14)0.64028 (10)0.27206 (5)0.0454 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0510 (8)0.0684 (10)0.0490 (8)0.0055 (7)0.0159 (6)0.0045 (7)
C20.0537 (9)0.0672 (10)0.0587 (9)0.0183 (7)0.0105 (7)0.0000 (8)
C30.0544 (8)0.0562 (9)0.0464 (8)0.0119 (7)0.0072 (6)0.0048 (6)
C40.0420 (7)0.0431 (7)0.0359 (6)0.0008 (6)0.0034 (5)0.0025 (5)
C50.0402 (7)0.0420 (7)0.0386 (7)0.0013 (5)0.0018 (5)0.0001 (5)
C60.0375 (7)0.0422 (7)0.0375 (6)0.0014 (5)0.0024 (5)0.0005 (5)
C70.0414 (7)0.0477 (8)0.0412 (7)0.0014 (6)0.0068 (5)0.0012 (6)
C80.0388 (7)0.0434 (7)0.0380 (7)0.0012 (5)0.0032 (5)0.0002 (5)
C90.0450 (7)0.0541 (8)0.0526 (8)0.0072 (6)0.0133 (6)0.0026 (7)
C100.0608 (9)0.0625 (10)0.0565 (9)0.0038 (7)0.0227 (7)0.0043 (7)
N10.0487 (7)0.0524 (7)0.0412 (6)0.0062 (5)0.0091 (5)0.0043 (5)
N20.0660 (9)0.0669 (8)0.0570 (8)0.0129 (7)0.0092 (6)0.0184 (7)
O10.0540 (6)0.0611 (6)0.0474 (6)0.0163 (5)0.0092 (4)0.0123 (5)
O20.0425 (5)0.0507 (6)0.0437 (5)0.0047 (4)0.0120 (4)0.0066 (4)
Geometric parameters (Å, º) top
C1—N11.3386 (18)C6—C81.4753 (18)
C1—C21.371 (2)C7—N21.1447 (17)
C1—H10.9300C8—O11.2080 (15)
C2—C31.386 (2)C8—O21.3316 (15)
C2—H20.9300C9—O21.4528 (16)
C3—C41.3869 (19)C9—C101.4991 (19)
C3—H30.9300C9—H9A0.9700
C4—N11.3827 (16)C9—H9B0.9700
C4—C51.4165 (18)C10—H10A0.9600
C5—C61.3546 (18)C10—H10B0.9600
C5—H50.9300C10—H10C0.9600
C6—C71.4301 (18)N1—H1A0.8600
N1—C1—C2108.49 (12)O1—C8—O2124.05 (12)
N1—C1—H1125.8O1—C8—C6123.60 (11)
C2—C1—H1125.8O2—C8—C6112.35 (11)
C1—C2—C3107.40 (13)O2—C9—C10107.37 (12)
C1—C2—H2126.3O2—C9—H9A110.2
C3—C2—H2126.3C10—C9—H9A110.2
C2—C3—C4108.22 (13)O2—C9—H9B110.2
C2—C3—H3125.9C10—C9—H9B110.2
C4—C3—H3125.9H9A—C9—H9B108.5
N1—C4—C3105.90 (12)C9—C10—H10A109.5
N1—C4—C5119.30 (12)C9—C10—H10B109.5
C3—C4—C5134.80 (12)H10A—C10—H10B109.5
C6—C5—C4129.78 (12)C9—C10—H10C109.5
C6—C5—H5115.1H10A—C10—H10C109.5
C4—C5—H5115.1H10B—C10—H10C109.5
C5—C6—C7122.53 (12)C1—N1—C4110.00 (12)
C5—C6—C8118.95 (11)C1—N1—H1A125.0
C7—C6—C8118.53 (11)C4—N1—H1A125.0
N2—C7—C6178.93 (14)C8—O2—C9115.85 (10)
N1—C1—C2—C30.38 (18)C7—C6—C8—O1179.34 (12)
C1—C2—C3—C40.31 (18)C5—C6—C8—O2179.66 (11)
C2—C3—C4—N10.12 (16)C7—C6—C8—O20.57 (17)
C2—C3—C4—C5178.72 (15)C2—C1—N1—C40.31 (18)
N1—C4—C5—C6178.23 (12)C3—C4—N1—C10.11 (16)
C3—C4—C5—C60.5 (3)C5—C4—N1—C1179.17 (12)
C4—C5—C6—C71.1 (2)O1—C8—O2—C92.78 (19)
C4—C5—C6—C8178.64 (12)C6—C8—O2—C9177.13 (10)
C5—C6—C8—O10.4 (2)C10—C9—O2—C8176.96 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.092.874 (2)151
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N2O2
Mr190.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.2811 (2), 9.4698 (3), 16.3936 (5)
β (°) 92.645 (3)
V3)974.06 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.971, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
18157, 1908, 1574
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.06
No. of reflections1908
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.092.874 (2)151
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Director of the University Sophisticated Instrumentation Facility, University of Jammu, Jammu Tawi, India, for the X-ray data collection. HY gratefully acknowledges Yeungnam University for providing the opportunity to work as an Inter­national Research Professor.

References

First citationBigi, F., Chesini, L., Maggi, R. & Sartori, G. (1999). J. Org. Chem. 64, 1033–1035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFischer, H. & Orth, H. (1934). Die Chemie des Pyrrols, Vol. 1, pp. 333. Leipzig: Akademische Verlagsgesellschaft.  Google Scholar
First citationKnizhnikov, V. A., Borisova, N. E., Yurashevich, N. Y., Popova, L. A., Cherny, A. Yu., Zubreichuk, Z. P. & Reshetova, M. D. (2007). Russ. J. Org. Chem. 43, 855–860.  Web of Science CrossRef CAS Google Scholar
First citationKnoevenagel, E. (1898). Berichte, 31, 2585–2595.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSarda, S. R., Jadhav, W. N., Tekale, S. U., Jadhav, G. V., Patil, B. R., Suryawanshi, G. S. & Pawar, R. P. (2009). Lett. Org. Chem. 6, 481–484.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-G. & Jian, F.-F. (2008). Acta Cryst. E64, o2145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, Y., Shen, W.-L. & Wei, X.-W. (2009). Acta Cryst. E65, o2636.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-J., Zheng, X.-M. & Hu, W.-X. (2009). Acta Cryst. E65, o2351.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds