organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1992-o1993

2,2-Di­phenyl­acetamide

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 097, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 3 July 2011; accepted 5 July 2011; online 9 July 2011)

In the title compound, C14H13NO, which has two mol­ecules in the asymmetric unit, the dihedral angles between the mean planes of the benzene rings are 84.6 (7) and 85.0 (6)°. N—H⋯O hydrogen bonds [forming R22(8) ring motifs] and C—H⋯O hydrogen bonds dominate the crystal packing, forming zigzag chains parallel to the a axis. In addition, weak inter­molecular C—H⋯π inter­actions are observed.

Related literature

For the synthesis and anti­mycobacterial activity of 2,2-diphenyl­acetamide derivatives, see: Guzel et al. (2006[Guzel, O., Ilhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795-801.]). For related structures, see: Akkurt et al. (2007[Akkurt, M., Karaca, S., Şahin, E., Güzel, Ö., Salman, A. & İlhan, E. (2007). Acta Cryst. E63, o3379-o3380.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o499.]); Gerkin (1998[Gerkin, R. E. (1998). Acta Cryst. C54, 1887-1889.]); Krigbaum et al. (1968[Krigbaum, W. R., Roe, R.-J. & Woods, J. D. (1968). Acta Cryst. B24, 1304-1312.]); Narasegowda et al. (2005[Narasegowda, R. S., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, o939-o940.]); Yathirajan et al. (2005[Yathirajan, H. S., Nagaraj, B., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o1193-o1195.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO

  • Mr = 211.25

  • Monoclinic, P 21

  • a = 5.1687 (3) Å

  • b = 28.5511 (13) Å

  • c = 7.8006 (4) Å

  • β = 98.152 (5)°

  • V = 1139.52 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 173 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.792, Tmax = 0.887

  • 6490 measured reflections

  • 3978 independent reflections

  • 3869 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.07

  • 3978 reflections

  • 303 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the C3–C8 and C23–C28 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.89 (1) 2.20 (2) 2.9409 (17) 140 (2)
N1—H1A⋯O2ii 0.87 (1) 2.09 (1) 2.9575 (19) 177 (2)
N2—H2B⋯O1iii 0.88 (1) 2.07 (1) 2.9526 (19) 176 (2)
N2—H2A⋯O2iv 0.89 (1) 2.17 (2) 2.9407 (18) 145 (2)
N1—H1A⋯N2ii 0.87 (1) 3.06 (2) 3.7246 (18) 134 (2)
N2—H2B⋯N1iii 0.88 (1) 3.10 (2) 3.7246 (18) 130 (2)
C10—H10A⋯O1 0.95 2.50 3.093 (2) 120
C18—H18A⋯O2 0.95 2.51 3.099 (2) 120
C2—H2CCg1i 1.00 2.96 3.9379 (18) 165
C16—H16ACg4iv 1.00 2.95 3.9263 (18) 166
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z-1; (iv) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and antimycobacterial activity of some new 2,2-diphenylacetamide derivatives is described (Guzel et al., 2006). The title compound is used to synthesize various biologically active and pharmaceutical compounds viz., loperamide, darifenacin, fenpiverine, etc. The crystal structures of N,N-diphenylacetamide (Krigbaum et al., 1968), 4,4'-dimethylbiphenyl-2,2'-dicarboxylic acid (Gerkin, 1998), 4'-methylbiphenyl-2-carboxylic acid (Narasegowda et al., 2005) and 4'-(2-butyl-4-chloro-5-formylimidazol-1-ylmethyl)biphenyl-2-carbonitrile (Yathirajan et al., 2005), 2-hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-2,2-diphenylacetamide (Akkurt et al., 2007) and 2-Chloro-N-[4-chloro-2-(2-chlorobenzoyl)phenyl]acetamide (Dutkiewicz et al., 2010) have been reported. In view of the importance of the title compound, (I), C14H13NO, and in order to determine the conformation of this molecule, a crystal structure determination has been carried out.

In the title compound, (I), with two molecules in the asymmetric unit, the dihedral angle between the mean planes of the benzene rings is 84.6 (7)° or 85.0 (6)°, respectively (Fig. 1). Extensive N—H···O (forming an R22(8) ring-motif) intermolecular and C—H···O intramolecular hydrogen bonds and weak C—H···Cg π-ring intermolecular interactions (dominate the crystal packing forming a zigzag chain along [010] (Table 1, Fg. 2).

Related literature top

For the synthesis and antimycobacterial activity of 2,2-diphenylacetamide derivatives, see: Guzel et al. (2006). For related structures, see: Akkurt et al. (2007); Dutkiewicz et al. (2010); Gerkin (1998); Krigbaum et al. (1968); Narasegowda et al. (2005); Yathirajan et al. (2005). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore. X-ray quality crystals were obtained by slow evaporation of 1:1 acetone:methanol solution (m.p.: 430-433 K).

Refinement top

The N–H atoms wwere located by Fourier analysis and refined isotropically with DFIX = 0.87Å. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom–H lengths of 0.95Å or 1.00Å (CH). Isotropic displacement parameters for these atoms were set to 1.19-1.20 (CH), times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines represent N—H···O hydrogen bonds.
2,2-Diphenylacetamide top
Crystal data top
C14H13NOF(000) = 448
Mr = 211.25Dx = 1.231 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 5082 reflections
a = 5.1687 (3) Åθ = 4.6–70.4°
b = 28.5511 (13) ŵ = 0.61 mm1
c = 7.8006 (4) ÅT = 173 K
β = 98.152 (5)°Block, colorless
V = 1139.52 (10) Å30.40 × 0.25 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3978 independent reflections
Radiation source: Enhance (Cu) X-ray Source3869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.1500 pixels mm-1θmax = 70.5°, θmin = 5.7°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 3434
Tmin = 0.792, Tmax = 0.887l = 98
6490 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.1057P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.027
3978 reflectionsΔρmax = 0.21 e Å3
303 parametersΔρmin = 0.20 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0118 (13)
Crystal data top
C14H13NOV = 1139.52 (10) Å3
Mr = 211.25Z = 4
Monoclinic, P21Cu Kα radiation
a = 5.1687 (3) ŵ = 0.61 mm1
b = 28.5511 (13) ÅT = 173 K
c = 7.8006 (4) Å0.40 × 0.25 × 0.20 mm
β = 98.152 (5)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
3978 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3869 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.887Rint = 0.017
6490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0379 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.21 e Å3
3978 reflectionsΔρmin = 0.20 e Å3
303 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9797 (3)0.54261 (6)0.6365 (2)0.0459 (3)
H1B1.121 (3)0.5307 (8)0.600 (3)0.055*
H1A0.984 (5)0.5667 (6)0.706 (3)0.055*
O21.0081 (2)0.62240 (4)0.11977 (17)0.0465 (3)
O10.5496 (2)0.53784 (5)0.64407 (16)0.0459 (3)
N20.5779 (3)0.61736 (6)0.1120 (2)0.0469 (4)
H2B0.561 (5)0.5935 (6)0.185 (3)0.056*
H2A0.431 (3)0.6281 (9)0.080 (3)0.056*
C10.7494 (3)0.52226 (5)0.5965 (2)0.0359 (3)
C20.7440 (3)0.47718 (6)0.4902 (2)0.0377 (3)
H2C0.90970.47580.43810.045*
C30.5167 (3)0.47744 (6)0.3416 (2)0.0406 (4)
C40.4550 (5)0.51789 (8)0.2469 (3)0.0678 (6)
H4A0.55340.54560.27590.081*
C50.2520 (6)0.51860 (10)0.1106 (4)0.0824 (8)
H5A0.21300.54670.04690.099*
C60.1062 (5)0.47893 (10)0.0666 (3)0.0683 (6)
H6A0.03530.47960.02540.082*
C70.1684 (4)0.43851 (9)0.1575 (3)0.0577 (5)
H7A0.07070.41080.12720.069*
C80.3724 (4)0.43764 (7)0.2933 (2)0.0461 (4)
H8A0.41380.40920.35430.055*
C90.7419 (3)0.43519 (5)0.6105 (2)0.0375 (3)
C100.5760 (4)0.43225 (7)0.7334 (3)0.0518 (4)
H10A0.45770.45710.74510.062*
C110.5795 (5)0.39352 (9)0.8402 (3)0.0606 (5)
H11A0.46300.39210.92390.073*
C120.7488 (5)0.35715 (8)0.8270 (3)0.0607 (5)
H12A0.75210.33090.90200.073*
C130.9135 (5)0.35925 (9)0.7036 (4)0.0738 (7)
H13A1.02880.33400.69100.089*
C140.9117 (4)0.39807 (8)0.5981 (3)0.0607 (5)
H14A1.02940.39940.51510.073*
C150.8083 (3)0.63780 (6)0.0712 (2)0.0355 (3)
C160.8143 (3)0.68289 (5)0.0360 (2)0.0367 (3)
H16A0.64950.68410.08920.044*
C170.8148 (3)0.72535 (6)0.0840 (2)0.0373 (3)
C180.9825 (4)0.72830 (7)0.2076 (2)0.0505 (4)
H18A1.10050.70340.22010.061*
C190.9779 (4)0.76758 (8)0.3129 (3)0.0594 (5)
H19A1.09410.76940.39670.071*
C200.8089 (5)0.80352 (7)0.2976 (3)0.0585 (5)
H20A0.80610.83010.37100.070*
C210.6427 (5)0.80100 (8)0.1751 (3)0.0654 (6)
H21A0.52570.82600.16270.078*
C220.6461 (4)0.76191 (7)0.0699 (3)0.0533 (5)
H22A0.52940.76030.01370.064*
C231.0422 (3)0.68233 (6)0.1827 (2)0.0404 (3)
C241.1076 (5)0.64165 (8)0.2764 (3)0.0702 (6)
H24A1.01190.61370.24620.084*
C251.3098 (6)0.64110 (11)0.4128 (3)0.0848 (8)
H25A1.35080.61290.47570.102*
C261.4513 (5)0.68078 (11)0.4580 (3)0.0696 (6)
H26A1.59220.68010.55050.084*
C271.3884 (4)0.72136 (9)0.3690 (3)0.0608 (5)
H27A1.48470.74910.40080.073*
C281.1853 (4)0.72226 (7)0.2329 (2)0.0468 (4)
H28A1.14320.75080.17270.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0328 (6)0.0411 (8)0.0651 (9)0.0033 (6)0.0110 (6)0.0140 (7)
O20.0316 (5)0.0435 (7)0.0654 (7)0.0009 (5)0.0106 (5)0.0159 (5)
O10.0321 (5)0.0424 (6)0.0639 (7)0.0001 (5)0.0093 (5)0.0150 (6)
N20.0325 (6)0.0435 (8)0.0652 (9)0.0021 (6)0.0086 (6)0.0147 (7)
C10.0322 (7)0.0325 (8)0.0430 (8)0.0009 (5)0.0051 (6)0.0007 (6)
C20.0361 (7)0.0352 (8)0.0436 (8)0.0012 (6)0.0116 (6)0.0032 (7)
C30.0436 (8)0.0388 (9)0.0407 (8)0.0019 (6)0.0107 (6)0.0039 (7)
C40.0871 (15)0.0441 (11)0.0663 (13)0.0108 (10)0.0092 (11)0.0077 (9)
C50.107 (2)0.0650 (15)0.0660 (14)0.0016 (14)0.0202 (14)0.0137 (12)
C60.0713 (13)0.0847 (16)0.0442 (10)0.0011 (12)0.0085 (9)0.0065 (10)
C70.0624 (11)0.0665 (13)0.0438 (9)0.0133 (10)0.0061 (8)0.0125 (9)
C80.0545 (9)0.0452 (10)0.0398 (8)0.0061 (8)0.0109 (7)0.0068 (7)
C90.0368 (7)0.0332 (8)0.0423 (8)0.0013 (6)0.0048 (6)0.0052 (6)
C100.0547 (10)0.0487 (11)0.0557 (10)0.0113 (8)0.0204 (8)0.0036 (8)
C110.0734 (13)0.0576 (11)0.0565 (11)0.0015 (10)0.0284 (10)0.0067 (10)
C120.0769 (13)0.0434 (11)0.0636 (12)0.0004 (10)0.0164 (10)0.0106 (9)
C130.0837 (15)0.0440 (11)0.1012 (18)0.0193 (11)0.0389 (14)0.0163 (11)
C140.0657 (12)0.0439 (10)0.0795 (14)0.0133 (9)0.0346 (10)0.0054 (10)
C150.0327 (7)0.0324 (7)0.0418 (7)0.0002 (6)0.0066 (6)0.0006 (6)
C160.0357 (7)0.0337 (8)0.0430 (8)0.0020 (6)0.0129 (6)0.0041 (7)
C170.0363 (7)0.0358 (8)0.0399 (7)0.0021 (6)0.0055 (6)0.0057 (6)
C180.0531 (10)0.0481 (10)0.0534 (10)0.0080 (8)0.0186 (8)0.0042 (8)
C190.0686 (12)0.0591 (12)0.0550 (11)0.0016 (10)0.0245 (9)0.0069 (10)
C200.0752 (13)0.0429 (11)0.0583 (11)0.0010 (9)0.0123 (10)0.0104 (8)
C210.0786 (15)0.0409 (10)0.0818 (15)0.0171 (9)0.0294 (12)0.0066 (10)
C220.0597 (10)0.0404 (9)0.0655 (11)0.0073 (8)0.0291 (9)0.0050 (8)
C230.0451 (8)0.0399 (9)0.0381 (7)0.0005 (6)0.0123 (6)0.0036 (7)
C240.0878 (16)0.0478 (12)0.0684 (13)0.0088 (11)0.0116 (12)0.0077 (10)
C250.109 (2)0.0685 (16)0.0669 (14)0.0064 (15)0.0228 (14)0.0127 (12)
C260.0741 (13)0.0856 (16)0.0441 (10)0.0001 (12)0.0091 (9)0.0043 (11)
C270.0643 (12)0.0720 (14)0.0462 (9)0.0175 (10)0.0081 (9)0.0141 (10)
C280.0553 (10)0.0452 (10)0.0411 (8)0.0090 (8)0.0112 (7)0.0057 (7)
Geometric parameters (Å, º) top
N1—C11.322 (2)C12—H12A0.9500
N1—H1B0.889 (13)C13—C141.380 (3)
N1—H1A0.873 (13)C13—H13A0.9500
O2—C151.2306 (19)C14—H14A0.9500
O1—C11.2292 (19)C15—C161.533 (2)
N2—C151.324 (2)C16—C231.521 (2)
N2—H2B0.883 (13)C16—C171.532 (2)
N2—H2A0.889 (13)C16—H16A1.0000
C1—C21.529 (2)C17—C221.375 (2)
C2—C91.523 (2)C17—C181.387 (2)
C2—C31.529 (2)C18—C191.388 (3)
C2—H2C1.0000C18—H18A0.9500
C3—C81.382 (2)C19—C201.364 (3)
C3—C41.384 (3)C19—H19A0.9500
C4—C51.384 (3)C20—C211.374 (4)
C4—H4A0.9500C20—H20A0.9500
C5—C61.377 (4)C21—C221.384 (3)
C5—H5A0.9500C21—H21A0.9500
C6—C71.369 (4)C22—H22A0.9500
C6—H6A0.9500C23—C281.385 (2)
C7—C81.385 (3)C23—C241.389 (3)
C7—H7A0.9500C24—C251.382 (3)
C8—H8A0.9500C24—H24A0.9500
C9—C101.377 (3)C25—C261.367 (4)
C9—C141.388 (3)C25—H25A0.9500
C10—C111.383 (3)C26—C271.366 (4)
C10—H10A0.9500C26—H26A0.9500
C11—C121.371 (3)C27—C281.384 (3)
C11—H11A0.9500C27—H27A0.9500
C12—C131.373 (4)C28—H28A0.9500
C1—N1—H1B120.8 (16)C13—C14—C9121.52 (19)
C1—N1—H1A115.9 (16)C13—C14—H14A119.2
H1B—N1—H1A123 (2)C9—C14—H14A119.2
C15—N2—H2B119.8 (16)O2—C15—N2122.28 (16)
C15—N2—H2A123.8 (16)O2—C15—C16120.98 (13)
H2B—N2—H2A116 (2)N2—C15—C16116.72 (13)
O1—C1—N1122.46 (15)C23—C16—C17113.57 (13)
O1—C1—C2121.11 (14)C23—C16—C15110.82 (13)
N1—C1—C2116.42 (14)C17—C16—C15109.44 (12)
C9—C2—C1109.27 (13)C23—C16—H16A107.6
C9—C2—C3113.52 (13)C17—C16—H16A107.6
C1—C2—C3111.11 (13)C15—C16—H16A107.6
C9—C2—H2C107.6C22—C17—C18118.40 (16)
C1—C2—H2C107.6C22—C17—C16119.72 (14)
C3—C2—H2C107.6C18—C17—C16121.88 (14)
C8—C3—C4117.79 (17)C17—C18—C19120.03 (18)
C8—C3—C2121.97 (15)C17—C18—H18A120.0
C4—C3—C2120.21 (16)C19—C18—H18A120.0
C5—C4—C3121.0 (2)C20—C19—C18120.89 (19)
C5—C4—H4A119.5C20—C19—H19A119.6
C3—C4—H4A119.5C18—C19—H19A119.6
C4—C5—C6120.5 (2)C19—C20—C21119.51 (19)
C4—C5—H5A119.7C19—C20—H20A120.2
C6—C5—H5A119.7C21—C20—H20A120.2
C7—C6—C5119.0 (2)C20—C21—C22119.9 (2)
C7—C6—H6A120.5C20—C21—H21A120.1
C5—C6—H6A120.5C22—C21—H21A120.1
C6—C7—C8120.59 (19)C17—C22—C21121.31 (19)
C6—C7—H7A119.7C17—C22—H22A119.3
C8—C7—H7A119.7C21—C22—H22A119.3
C3—C8—C7121.11 (18)C28—C23—C24117.35 (17)
C3—C8—H8A119.4C28—C23—C16121.97 (15)
C7—C8—H8A119.4C24—C23—C16120.64 (16)
C10—C9—C14117.65 (17)C25—C24—C23121.1 (2)
C10—C9—C2122.44 (15)C25—C24—H24A119.5
C14—C9—C2119.91 (15)C23—C24—H24A119.5
C9—C10—C11120.79 (18)C26—C25—C24120.5 (2)
C9—C10—H10A119.6C26—C25—H25A119.7
C11—C10—H10A119.6C24—C25—H25A119.7
C12—C11—C10120.97 (19)C25—C26—C27119.4 (2)
C12—C11—H11A119.5C25—C26—H26A120.3
C10—C11—H11A119.5C27—C26—H26A120.3
C11—C12—C13119.0 (2)C26—C27—C28120.4 (2)
C11—C12—H12A120.5C26—C27—H27A119.8
C13—C12—H12A120.5C28—C27—H27A119.8
C12—C13—C14120.0 (2)C27—C28—C23121.22 (18)
C12—C13—H13A120.0C27—C28—H28A119.4
C14—C13—H13A120.0C23—C28—H28A119.4
O1—C1—C2—C979.23 (19)O2—C15—C16—C2346.8 (2)
N1—C1—C2—C999.42 (17)N2—C15—C16—C23135.00 (15)
O1—C1—C2—C346.8 (2)O2—C15—C16—C1779.24 (18)
N1—C1—C2—C3134.55 (16)N2—C15—C16—C1799.00 (16)
C9—C2—C3—C817.6 (2)C23—C16—C17—C22103.20 (18)
C1—C2—C3—C8141.21 (16)C15—C16—C17—C22132.39 (17)
C9—C2—C3—C4164.54 (19)C23—C16—C17—C1876.54 (19)
C1—C2—C3—C440.9 (2)C15—C16—C17—C1847.87 (19)
C8—C3—C4—C51.2 (4)C22—C17—C18—C190.2 (3)
C2—C3—C4—C5179.2 (2)C16—C17—C18—C19179.50 (18)
C3—C4—C5—C60.2 (5)C17—C18—C19—C200.4 (3)
C4—C5—C6—C71.3 (5)C18—C19—C20—C210.6 (4)
C5—C6—C7—C80.9 (4)C19—C20—C21—C220.7 (4)
C4—C3—C8—C71.6 (3)C18—C17—C22—C210.3 (3)
C2—C3—C8—C7179.55 (17)C16—C17—C22—C21179.4 (2)
C6—C7—C8—C30.6 (3)C20—C21—C22—C170.6 (4)
C1—C2—C9—C1047.5 (2)C17—C16—C23—C2818.5 (2)
C3—C2—C9—C1077.1 (2)C15—C16—C23—C28142.15 (16)
C1—C2—C9—C14132.47 (18)C17—C16—C23—C24164.12 (19)
C3—C2—C9—C14102.9 (2)C15—C16—C23—C2440.5 (2)
C14—C9—C10—C110.1 (3)C28—C23—C24—C250.8 (4)
C2—C9—C10—C11179.91 (18)C16—C23—C24—C25178.3 (2)
C9—C10—C11—C120.3 (3)C23—C24—C25—C260.4 (5)
C10—C11—C12—C131.0 (4)C24—C25—C26—C271.1 (5)
C11—C12—C13—C141.6 (4)C25—C26—C27—C280.8 (4)
C12—C13—C14—C91.4 (4)C26—C27—C28—C230.4 (3)
C10—C9—C14—C130.7 (3)C24—C23—C28—C271.1 (3)
C2—C9—C14—C13179.3 (2)C16—C23—C28—C27178.60 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the C3–C8 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.89 (1)2.20 (2)2.9409 (17)140 (2)
N1—H1A···O2ii0.87 (1)2.09 (1)2.9575 (19)177 (2)
N2—H2B···O1iii0.88 (1)2.07 (1)2.9526 (19)176 (2)
N2—H2A···O2iv0.89 (1)2.17 (2)2.9407 (18)145 (2)
N1—H1A···N2ii0.87 (1)3.06 (2)3.7246 (18)134 (2)
N2—H2B···N1iii0.88 (1)3.10 (2)3.7246 (18)130 (2)
C10—H10A···O10.952.503.093 (2)120
C18—H18A···O20.952.513.099 (2)120
C2—H2C···Cg1i1.002.963.9379 (18)165
C16—H16A···Cg4iv1.002.953.9263 (18)166
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H13NO
Mr211.25
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)5.1687 (3), 28.5511 (13), 7.8006 (4)
β (°) 98.152 (5)
V3)1139.52 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.792, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
6490, 3978, 3869
Rint0.017
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.07
No. of reflections3978
No. of parameters303
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the C3–C8 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.889 (13)2.201 (18)2.9409 (17)140 (2)
N1—H1A···O2ii0.873 (13)2.086 (13)2.9575 (19)177 (2)
N2—H2B···O1iii0.883 (13)2.071 (13)2.9526 (19)176 (2)
N2—H2A···O2iv0.889 (13)2.169 (17)2.9407 (18)145 (2)
N1—H1A···N2ii0.873 (13)3.06 (2)3.7246 (18)134.4 (19)
N2—H2B···N1iii0.883 (13)3.10 (2)3.7246 (18)129.9 (19)
C10—H10A···O10.952.503.093 (2)120.
C18—H18A···O20.952.513.099 (2)120
C2—H2C···Cg1i1.002.963.9379 (18)165
C16—H16A···Cg4iv1.002.953.9263 (18)166
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z1; (iv) x1, y, z.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer. MSS thanks the University of Mysore for the research facilities and R. L. Fine Chem, Bangalore, India, for the gift sample.

References

First citationAkkurt, M., Karaca, S., Şahin, E., Güzel, Ö., Salman, A. & İlhan, E. (2007). Acta Cryst. E63, o3379–o3380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGerkin, R. E. (1998). Acta Cryst. C54, 1887–1889.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuzel, O., Ilhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795–801.  Google Scholar
First citationKrigbaum, W. R., Roe, R.-J. & Woods, J. D. (1968). Acta Cryst. B24, 1304–1312.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNarasegowda, R. S., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, o939–o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Nagaraj, B., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o1193–o1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1992-o1993
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds