organic compounds
2,4,6-Trimethylanilinium chloroacetate
aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com
In the 9H14N+·C2H2ClO2−, intermolecular N—H⋯O interactions link the molecules into a one-dimensional linear structure.
of the title compound, CRelated literature
The title compound was studied as part of our work to obtain potential ferroelectric phase-transition materials. For general background to ferroelectric organic frameworks, see: Ye et al. (2006, 2009); Fu et al. (2007); for of ferroelectric materials, see: Zhang et al. (2008); Zhao et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811026936/jh2308sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811026936/jh2308Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811026936/jh2308Isup3.cml
For the preparation of the title compound, the chloroacetic acid(0.5 g) was added to the ethanol solution of the 2,4,6-trimethylaniline, The resulting precipitate was filtered. Colorless crystals suitable for X-ray analysis were formed after several weeks by slow evaporation of the solvent at room temperature.
Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for the methyl group. The other H bonded to N atoms were calculated geometrically and were allowed to ride on the N atoms with Uiso(H) = 1.2Ueq(N).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H14N+·C2H2ClO2− | F(000) = 976 |
Mr = 229.70 | Dx = 1.291 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2690 reflections |
a = 26.529 (5) Å | θ = 3.1–27.5° |
b = 4.7453 (9) Å | µ = 0.30 mm−1 |
c = 22.717 (5) Å | T = 293 K |
β = 124.24 (3)° | Prism, colourless |
V = 2364.2 (8) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 8 |
Rigaku SCXmini diffractometer | 2690 independent reflections |
Radiation source: fine-focus sealed tube | 1900 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
CCD_Profile_fitting scans | h = −34→34 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −6→5 |
Tmin = 0.941, Tmax = 0.941 | l = −29→29 |
11449 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0913P)2 + 1.3591P] where P = (Fo2 + 2Fc2)/3 |
2690 reflections | (Δ/σ)max < 0.001 |
140 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C9H14N+·C2H2ClO2− | V = 2364.2 (8) Å3 |
Mr = 229.70 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 26.529 (5) Å | µ = 0.30 mm−1 |
b = 4.7453 (9) Å | T = 293 K |
c = 22.717 (5) Å | 0.20 × 0.20 × 0.20 mm |
β = 124.24 (3)° |
Rigaku SCXmini diffractometer | 2690 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1900 reflections with I > 2σ(I) |
Tmin = 0.941, Tmax = 0.941 | Rint = 0.050 |
11449 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.179 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.30 e Å−3 |
2690 reflections | Δρmin = −0.26 e Å−3 |
140 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.24425 (10) | −0.0238 (5) | 0.67051 (12) | 0.0389 (6) | |
H1 | 0.2600 | −0.1541 | 0.7074 | 0.047* | |
C2 | 0.28257 (11) | 0.0902 (5) | 0.65328 (12) | 0.0396 (6) | |
C3 | 0.25819 (11) | 0.2862 (5) | 0.59771 (13) | 0.0383 (5) | |
H3 | 0.2835 | 0.3641 | 0.5858 | 0.046* | |
C4 | 0.19732 (10) | 0.3681 (5) | 0.55975 (12) | 0.0331 (5) | |
C5 | 0.16059 (9) | 0.2490 (4) | 0.57926 (11) | 0.0298 (5) | |
C6 | 0.18307 (10) | 0.0510 (5) | 0.63429 (11) | 0.0327 (5) | |
C7 | 0.17409 (12) | 0.5789 (5) | 0.49986 (13) | 0.0431 (6) | |
H7A | 0.1644 | 0.7526 | 0.5130 | 0.065* | |
H7B | 0.1382 | 0.5055 | 0.4576 | 0.065* | |
H7C | 0.2050 | 0.6122 | 0.4910 | 0.065* | |
C8 | 0.14313 (11) | −0.0861 (6) | 0.65436 (14) | 0.0449 (6) | |
H8A | 0.1633 | −0.2502 | 0.6829 | 0.067* | |
H8B | 0.1050 | −0.1400 | 0.6119 | 0.067* | |
H8C | 0.1359 | 0.0450 | 0.6810 | 0.067* | |
C9 | 0.34835 (12) | −0.0022 (7) | 0.69235 (15) | 0.0559 (7) | |
H9A | 0.3648 | −0.0243 | 0.7420 | 0.084* | |
H9B | 0.3714 | 0.1375 | 0.6866 | 0.084* | |
H9C | 0.3506 | −0.1786 | 0.6733 | 0.084* | |
C10 | −0.00154 (10) | 0.7701 (5) | 0.40030 (12) | 0.0354 (5) | |
C11 | −0.00622 (14) | 0.9110 (8) | 0.33770 (15) | 0.0690 (10) | |
H11A | −0.0403 | 1.0412 | 0.3163 | 0.083* | |
H11B | −0.0156 | 0.7677 | 0.3025 | 0.083* | |
Cl1 | 0.05862 (4) | 1.0959 (2) | 0.35657 (5) | 0.0832 (4) | |
N1 | 0.09497 (8) | 0.3181 (4) | 0.53843 (9) | 0.0328 (4) | |
H1A | 0.0737 | 0.1818 | 0.5070 | 0.049* | |
H1B | 0.0884 | 0.4804 | 0.5155 | 0.049* | |
H1C | 0.0833 | 0.3337 | 0.5681 | 0.049* | |
O1 | −0.04344 (8) | 0.6016 (4) | 0.38346 (10) | 0.0499 (5) | |
O2 | 0.04153 (8) | 0.8320 (3) | 0.46255 (8) | 0.0432 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0366 (13) | 0.0421 (13) | 0.0342 (12) | 0.0037 (10) | 0.0175 (11) | 0.0028 (10) |
C2 | 0.0326 (12) | 0.0467 (14) | 0.0370 (12) | 0.0019 (10) | 0.0181 (11) | −0.0029 (10) |
C3 | 0.0349 (12) | 0.0410 (13) | 0.0456 (13) | −0.0045 (10) | 0.0267 (11) | −0.0033 (10) |
C4 | 0.0356 (12) | 0.0296 (11) | 0.0353 (11) | −0.0024 (9) | 0.0207 (10) | −0.0051 (9) |
C5 | 0.0284 (11) | 0.0288 (11) | 0.0305 (11) | −0.0029 (8) | 0.0157 (9) | −0.0051 (8) |
C6 | 0.0342 (12) | 0.0333 (12) | 0.0302 (11) | −0.0033 (9) | 0.0180 (10) | −0.0029 (9) |
C7 | 0.0471 (14) | 0.0406 (14) | 0.0472 (14) | −0.0001 (11) | 0.0300 (13) | 0.0063 (11) |
C8 | 0.0419 (14) | 0.0473 (15) | 0.0459 (14) | 0.0015 (11) | 0.0251 (12) | 0.0124 (11) |
C9 | 0.0353 (14) | 0.078 (2) | 0.0488 (16) | 0.0087 (13) | 0.0205 (13) | 0.0064 (14) |
C10 | 0.0319 (12) | 0.0367 (13) | 0.0380 (12) | 0.0007 (9) | 0.0198 (11) | 0.0001 (10) |
C11 | 0.0509 (17) | 0.103 (3) | 0.0427 (16) | −0.0298 (17) | 0.0204 (14) | 0.0072 (15) |
Cl1 | 0.0700 (6) | 0.1098 (8) | 0.0800 (6) | −0.0347 (5) | 0.0484 (5) | 0.0061 (5) |
N1 | 0.0304 (10) | 0.0319 (10) | 0.0351 (10) | −0.0026 (8) | 0.0179 (8) | −0.0005 (8) |
O1 | 0.0449 (10) | 0.0583 (12) | 0.0523 (11) | −0.0175 (9) | 0.0308 (9) | −0.0082 (9) |
O2 | 0.0433 (10) | 0.0368 (9) | 0.0354 (9) | −0.0011 (7) | 0.0136 (8) | 0.0001 (7) |
C1—C2 | 1.388 (3) | C8—H8A | 0.9600 |
C1—C6 | 1.391 (3) | C8—H8B | 0.9600 |
C1—H1 | 0.9300 | C8—H8C | 0.9600 |
C2—C3 | 1.399 (3) | C9—H9A | 0.9600 |
C2—C9 | 1.511 (3) | C9—H9B | 0.9600 |
C3—C4 | 1.391 (3) | C9—H9C | 0.9600 |
C3—H3 | 0.9300 | C10—O1 | 1.242 (3) |
C4—C5 | 1.397 (3) | C10—O2 | 1.254 (3) |
C4—C7 | 1.512 (3) | C10—C11 | 1.512 (4) |
C5—C6 | 1.401 (3) | C11—Cl1 | 1.756 (3) |
C5—N1 | 1.477 (3) | C11—H11A | 0.9700 |
C6—C8 | 1.516 (3) | C11—H11B | 0.9700 |
C7—H7A | 0.9600 | N1—H1A | 0.8900 |
C7—H7B | 0.9600 | N1—H1B | 0.8900 |
C7—H7C | 0.9600 | N1—H1C | 0.8900 |
C2—C1—C6 | 122.0 (2) | H8A—C8—H8B | 109.5 |
C2—C1—H1 | 119.0 | C6—C8—H8C | 109.5 |
C6—C1—H1 | 119.0 | H8A—C8—H8C | 109.5 |
C1—C2—C3 | 118.2 (2) | H8B—C8—H8C | 109.5 |
C1—C2—C9 | 120.5 (2) | C2—C9—H9A | 109.5 |
C3—C2—C9 | 121.2 (2) | C2—C9—H9B | 109.5 |
C4—C3—C2 | 122.1 (2) | H9A—C9—H9B | 109.5 |
C4—C3—H3 | 119.0 | C2—C9—H9C | 109.5 |
C2—C3—H3 | 119.0 | H9A—C9—H9C | 109.5 |
C3—C4—C5 | 117.6 (2) | H9B—C9—H9C | 109.5 |
C3—C4—C7 | 119.1 (2) | O1—C10—O2 | 126.0 (2) |
C5—C4—C7 | 123.3 (2) | O1—C10—C11 | 114.2 (2) |
C4—C5—C6 | 122.1 (2) | O2—C10—C11 | 119.8 (2) |
C4—C5—N1 | 119.81 (19) | C10—C11—Cl1 | 116.1 (2) |
C6—C5—N1 | 117.96 (18) | C10—C11—H11A | 108.3 |
C1—C6—C5 | 117.9 (2) | Cl1—C11—H11A | 108.3 |
C1—C6—C8 | 119.5 (2) | C10—C11—H11B | 108.3 |
C5—C6—C8 | 122.5 (2) | Cl1—C11—H11B | 108.3 |
C4—C7—H7A | 109.5 | H11A—C11—H11B | 107.4 |
C4—C7—H7B | 109.5 | C5—N1—H1A | 109.5 |
H7A—C7—H7B | 109.5 | C5—N1—H1B | 109.5 |
C4—C7—H7C | 109.5 | H1A—N1—H1B | 109.5 |
H7A—C7—H7C | 109.5 | C5—N1—H1C | 109.5 |
H7B—C7—H7C | 109.5 | H1A—N1—H1C | 109.5 |
C6—C8—H8A | 109.5 | H1B—N1—H1C | 109.5 |
C6—C8—H8B | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O2 | 0.89 | 2.02 | 2.860 (2) | 156 |
N1—H1A···O2i | 0.89 | 1.88 | 2.748 (2) | 165 |
N1—H1C···O1ii | 0.89 | 1.93 | 2.809 (2) | 169 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C9H14N+·C2H2ClO2− |
Mr | 229.70 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 26.529 (5), 4.7453 (9), 22.717 (5) |
β (°) | 124.24 (3) |
V (Å3) | 2364.2 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.941, 0.941 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11449, 2690, 1900 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.179, 1.07 |
No. of reflections | 2690 |
No. of parameters | 140 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.26 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O2 | 0.89 | 2.02 | 2.860 (2) | 156 |
N1—H1A···O2i | 0.89 | 1.88 | 2.748 (2) | 165 |
N1—H1C···O1ii | 0.89 | 1.93 | 2.809 (2) | 169 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1. |
Acknowledgements
The author thanks the starter fund of Southeast University, Nanjing, China.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the crystal structure, one hydrogen-bonding network of N—H···O hydrogen bonds which established between ammonium groups and chloroacetateions, and one kind of intramolecular hydrogen bond which established between N1 and O2 (N1—H···O22.860 (2) Å) contribute to the stability of crystal packing.
In the structure, atom N1 is hydrogen bonded to there O atoms of chloroacetate ions through the normal hydrogen bonds that contain two kind of intermolecular hydrogen bond (N1—H···O2 2.860 (2)Å and N1—H···O1 2.809 (2) Å) and one kind of intramolecular hydrogen bond.
The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance. The title compound was studied as part of our work to obtain potential ferroelectric phase-transition materials (Ye et al., 2006; Fu et al., 2007; Zhao et al. 2008; Zhang et al., 2008; Ye et al., 2009). Unluckily, the compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric.