organic compounds
(E)-Ethyl 2-cyano-3-(1H-pyrrol-2-yl)acrylate
aSchool of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea, bDepartment of Physics, Dr. M.G.R Educational and Research Institute University, Periyar E.V.R High Road, Maduravoyal, Chennai 600 095, India, cDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad 580 001, Karnataka, India, and dPost Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: yuvraj_pd@yahoo.co.in
All the non-H atoms of the title compound, C10H10N2O2, are nearly in the same plane with a maximum deviation of 0.093 (1) Å. In the crystal, adjacent molecules are linked by pairs of intermolecular N—H⋯O hydrogen bonds, generating inversion dimers with R22(14) ring motifs.
Related literature
For background to and applications of pyrrole derivatives, see: Fischer & Orth (1934). For the Knoevenagel condensation reaction and its applications, see: Knoevenagel (1898); Bigi et al. (1999). For the synthesis of related compounds, see: Knizhnikov et al. (2007); Sarda et al. (2009). For related structures, see: Ye et al. (2009); Wang & Jian (2008); Zhang et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811028790/is2752sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811028790/is2752Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811028790/is2752Isup3.cml
A solution of pyrrole-2-aldehyde (1 mol), ethyl cyanoacetate (1.2 mol) and piperidine (0.1 ml) in ethanol (20 ml) was stirred at room temperature for 8 h. After removal of the volatiles in vacuo, orange solid was obtained in quantitative yield. A sample for analysis was obtained by recrystallization from EtOAc as pale yellow needles: 1H NMR (300 MHz, CDCl3) δ p.p.m.: 1.38 t (3H, CH3), 4.35 q (2H, CH2), 6.41 m (1H, CH), 6.92 m (1H, CH), 7.22 m (1H, CH), 7.98 s (1H, HC=C), 9.92 s (1H, NH).
All H atoms were refined using a riding model, with d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3, and d(N—H) = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methylC)
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C10H10N2O2 | F(000) = 400 |
Mr = 190.20 | Dx = 1.297 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7544 reflections |
a = 6.2811 (2) Å | θ = 3.5–29.0° |
b = 9.4698 (3) Å | µ = 0.09 mm−1 |
c = 16.3936 (5) Å | T = 293 K |
β = 92.645 (3)° | Rectangular, light yellow |
V = 974.06 (5) Å3 | 0.30 × 0.20 × 0.15 mm |
Z = 4 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 1908 independent reflections |
Radiation source: fine-focus sealed tube | 1574 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 26.0°, θmin = 3.5° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −11→11 |
Tmin = 0.971, Tmax = 0.986 | l = −20→20 |
18157 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0623P)2 + 0.1138P] where P = (Fo2 + 2Fc2)/3 |
1908 reflections | (Δ/σ)max < 0.001 |
128 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C10H10N2O2 | V = 974.06 (5) Å3 |
Mr = 190.20 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.2811 (2) Å | µ = 0.09 mm−1 |
b = 9.4698 (3) Å | T = 293 K |
c = 16.3936 (5) Å | 0.30 × 0.20 × 0.15 mm |
β = 92.645 (3)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 1908 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1574 reflections with I > 2σ(I) |
Tmin = 0.971, Tmax = 0.986 | Rint = 0.032 |
18157 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.12 e Å−3 |
1908 reflections | Δρmin = −0.19 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1517 (2) | 0.73171 (17) | 0.56284 (9) | 0.0557 (4) | |
H1 | −0.2260 | 0.7170 | 0.6099 | 0.067* | |
C2 | −0.2045 (3) | 0.82705 (18) | 0.50230 (9) | 0.0596 (4) | |
H2 | −0.3208 | 0.8879 | 0.5007 | 0.072* | |
C3 | −0.0526 (2) | 0.81600 (16) | 0.44393 (9) | 0.0522 (4) | |
H3 | −0.0488 | 0.8687 | 0.3962 | 0.063* | |
C4 | 0.0926 (2) | 0.71274 (13) | 0.46903 (7) | 0.0403 (3) | |
C5 | 0.2764 (2) | 0.65298 (13) | 0.43588 (8) | 0.0403 (3) | |
H5 | 0.3441 | 0.5838 | 0.4679 | 0.048* | |
C6 | 0.36856 (19) | 0.68137 (13) | 0.36460 (7) | 0.0390 (3) | |
C7 | 0.2877 (2) | 0.78645 (15) | 0.30869 (8) | 0.0433 (3) | |
C8 | 0.5592 (2) | 0.60070 (14) | 0.34340 (7) | 0.0400 (3) | |
C9 | 0.8147 (2) | 0.56123 (16) | 0.24473 (8) | 0.0502 (4) | |
H9A | 0.7809 | 0.4614 | 0.2415 | 0.060* | |
H9B | 0.9363 | 0.5737 | 0.2827 | 0.060* | |
C10 | 0.8645 (3) | 0.61655 (18) | 0.16209 (9) | 0.0593 (4) | |
H10A | 0.7448 | 0.6008 | 0.1247 | 0.089* | |
H10B | 0.9870 | 0.5683 | 0.1429 | 0.089* | |
H10C | 0.8937 | 0.7159 | 0.1657 | 0.089* | |
N1 | 0.02503 (19) | 0.66332 (12) | 0.54287 (7) | 0.0472 (3) | |
H1A | 0.0873 | 0.5982 | 0.5717 | 0.057* | |
N2 | 0.2208 (2) | 0.87126 (15) | 0.26485 (8) | 0.0631 (4) | |
O1 | 0.63859 (15) | 0.50906 (11) | 0.38609 (6) | 0.0539 (3) | |
O2 | 0.63298 (14) | 0.64028 (10) | 0.27206 (5) | 0.0454 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0510 (8) | 0.0684 (10) | 0.0490 (8) | 0.0055 (7) | 0.0159 (6) | −0.0045 (7) |
C2 | 0.0537 (9) | 0.0672 (10) | 0.0587 (9) | 0.0183 (7) | 0.0105 (7) | 0.0000 (8) |
C3 | 0.0544 (8) | 0.0562 (9) | 0.0464 (8) | 0.0119 (7) | 0.0072 (6) | 0.0048 (6) |
C4 | 0.0420 (7) | 0.0431 (7) | 0.0359 (6) | −0.0008 (6) | 0.0034 (5) | −0.0025 (5) |
C5 | 0.0402 (7) | 0.0420 (7) | 0.0386 (7) | 0.0013 (5) | 0.0018 (5) | −0.0001 (5) |
C6 | 0.0375 (7) | 0.0422 (7) | 0.0375 (6) | −0.0014 (5) | 0.0024 (5) | 0.0005 (5) |
C7 | 0.0414 (7) | 0.0477 (8) | 0.0412 (7) | 0.0014 (6) | 0.0068 (5) | 0.0012 (6) |
C8 | 0.0388 (7) | 0.0434 (7) | 0.0380 (7) | −0.0012 (5) | 0.0032 (5) | 0.0002 (5) |
C9 | 0.0450 (7) | 0.0541 (8) | 0.0526 (8) | 0.0072 (6) | 0.0133 (6) | 0.0026 (7) |
C10 | 0.0608 (9) | 0.0625 (10) | 0.0565 (9) | 0.0038 (7) | 0.0227 (7) | 0.0043 (7) |
N1 | 0.0487 (7) | 0.0524 (7) | 0.0412 (6) | 0.0062 (5) | 0.0091 (5) | 0.0043 (5) |
N2 | 0.0660 (9) | 0.0669 (8) | 0.0570 (8) | 0.0129 (7) | 0.0092 (6) | 0.0184 (7) |
O1 | 0.0540 (6) | 0.0611 (6) | 0.0474 (6) | 0.0163 (5) | 0.0092 (4) | 0.0123 (5) |
O2 | 0.0425 (5) | 0.0507 (6) | 0.0437 (5) | 0.0047 (4) | 0.0120 (4) | 0.0066 (4) |
C1—N1 | 1.3386 (18) | C6—C8 | 1.4753 (18) |
C1—C2 | 1.371 (2) | C7—N2 | 1.1447 (17) |
C1—H1 | 0.9300 | C8—O1 | 1.2080 (15) |
C2—C3 | 1.386 (2) | C8—O2 | 1.3316 (15) |
C2—H2 | 0.9300 | C9—O2 | 1.4528 (16) |
C3—C4 | 1.3869 (19) | C9—C10 | 1.4991 (19) |
C3—H3 | 0.9300 | C9—H9A | 0.9700 |
C4—N1 | 1.3827 (16) | C9—H9B | 0.9700 |
C4—C5 | 1.4165 (18) | C10—H10A | 0.9600 |
C5—C6 | 1.3546 (18) | C10—H10B | 0.9600 |
C5—H5 | 0.9300 | C10—H10C | 0.9600 |
C6—C7 | 1.4301 (18) | N1—H1A | 0.8600 |
N1—C1—C2 | 108.49 (12) | O1—C8—O2 | 124.05 (12) |
N1—C1—H1 | 125.8 | O1—C8—C6 | 123.60 (11) |
C2—C1—H1 | 125.8 | O2—C8—C6 | 112.35 (11) |
C1—C2—C3 | 107.40 (13) | O2—C9—C10 | 107.37 (12) |
C1—C2—H2 | 126.3 | O2—C9—H9A | 110.2 |
C3—C2—H2 | 126.3 | C10—C9—H9A | 110.2 |
C2—C3—C4 | 108.22 (13) | O2—C9—H9B | 110.2 |
C2—C3—H3 | 125.9 | C10—C9—H9B | 110.2 |
C4—C3—H3 | 125.9 | H9A—C9—H9B | 108.5 |
N1—C4—C3 | 105.90 (12) | C9—C10—H10A | 109.5 |
N1—C4—C5 | 119.30 (12) | C9—C10—H10B | 109.5 |
C3—C4—C5 | 134.80 (12) | H10A—C10—H10B | 109.5 |
C6—C5—C4 | 129.78 (12) | C9—C10—H10C | 109.5 |
C6—C5—H5 | 115.1 | H10A—C10—H10C | 109.5 |
C4—C5—H5 | 115.1 | H10B—C10—H10C | 109.5 |
C5—C6—C7 | 122.53 (12) | C1—N1—C4 | 110.00 (12) |
C5—C6—C8 | 118.95 (11) | C1—N1—H1A | 125.0 |
C7—C6—C8 | 118.53 (11) | C4—N1—H1A | 125.0 |
N2—C7—C6 | 178.93 (14) | C8—O2—C9 | 115.85 (10) |
N1—C1—C2—C3 | −0.38 (18) | C7—C6—C8—O1 | −179.34 (12) |
C1—C2—C3—C4 | 0.31 (18) | C5—C6—C8—O2 | −179.66 (11) |
C2—C3—C4—N1 | −0.12 (16) | C7—C6—C8—O2 | 0.57 (17) |
C2—C3—C4—C5 | 178.72 (15) | C2—C1—N1—C4 | 0.31 (18) |
N1—C4—C5—C6 | 178.23 (12) | C3—C4—N1—C1 | −0.11 (16) |
C3—C4—C5—C6 | −0.5 (3) | C5—C4—N1—C1 | −179.17 (12) |
C4—C5—C6—C7 | 1.1 (2) | O1—C8—O2—C9 | 2.78 (19) |
C4—C5—C6—C8 | −178.64 (12) | C6—C8—O2—C9 | −177.13 (10) |
C5—C6—C8—O1 | 0.4 (2) | C10—C9—O2—C8 | 176.96 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.09 | 2.874 (2) | 151 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H10N2O2 |
Mr | 190.20 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 6.2811 (2), 9.4698 (3), 16.3936 (5) |
β (°) | 92.645 (3) |
V (Å3) | 974.06 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.971, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18157, 1908, 1574 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.113, 1.06 |
No. of reflections | 1908 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.12, −0.19 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 | 2.09 | 2.874 (2) | 151 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the Director of the University Sophisticated Instrumentation Facility, University of Jammu, Jammu Tawi, India, for the X-ray data collection. HY gratefully acknowledges Yeungnam University for providing the opportunity to work as an International Research Professor.
References
Bigi, F., Chesini, L., Maggi, R. & Sartori, G. (1999). J. Org. Chem. 64, 1033–1035. Web of Science CrossRef PubMed CAS Google Scholar
Fischer, H. & Orth, H. (1934). Die Chemie des Pyrrols, Vol. 1, pp. 333. Leipzig: Akademische Verlagsgesellschaft. Google Scholar
Knizhnikov, V. A., Borisova, N. E., Yurashevich, N. Y., Popova, L. A., Cherny, A. Yu., Zubreichuk, Z. P. & Reshetova, M. D. (2007). Russ. J. Org. Chem. 43, 855–860. Web of Science CrossRef CAS Google Scholar
Knoevenagel, E. (1898). Berichte, 31, 2585–2595. CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sarda, S. R., Jadhav, W. N., Tekale, S. U., Jadhav, G. V., Patil, B. R., Suryawanshi, G. S. & Pawar, R. P. (2009). Lett. Org. Chem. 6, 481–484. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, J.-G. & Jian, F.-F. (2008). Acta Cryst. E64, o2145. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ye, Y., Shen, W.-L. & Wei, X.-W. (2009). Acta Cryst. E65, o2636. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S.-J., Zheng, X.-M. & Hu, W.-X. (2009). Acta Cryst. E65, o2351. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of pyrrole compounds and biological activities of the related compounds has been extensively studied (Fischer & Orth, 1934). The Knoevenagel condensation is an important carbon–carbon bond forming reaction in organic synthesis (Knoevenagel, 1898). Ever since its discovery, the Knoevenagel reaction has been widely used in organic synthesis to prepare coumarins and their derivatives, which are important intermediates in the synthesis of cosmetics, perfumes and pharmaceuticals (Bigi et al., 1999). With the view of biological importance the title compound was synthesized and reported here its crystal structure.
Bond lengths and bond angles are comparable with the similar crystal structures solved earlier (Ye et al., 2009; Wang & Jian, 2008; Zhang et al., 2009). All the non-hydrogen atoms in the molecule are nearly in the same plane with the maximum out-of-plane deviation of 0.093 (1) Å (r.m.s. deviation = 0.04 Å). The crystal packing is stabilized by N—H···O intermolecular interactions, generating a centrosymmetric dimer of R22(14) ring.