organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bi­pyridine–cyclo­pentane-1,2,3,4-tetra­carb­­oxy­lic acid (1/1)

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn

(Received 25 June 2011; accepted 30 June 2011; online 9 July 2011)

The asymmetric unit of the title compound, C10H8N2·C9H10O8, contains a half-molecule of 2,2′-bipyridine and a half-molecule of 1,2,3,4-cyclopentanetetracarboxylic acid, both components being completed by crystallographic inversion symmetry. In the crystal, the mol­ecules are assembled into chains extending along [010] by O—H⋯N hydrogen bonds; adjacent chains are linked by O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For general background to coordination polymers, see: Bowers et al. (2005[Bowers, J. R., Hopkins, G. W., Yap, G. P. A. & Wheeler, K. A. (2005). Cryst. Growth Des. 5, 727-736]); Bowes et al. (2003[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100-117.]). For related structures, see: Chen et al. (2005[Chen, D.-M., Li, X.-H., Xiao, H.-P. & Hu, M.-L. (2005). Acta Cryst. E61, o317-o319.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C9H10O8

  • Mr = 402.35

  • Orthorhombic, P n m a

  • a = 12.942 (3) Å

  • b = 25.118 (5) Å

  • c = 5.4353 (11) Å

  • V = 1766.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.44 × 0.36 × 0.27 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.949, Tmax = 0.968

  • 15967 measured reflections

  • 2054 independent reflections

  • 1499 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.089

  • S = 1.02

  • 2054 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O3i 0.87 (2) 1.80 (2) 2.6520 (16) 165 (2)
O4—H4A⋯N1ii 0.94 (2) 1.80 (2) 2.7335 (18) 169 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In hydrogen-bonded adducts of simple di–, tri– and tetracarboxylic acids with tertiary diamines, the modes of hydrogen-bonded chains are often determined by hard and soft types. Our investigation builds on the associative behavior of carboxyl and pyridine functions. In this contribution, we report the title compound with bipyridine–cyclopentanetetracarboxylic acid cocrystal.

The asymmetric unit contains one 2,2'-bipyridine molecule and one 1,2,3,4–cyclopentanetetracarboxylic acid molecule. Both bipyridine and cyclopentanetetracarboxylic acid molecules are generated via crystallographic 2–fold rotation axes (Fig. 1), and C3 atoms are located at the Wyckoff 4c sites. The carboxylic groups of cyclopentanetetracarboxylic acid connect with the corresponding bipyridine molecules through O4–H4A···N1ii hydrogen bonds generating a one-dimensional chain along [010] (Fig. 2). In this way, the adjacent one-dimensional chains are interconnected by O2–H2B···O3i hydrogen bonds to give three-dimensional network parallel to (001) (Fig. 3).

Related literature top

For general background [to what?], see: Bowers et al. (2005); Bowes et al. (2003). For related structures, see: Chen et al. (2005)

Experimental top

Under continuous stirring, a solution of 2,2'-bipyridine (0.1560 g, 1.00 mmol) in 10 ml CH3OH was added dropwise to an aqueous solution of 1,2,3,4–cyclopentanetetracarboxylic acid (0.1230 g, 0.50 mmol) in 10 ml H2O. The resulting mixture was further stirred for ca 30 min. After slow evaporation of the solution for one week at 35°C, colorless pillar sized crystals were obtained.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound, The dispalcement ellipsoids are drawn at 45% probability dispalcement ellipsoids. [Symmetry codes: (i)x, –y+1/2, z;(ii)–x, y + 1, –z.]
[Figure 2] Fig. 2. one-dimensional chain of the title cocrystal viewed along the b axis. O–H···N hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Packing diagram of the title co-crystal viewed down the c axis. O–H···N and O–H···O hydrogen bonds are shown as dashed lines.
2,2'-Bipyridine–cyclopentane-1,2,3,4-tetracarboxylic acid (1/1) top
Crystal data top
C10H8N2·C9H10O8F(000) = 840
Mr = 402.35Dx = 1.513 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 8201 reflections
a = 12.942 (3) Åθ = 3.2–27.5°
b = 25.118 (5) ŵ = 0.12 mm1
c = 5.4353 (11) ÅT = 293 K
V = 1766.8 (6) Å3Block, white
Z = 40.44 × 0.36 × 0.27 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2054 independent reflections
Radiation source: fine-focus sealed tube1499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = 1616
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 3232
Tmin = 0.949, Tmax = 0.968l = 77
15967 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.034P)2 + 0.4998P]
where P = (Fo2 + 2Fc2)/3
2054 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H8N2·C9H10O8V = 1766.8 (6) Å3
Mr = 402.35Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.942 (3) ŵ = 0.12 mm1
b = 25.118 (5) ÅT = 293 K
c = 5.4353 (11) Å0.44 × 0.36 × 0.27 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2054 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1499 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.968Rint = 0.055
15967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
2054 reflectionsΔρmin = 0.16 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51833 (9)0.28149 (5)0.1032 (3)0.0282 (3)
H1A0.53370.29440.26940.034*
C20.40596 (10)0.29744 (5)0.0333 (3)0.0311 (3)
H2A0.36720.30040.18750.037*
C30.36186 (15)0.25000.1051 (4)0.0354 (5)
H3A0.38420.25000.27540.043*
H3B0.28690.25000.09970.043*
O10.58022 (9)0.31419 (5)0.2864 (2)0.0560 (4)
O20.68873 (8)0.30931 (4)0.0286 (2)0.0429 (3)
C40.59708 (10)0.30368 (5)0.0745 (3)0.0313 (3)
O30.33802 (8)0.35651 (4)0.2754 (3)0.0535 (4)
O40.44673 (9)0.38926 (4)0.0007 (2)0.0438 (3)
C50.39410 (10)0.34981 (6)0.0985 (3)0.0341 (3)
N10.07695 (9)0.51473 (5)0.2707 (2)0.0392 (3)
C60.14948 (12)0.49161 (7)0.4103 (3)0.0456 (4)
H6A0.17370.51030.54630.055*
C70.19052 (12)0.44202 (7)0.3654 (3)0.0453 (4)
H7A0.24060.42760.46830.054*
C80.15516 (13)0.41452 (7)0.1634 (3)0.0448 (4)
H8A0.18160.38110.12580.054*
C90.08006 (13)0.43719 (6)0.0176 (3)0.0430 (4)
H9A0.05530.41900.11930.052*
C100.04132 (11)0.48714 (6)0.0747 (3)0.0357 (3)
H2B0.7334 (16)0.3216 (8)0.077 (4)0.074 (7)*
H4A0.4380 (18)0.4198 (10)0.098 (5)0.095 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (6)0.0356 (7)0.0258 (7)0.0014 (5)0.0007 (6)0.0040 (6)
C20.0225 (6)0.0321 (7)0.0389 (8)0.0010 (5)0.0033 (6)0.0016 (6)
C30.0260 (9)0.0286 (10)0.0517 (14)0.0000.0046 (10)0.000
O10.0469 (7)0.0863 (10)0.0350 (7)0.0119 (6)0.0054 (5)0.0090 (6)
O20.0249 (5)0.0494 (7)0.0544 (8)0.0087 (5)0.0019 (5)0.0014 (6)
C40.0279 (7)0.0290 (7)0.0371 (9)0.0010 (6)0.0046 (6)0.0054 (6)
O30.0430 (6)0.0380 (6)0.0796 (9)0.0087 (5)0.0285 (6)0.0102 (6)
O40.0467 (6)0.0340 (6)0.0508 (7)0.0104 (5)0.0073 (5)0.0026 (5)
C50.0236 (6)0.0311 (7)0.0475 (9)0.0015 (6)0.0004 (7)0.0026 (7)
N10.0387 (7)0.0378 (7)0.0411 (8)0.0084 (6)0.0029 (6)0.0029 (6)
C60.0430 (8)0.0494 (9)0.0443 (10)0.0126 (8)0.0101 (8)0.0036 (8)
C70.0390 (8)0.0458 (9)0.0510 (11)0.0051 (7)0.0069 (8)0.0125 (8)
C80.0467 (9)0.0394 (9)0.0483 (10)0.0018 (7)0.0023 (8)0.0083 (8)
C90.0507 (9)0.0386 (8)0.0396 (9)0.0046 (7)0.0054 (8)0.0021 (7)
C100.0375 (7)0.0353 (8)0.0343 (8)0.0093 (6)0.0013 (7)0.0057 (7)
Geometric parameters (Å, º) top
C1—C41.5105 (19)O4—C51.3177 (17)
C1—C21.5555 (18)O4—H4A0.94 (2)
C1—C1i1.582 (3)N1—C61.339 (2)
C1—H1A0.9800N1—C101.352 (2)
C2—C51.506 (2)C6—C71.376 (2)
C2—C31.5202 (19)C6—H6A0.9300
C2—H2A0.9800C7—C81.375 (2)
C3—C2i1.5202 (19)C7—H7A0.9300
C3—H3A0.9700C8—C91.377 (2)
C3—H3B0.9700C8—H8A0.9300
O1—C41.2015 (19)C9—C101.386 (2)
O2—C41.3194 (17)C9—H9A0.9300
O2—H2B0.87 (2)C10—C10ii1.490 (3)
O3—C51.2166 (19)
C4—C1—C2112.31 (12)O2—C4—C1111.99 (13)
C4—C1—C1i111.65 (7)C5—O4—H4A108.6 (14)
C2—C1—C1i104.92 (7)O3—C5—O4121.84 (14)
C4—C1—H1A109.3O3—C5—C2123.90 (13)
C2—C1—H1A109.3O4—C5—C2114.19 (13)
C1i—C1—H1A109.3C6—N1—C10117.60 (14)
C5—C2—C3114.28 (13)N1—C6—C7124.23 (16)
C5—C2—C1115.88 (11)N1—C6—H6A117.9
C3—C2—C1105.67 (12)C7—C6—H6A117.9
C5—C2—H2A106.8C8—C7—C6117.89 (16)
C3—C2—H2A106.8C8—C7—H7A121.1
C1—C2—H2A106.8C6—C7—H7A121.1
C2—C3—C2i103.21 (17)C7—C8—C9119.11 (16)
C2—C3—H3A111.1C7—C8—H8A120.4
C2i—C3—H3A111.1C9—C8—H8A120.4
C2—C3—H3B111.1C8—C9—C10120.02 (16)
C2i—C3—H3B111.1C8—C9—H9A120.0
H3A—C3—H3B109.1C10—C9—H9A120.0
C4—O2—H2B110.7 (14)N1—C10—C9121.14 (14)
O1—C4—O2123.15 (14)N1—C10—C10ii116.88 (17)
O1—C4—C1124.84 (13)C9—C10—C10ii121.98 (18)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O3iii0.87 (2)1.80 (2)2.6520 (16)165 (2)
O4—H4A···N1iv0.94 (2)1.80 (2)2.7335 (18)169 (2)
Symmetry codes: (iii) x+1/2, y, z1/2; (iv) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2·C9H10O8
Mr402.35
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)12.942 (3), 25.118 (5), 5.4353 (11)
V3)1766.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.44 × 0.36 × 0.27
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.949, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
15967, 2054, 1499
Rint0.055
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.02
No. of reflections2054
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O3i0.87 (2)1.80 (2)2.6520 (16)165 (2)
O4—H4A···N1ii0.94 (2)1.80 (2)2.7335 (18)169 (2)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1, z1/2.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Ningbo University (grant No. XKL069) and the Education Department of Zhejiang Province. Sincere thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationBowers, J. R., Hopkins, G. W., Yap, G. P. A. & Wheeler, K. A. (2005). Cryst. Growth Des. 5, 727–736  Web of Science CSD CrossRef CAS Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, D.-M., Li, X.-H., Xiao, H.-P. & Hu, M.-L. (2005). Acta Cryst. E61, o317–o319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds