organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1947-o1948

3-(3-Meth­­oxy­benzo­yl)-1,1-di­phenyl­thio­urea

aFuel Cell Institute, University Kebangsaan Malaysia, 43600 Selangor, Malaysia, bSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, University Kebangsaan Malaysia, 43600 Selangor, Malaysia, cDepartment of Chemical and Process Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, 43600 Selangor, Malaysia, and dSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, University Kebangsaan Malaysia, 43600 Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 29 June 2011; accepted 29 June 2011; online 9 July 2011)

The thiono and carbonyl groups in the title compound, C21H18N2O2S, adopt an anti disposition with respect to the central C—N bond. The diphenyl­amine rings are twisted relative to each other by a dihedral angle of 82.55 (10)°. The 3-meth­oxy­benzoyl fragment is twisted relative to one of the diphenyl­amine rings, forming a dihedral angle of 74.04 (9)°. In the crystal, pairs of inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming columns parallel to the a axis.

Related literature

For related structures and background references, see: Al-abbasi et al. (2010[Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.]); Al-abbasi & Kassim (2011[Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.]); Md Nasir et al. (2011[Md Nasir, M. F., Hassan, I. N., Yamin, B. M., Daud, W. R. W. & Kassim, M. B. (2011). Acta Cryst. E67, o1742.]). For metal complexes of benzoyl­thio­ureas, see: Circu et al. (2009[Circu, V., Ilie, M., Ilis, M., Dumitrascu, F., Neagoe, I. & Pasculescu, S. (2009). Polyhedron, 28, 3739-3746.]); Weiqun et al. (2005[Weiqun, Z., Wen, Y., Liqun, X. & Xianchen, C. (2005). J. Inorg. Biochem. 99, 1314-1319.]). For the synthetic procedure, see: Hassan et al. (2008[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.]). For a standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2O2S

  • Mr = 362.43

  • Triclinic, [P \overline 1]

  • a = 6.056 (3) Å

  • b = 12.895 (7) Å

  • c = 13.344 (7) Å

  • α = 112.796 (9)°

  • β = 100.336 (10)°

  • γ = 97.951 (10)°

  • V = 920.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.52 × 0.23 × 0.03 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS , SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.994

  • 10189 measured reflections

  • 3612 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.04

  • 3612 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.87 (2) 2.54 (2) 3.380 (2) 163.6 (17)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS , SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS , SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzoylthiourea compounds act as a chelating ligands by deprotonation of the amide group and coordinate via a thiolate form through the S and O atoms to form neutral complexes with cobalt (Weiqun et al., 2005) and platinum (Circu et al., 2009).

The title compound, I, is a thiourea derivative analogous to our previously reported compounds (Md Nasir et al., 2011; Al-abbasi & Kassim, 2011). The thiono and the carbonyl groups are trans positioned with respect to N1—C8 bond with C7N1C8S1 torsion angle of -129.10 (16)°. The methoxy group is coplanar with the parent benzene ring with the largest deviation from the mean planes of (O1/C1/C2/C3/C4/C5/C6/C7) of -0.051 (2)° for C7 and the dihedral angle between the same plane and the thioamide mean planes (S1/N1/N2/C8) is 87.45 (8)°.

In the crystal structure, Intermolecular N1—H1A···S1 hydrogen bond link the molecules into a centrosymmetric dimers forming channel parallel to the a-axis.

Related literature top

For related structures and background references, see: Al-abbasi et al. (2010); Al-abbasi & Kassim (2011); Md Nasir et al. (2011). For metal complexes of benzoylthioureas, see: Circu et al. (2009); Weiqun et al. (2005). For the synthetic procedure, see: Hassan et al. (2008). For a standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to a previously reported procedure (Al-abbasi et al., 2010) using 3-methoxybenzoyl chloride and diphenylamine as the appropriate starting materials. A yellowish crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from ethanol solution at room temperature (yield 75%).

Refinement top

Hydrogen atom of the amide group was determined from the difference Fourier map and N—H was initially fixed at 0.86(0.01) Å and allowed to be refined on the parent N atom with Uiso(H) = 1.2Ueq(N). All other H atoms were positioned geometrically with C—H bond lengths in the range 0.93 - 0.97 Å and refined in the riding model approximation with Uiso(H)=1.2Ueq(C,N), except for methyl group where Uiso(H)= 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a-axis showing the intermolecular hydrogen bonds N1—H1···S1 (-x + 1, -y + 1, -z + 1) centrosymmetric dimers along a-axis.
3-(3-Methoxybenzoyl)-1,1-diphenylthiourea top
Crystal data top
C21H18N2O2SZ = 2
Mr = 362.43F(000) = 380
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Melting point = 412.15–410.15 K
a = 6.056 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.895 (7) ÅCell parameters from 3612 reflections
c = 13.344 (7) Åθ = 6.4–55.2°
α = 112.796 (9)°µ = 0.19 mm1
β = 100.336 (10)°T = 298 K
γ = 97.951 (10)°Plate, yellow
V = 920.0 (8) Å30.52 × 0.23 × 0.03 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3612 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scanθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.906, Tmax = 0.994k = 1515
10189 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.1546P]
where P = (Fo2 + 2Fc2)/3
3612 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H18N2O2Sγ = 97.951 (10)°
Mr = 362.43V = 920.0 (8) Å3
Triclinic, P1Z = 2
a = 6.056 (3) ÅMo Kα radiation
b = 12.895 (7) ŵ = 0.19 mm1
c = 13.344 (7) ÅT = 298 K
α = 112.796 (9)°0.52 × 0.23 × 0.03 mm
β = 100.336 (10)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3612 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2663 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.994Rint = 0.029
10189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.17 e Å3
3612 reflectionsΔρmin = 0.27 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28578 (10)0.32442 (4)0.43411 (4)0.05684 (19)
O10.0958 (3)0.92764 (11)0.40494 (14)0.0667 (4)
O20.0666 (2)0.49768 (10)0.27758 (12)0.0554 (4)
N10.2897 (3)0.47668 (11)0.34630 (12)0.0403 (4)
N20.0990 (2)0.28974 (11)0.22465 (10)0.0372 (3)
C60.4600 (3)0.67429 (15)0.30353 (15)0.0458 (4)
H60.54080.61640.28210.055*
C50.5442 (3)0.78217 (16)0.30918 (17)0.0504 (5)
H50.68170.79620.28980.060*
C40.4287 (3)0.86899 (15)0.34293 (15)0.0458 (4)
H40.48890.94130.34710.055*
C30.2235 (3)0.84874 (14)0.37065 (15)0.0438 (4)
C20.1354 (3)0.74050 (14)0.36416 (14)0.0430 (4)
H20.00310.72640.38270.052*
C10.2519 (3)0.65424 (13)0.33049 (13)0.0380 (4)
C210.1482 (4)1.03154 (16)0.39139 (19)0.0595 (5)
H21A0.29921.07540.43780.089*
H21B0.03661.07620.41320.089*
H21C0.14431.01320.31410.089*
C70.1389 (3)0.53717 (14)0.31542 (14)0.0405 (4)
C80.2192 (3)0.36345 (13)0.33048 (13)0.0376 (4)
C90.1204 (3)0.31150 (13)0.12858 (13)0.0369 (4)
C140.0742 (3)0.29310 (16)0.04667 (14)0.0476 (4)
H140.21920.26590.05290.057*
C130.0526 (4)0.31537 (19)0.04475 (16)0.0610 (6)
H130.18360.30290.10020.073*
C120.1610 (4)0.35575 (19)0.05447 (17)0.0618 (6)
H120.17450.37190.11550.074*
C110.3535 (4)0.37199 (18)0.02626 (18)0.0579 (5)
H110.49830.39870.01950.070*
C100.3355 (3)0.34923 (15)0.11738 (15)0.0464 (4)
H100.46750.35920.17120.056*
C150.0664 (3)0.18826 (13)0.20578 (13)0.0388 (4)
C160.2480 (3)0.20071 (17)0.25501 (16)0.0523 (5)
H160.25820.27360.30350.063*
C170.4148 (4)0.1046 (2)0.2320 (2)0.0697 (6)
H170.53740.11250.26540.084*
C180.4001 (4)0.0022 (2)0.16034 (19)0.0757 (8)
H180.51410.06680.14420.091*
C190.2184 (4)0.01469 (17)0.11210 (17)0.0691 (7)
H190.20890.08790.06400.083*
C200.0481 (4)0.08113 (14)0.13453 (14)0.0505 (5)
H200.07560.07290.10200.061*
H1A0.416 (3)0.5170 (16)0.3974 (17)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0816 (4)0.0375 (2)0.0398 (3)0.0063 (2)0.0094 (2)0.02171 (19)
O10.0816 (11)0.0378 (7)0.1021 (12)0.0228 (7)0.0492 (9)0.0372 (7)
O20.0428 (8)0.0374 (7)0.0779 (9)0.0029 (6)0.0069 (7)0.0217 (6)
N10.0461 (9)0.0274 (7)0.0387 (7)0.0018 (6)0.0051 (7)0.0153 (6)
N20.0446 (8)0.0302 (7)0.0328 (7)0.0003 (6)0.0040 (6)0.0142 (5)
C60.0488 (11)0.0418 (9)0.0496 (10)0.0113 (8)0.0086 (8)0.0238 (8)
C50.0430 (10)0.0521 (11)0.0630 (12)0.0058 (9)0.0131 (9)0.0333 (9)
C40.0488 (11)0.0375 (9)0.0517 (10)0.0015 (8)0.0055 (8)0.0253 (8)
C30.0518 (11)0.0335 (9)0.0469 (9)0.0085 (8)0.0110 (8)0.0188 (7)
C20.0461 (10)0.0367 (9)0.0495 (10)0.0072 (8)0.0132 (8)0.0218 (8)
C10.0430 (10)0.0328 (8)0.0361 (8)0.0026 (7)0.0026 (7)0.0176 (7)
C210.0784 (15)0.0376 (10)0.0712 (13)0.0151 (10)0.0196 (11)0.0313 (10)
C70.0489 (11)0.0310 (8)0.0379 (8)0.0046 (7)0.0078 (7)0.0137 (7)
C80.0401 (9)0.0309 (8)0.0372 (8)0.0020 (7)0.0029 (7)0.0147 (7)
C90.0448 (10)0.0315 (8)0.0334 (8)0.0053 (7)0.0072 (7)0.0152 (6)
C140.0459 (11)0.0524 (10)0.0402 (9)0.0039 (8)0.0045 (8)0.0205 (8)
C130.0669 (14)0.0732 (13)0.0408 (10)0.0146 (11)0.0008 (9)0.0283 (10)
C120.0808 (16)0.0711 (14)0.0466 (11)0.0179 (12)0.0230 (11)0.0353 (10)
C110.0609 (13)0.0614 (12)0.0640 (12)0.0120 (10)0.0276 (10)0.0350 (10)
C100.0463 (11)0.0460 (10)0.0472 (10)0.0078 (8)0.0090 (8)0.0223 (8)
C150.0432 (10)0.0341 (8)0.0340 (8)0.0015 (7)0.0017 (7)0.0162 (7)
C160.0512 (12)0.0517 (11)0.0542 (11)0.0064 (9)0.0130 (9)0.0247 (9)
C170.0547 (13)0.0831 (16)0.0705 (14)0.0078 (12)0.0141 (11)0.0403 (13)
C180.0862 (17)0.0643 (14)0.0560 (12)0.0330 (12)0.0002 (12)0.0286 (11)
C190.1047 (19)0.0375 (10)0.0451 (11)0.0142 (11)0.0102 (12)0.0110 (8)
C200.0684 (13)0.0364 (9)0.0386 (9)0.0007 (9)0.0121 (9)0.0118 (7)
Geometric parameters (Å, º) top
S1—C81.6503 (17)C21—H21C0.9600
O1—C31.351 (2)C9—C141.378 (2)
O1—C211.421 (2)C9—C101.381 (3)
O2—C71.210 (2)C14—C131.381 (3)
N1—C81.384 (2)C14—H140.9300
N1—C71.387 (2)C13—C121.373 (3)
N1—H1A0.87 (2)C13—H130.9300
N2—C81.352 (2)C12—C111.368 (3)
N2—C91.438 (2)C12—H120.9300
N2—C151.439 (2)C11—C101.375 (3)
C6—C51.382 (2)C11—H110.9300
C6—C11.389 (3)C10—H100.9300
C6—H60.9300C15—C201.374 (3)
C5—C41.373 (3)C15—C161.376 (3)
C5—H50.9300C16—C171.377 (3)
C4—C31.378 (3)C16—H160.9300
C4—H40.9300C17—C181.365 (4)
C3—C21.387 (2)C17—H170.9300
C2—C11.371 (3)C18—C191.369 (4)
C2—H20.9300C18—H180.9300
C1—C71.489 (2)C19—C201.389 (3)
C21—H21A0.9600C19—H190.9300
C21—H21B0.9600C20—H200.9300
C3—O1—C21118.49 (16)C14—C9—C10119.92 (16)
C8—N1—C7122.68 (15)C14—C9—N2119.86 (15)
C8—N1—H1A116.5 (13)C10—C9—N2120.21 (15)
C7—N1—H1A117.1 (13)C9—C14—C13119.56 (18)
C8—N2—C9122.38 (13)C9—C14—H14120.2
C8—N2—C15119.92 (13)C13—C14—H14120.2
C9—N2—C15117.62 (12)C12—C13—C14120.52 (19)
C5—C6—C1118.54 (17)C12—C13—H13119.7
C5—C6—H6120.7C14—C13—H13119.7
C1—C6—H6120.7C11—C12—C13119.54 (18)
C4—C5—C6121.22 (18)C11—C12—H12120.2
C4—C5—H5119.4C13—C12—H12120.2
C6—C5—H5119.4C12—C11—C10120.76 (19)
C5—C4—C3119.88 (16)C12—C11—H11119.6
C5—C4—H4120.1C10—C11—H11119.6
C3—C4—H4120.1C11—C10—C9119.66 (18)
O1—C3—C4124.89 (15)C11—C10—H10120.2
O1—C3—C2115.53 (16)C9—C10—H10120.2
C4—C3—C2119.57 (17)C20—C15—C16120.88 (16)
C1—C2—C3120.20 (17)C20—C15—N2119.82 (16)
C1—C2—H2119.9C16—C15—N2119.20 (16)
C3—C2—H2119.9C15—C16—C17119.6 (2)
C2—C1—C6120.58 (15)C15—C16—H16120.2
C2—C1—C7117.72 (16)C17—C16—H16120.2
C6—C1—C7121.53 (16)C18—C17—C16120.1 (2)
O1—C21—H21A109.5C18—C17—H17120.0
O1—C21—H21B109.5C16—C17—H17120.0
H21A—C21—H21B109.5C17—C18—C19120.30 (19)
O1—C21—H21C109.5C17—C18—H18119.9
H21A—C21—H21C109.5C19—C18—H18119.9
H21B—C21—H21C109.5C18—C19—C20120.5 (2)
O2—C7—N1123.01 (15)C18—C19—H19119.8
O2—C7—C1122.65 (16)C20—C19—H19119.8
N1—C7—C1114.33 (15)C15—C20—C19118.6 (2)
N2—C8—N1114.68 (14)C15—C20—H20120.7
N2—C8—S1124.04 (12)C19—C20—H20120.7
N1—C8—S1121.26 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.87 (2)2.54 (2)3.380 (2)163.6 (17)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H18N2O2S
Mr362.43
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.056 (3), 12.895 (7), 13.344 (7)
α, β, γ (°)112.796 (9), 100.336 (10), 97.951 (10)
V3)920.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.52 × 0.23 × 0.03
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.906, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
10189, 3612, 2663
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.04
No. of reflections3612
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.87 (2)2.54 (2)3.380 (2)163.6 (17)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank University Kebangsaan Malaysia for grants UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010 and UKM-PTS-016–2009 and sabbatical leave for MBK, and the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009.

References

First citationAl-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS , SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCircu, V., Ilie, M., Ilis, M., Dumitrascu, F., Neagoe, I. & Pasculescu, S. (2009). Polyhedron, 28, 3739–3746.  CAS Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMd Nasir, M. F., Hassan, I. N., Yamin, B. M., Daud, W. R. W. & Kassim, M. B. (2011). Acta Cryst. E67, o1742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiqun, Z., Wen, Y., Liqun, X. & Xianchen, C. (2005). J. Inorg. Biochem. 99, 1314–1319.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1947-o1948
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds