organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­methyl­anilinium chloro­acetate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com

(Received 3 July 2011; accepted 6 July 2011; online 9 July 2011)

In the crystal structure of the title compound, C9H14N+·C2H2ClO2, inter­molecular N—H⋯O inter­actions link the mol­ecules into a one-dimensional linear structure.

Related literature

The title compound was studied as part of our work to obtain potential ferroelectric phase-transition materials. For general background to ferroelectric organic frameworks, see: Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.], 2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); for phase transition of ferroelectric materials, see: Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N+·C2H2ClO2

  • Mr = 229.70

  • Monoclinic, C 2/c

  • a = 26.529 (5) Å

  • b = 4.7453 (9) Å

  • c = 22.717 (5) Å

  • β = 124.24 (3)°

  • V = 2364.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.941, Tmax = 0.941

  • 11449 measured reflections

  • 2690 independent reflections

  • 1900 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.179

  • S = 1.07

  • 2690 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.89 2.02 2.860 (2) 156
N1—H1A⋯O2i 0.89 1.88 2.748 (2) 165
N1—H1C⋯O1ii 0.89 1.93 2.809 (2) 169
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the crystal structure, one hydrogen-bonding network of N—H···O hydrogen bonds which established between ammonium groups and chloroacetateions, and one kind of intramolecular hydrogen bond which established between N1 and O2 (N1—H···O22.860 (2) Å) contribute to the stability of crystal packing.

In the structure, atom N1 is hydrogen bonded to there O atoms of chloroacetate ions through the normal hydrogen bonds that contain two kind of intermolecular hydrogen bond (N1—H···O2 2.860 (2)Å and N1—H···O1 2.809 (2) Å) and one kind of intramolecular hydrogen bond.

The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance. The title compound was studied as part of our work to obtain potential ferroelectric phase-transition materials (Ye et al., 2006; Fu et al., 2007; Zhao et al. 2008; Zhang et al., 2008; Ye et al., 2009). Unluckily, the compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric.

Related literature top

The title compound was studied as part of our work to obtain potential ferroelectric phase-transition materials. For general background to ferroelectric organic frameworks, see: Ye et al. (2006, 2009); Fu et al. (2007); for phase transition of ferroelectric materials, see: Zhang et al. (2008); Zhao et al. (2008).

Experimental top

For the preparation of the title compound, the chloroacetic acid(0.5 g) was added to the ethanol solution of the 2,4,6-trimethylaniline, The resulting precipitate was filtered. Colorless crystals suitable for X-ray analysis were formed after several weeks by slow evaporation of the solvent at room temperature.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for the methyl group. The other H bonded to N atoms were calculated geometrically and were allowed to ride on the N atoms with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme.Displacement ellipsoids are drawn at the 30%
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
2,4,6-Trimethylanilinium chloroacetate top
Crystal data top
C9H14N+·C2H2ClO2F(000) = 976
Mr = 229.70Dx = 1.291 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2690 reflections
a = 26.529 (5) Åθ = 3.1–27.5°
b = 4.7453 (9) ŵ = 0.30 mm1
c = 22.717 (5) ÅT = 293 K
β = 124.24 (3)°Prism, colourless
V = 2364.2 (8) Å30.20 × 0.20 × 0.20 mm
Z = 8
Data collection top
Rigaku SCXmini
diffractometer
2690 independent reflections
Radiation source: fine-focus sealed tube1900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 3434
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 65
Tmin = 0.941, Tmax = 0.941l = 2929
11449 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0913P)2 + 1.3591P]
where P = (Fo2 + 2Fc2)/3
2690 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C9H14N+·C2H2ClO2V = 2364.2 (8) Å3
Mr = 229.70Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.529 (5) ŵ = 0.30 mm1
b = 4.7453 (9) ÅT = 293 K
c = 22.717 (5) Å0.20 × 0.20 × 0.20 mm
β = 124.24 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2690 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1900 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.941Rint = 0.050
11449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
2690 reflectionsΔρmin = 0.26 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24425 (10)0.0238 (5)0.67051 (12)0.0389 (6)
H10.26000.15410.70740.047*
C20.28257 (11)0.0902 (5)0.65328 (12)0.0396 (6)
C30.25819 (11)0.2862 (5)0.59771 (13)0.0383 (5)
H30.28350.36410.58580.046*
C40.19732 (10)0.3681 (5)0.55975 (12)0.0331 (5)
C50.16059 (9)0.2490 (4)0.57926 (11)0.0298 (5)
C60.18307 (10)0.0510 (5)0.63429 (11)0.0327 (5)
C70.17409 (12)0.5789 (5)0.49986 (13)0.0431 (6)
H7A0.16440.75260.51300.065*
H7B0.13820.50550.45760.065*
H7C0.20500.61220.49100.065*
C80.14313 (11)0.0861 (6)0.65436 (14)0.0449 (6)
H8A0.16330.25020.68290.067*
H8B0.10500.14000.61190.067*
H8C0.13590.04500.68100.067*
C90.34835 (12)0.0022 (7)0.69235 (15)0.0559 (7)
H9A0.36480.02430.74200.084*
H9B0.37140.13750.68660.084*
H9C0.35060.17860.67330.084*
C100.00154 (10)0.7701 (5)0.40030 (12)0.0354 (5)
C110.00622 (14)0.9110 (8)0.33770 (15)0.0690 (10)
H11A0.04031.04120.31630.083*
H11B0.01560.76770.30250.083*
Cl10.05862 (4)1.0959 (2)0.35657 (5)0.0832 (4)
N10.09497 (8)0.3181 (4)0.53843 (9)0.0328 (4)
H1A0.07370.18180.50700.049*
H1B0.08840.48040.51550.049*
H1C0.08330.33370.56810.049*
O10.04344 (8)0.6016 (4)0.38346 (10)0.0499 (5)
O20.04153 (8)0.8320 (3)0.46255 (8)0.0432 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0366 (13)0.0421 (13)0.0342 (12)0.0037 (10)0.0175 (11)0.0028 (10)
C20.0326 (12)0.0467 (14)0.0370 (12)0.0019 (10)0.0181 (11)0.0029 (10)
C30.0349 (12)0.0410 (13)0.0456 (13)0.0045 (10)0.0267 (11)0.0033 (10)
C40.0356 (12)0.0296 (11)0.0353 (11)0.0024 (9)0.0207 (10)0.0051 (9)
C50.0284 (11)0.0288 (11)0.0305 (11)0.0029 (8)0.0157 (9)0.0051 (8)
C60.0342 (12)0.0333 (12)0.0302 (11)0.0033 (9)0.0180 (10)0.0029 (9)
C70.0471 (14)0.0406 (14)0.0472 (14)0.0001 (11)0.0300 (13)0.0063 (11)
C80.0419 (14)0.0473 (15)0.0459 (14)0.0015 (11)0.0251 (12)0.0124 (11)
C90.0353 (14)0.078 (2)0.0488 (16)0.0087 (13)0.0205 (13)0.0064 (14)
C100.0319 (12)0.0367 (13)0.0380 (12)0.0007 (9)0.0198 (11)0.0001 (10)
C110.0509 (17)0.103 (3)0.0427 (16)0.0298 (17)0.0204 (14)0.0072 (15)
Cl10.0700 (6)0.1098 (8)0.0800 (6)0.0347 (5)0.0484 (5)0.0061 (5)
N10.0304 (10)0.0319 (10)0.0351 (10)0.0026 (8)0.0179 (8)0.0005 (8)
O10.0449 (10)0.0583 (12)0.0523 (11)0.0175 (9)0.0308 (9)0.0082 (9)
O20.0433 (10)0.0368 (9)0.0354 (9)0.0011 (7)0.0136 (8)0.0001 (7)
Geometric parameters (Å, º) top
C1—C21.388 (3)C8—H8A0.9600
C1—C61.391 (3)C8—H8B0.9600
C1—H10.9300C8—H8C0.9600
C2—C31.399 (3)C9—H9A0.9600
C2—C91.511 (3)C9—H9B0.9600
C3—C41.391 (3)C9—H9C0.9600
C3—H30.9300C10—O11.242 (3)
C4—C51.397 (3)C10—O21.254 (3)
C4—C71.512 (3)C10—C111.512 (4)
C5—C61.401 (3)C11—Cl11.756 (3)
C5—N11.477 (3)C11—H11A0.9700
C6—C81.516 (3)C11—H11B0.9700
C7—H7A0.9600N1—H1A0.8900
C7—H7B0.9600N1—H1B0.8900
C7—H7C0.9600N1—H1C0.8900
C2—C1—C6122.0 (2)H8A—C8—H8B109.5
C2—C1—H1119.0C6—C8—H8C109.5
C6—C1—H1119.0H8A—C8—H8C109.5
C1—C2—C3118.2 (2)H8B—C8—H8C109.5
C1—C2—C9120.5 (2)C2—C9—H9A109.5
C3—C2—C9121.2 (2)C2—C9—H9B109.5
C4—C3—C2122.1 (2)H9A—C9—H9B109.5
C4—C3—H3119.0C2—C9—H9C109.5
C2—C3—H3119.0H9A—C9—H9C109.5
C3—C4—C5117.6 (2)H9B—C9—H9C109.5
C3—C4—C7119.1 (2)O1—C10—O2126.0 (2)
C5—C4—C7123.3 (2)O1—C10—C11114.2 (2)
C4—C5—C6122.1 (2)O2—C10—C11119.8 (2)
C4—C5—N1119.81 (19)C10—C11—Cl1116.1 (2)
C6—C5—N1117.96 (18)C10—C11—H11A108.3
C1—C6—C5117.9 (2)Cl1—C11—H11A108.3
C1—C6—C8119.5 (2)C10—C11—H11B108.3
C5—C6—C8122.5 (2)Cl1—C11—H11B108.3
C4—C7—H7A109.5H11A—C11—H11B107.4
C4—C7—H7B109.5C5—N1—H1A109.5
H7A—C7—H7B109.5C5—N1—H1B109.5
C4—C7—H7C109.5H1A—N1—H1B109.5
H7A—C7—H7C109.5C5—N1—H1C109.5
H7B—C7—H7C109.5H1A—N1—H1C109.5
C6—C8—H8A109.5H1B—N1—H1C109.5
C6—C8—H8B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.892.022.860 (2)156
N1—H1A···O2i0.891.882.748 (2)165
N1—H1C···O1ii0.891.932.809 (2)169
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H14N+·C2H2ClO2
Mr229.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)26.529 (5), 4.7453 (9), 22.717 (5)
β (°) 124.24 (3)
V3)2364.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.941, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
11449, 2690, 1900
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.179, 1.07
No. of reflections2690
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.892.022.860 (2)156
N1—H1A···O2i0.891.882.748 (2)165
N1—H1C···O1ii0.891.932.809 (2)169
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

The author thanks the starter fund of Southeast University, Nanjing, China.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds