metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(di­chloridocadmium)-di-μ-chlorido-[bis­­(morpholinium-κO)cadmium]-di-μ-chlorido]

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wxwang_1109@163.com

(Received 12 July 2011; accepted 19 July 2011; online 23 July 2011)

In the title compound, [Cd2Cl6(C4H10NO)2]n, the coordination geometry of each CdII ion is distorted octa­hedral, but with quite different coordination environments. One CdII atom is coordinated by four Cl atoms and two O atoms from two morpholinium ligands, while the other is coordinated by six Cl atoms. Adjacent CdII atoms are inter­connected alternately by paired chloride bridges, generating a chain parallel to the a axis. Inter­chain N—H⋯Cl inter­actions form a two-dimensional network.

Related literature

For general background to one-, two- and three-dimensional coordination polymers, see: Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]); Ye et al. (2005[Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208-225.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H. Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]). For the dimeric coordination compound [(MOR)2Cu2Cl6] (MOR = morpholinium), see: Willett et al. (2005[Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. T. (2005). Polyhedron, 24, 2222-2231.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2Cl6(C4H10NO)2]

  • Mr = 613.78

  • Orthorhombic, P 21 21 21

  • a = 7.0496 (14) Å

  • b = 14.404 (3) Å

  • c = 17.583 (4) Å

  • V = 1785.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 298 K

  • 0.45 × 0.30 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.319, Tmax = 0.611

  • 18533 measured reflections

  • 4100 independent reflections

  • 3893 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.051

  • S = 1.07

  • 4100 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl5i 0.90 2.52 3.203 (3) 133
N1—H1A⋯Cl6ii 0.90 2.98 3.733 (4) 143
N1—H1B⋯Cl5iii 0.90 2.38 3.183 (3) 149
N2—H2C⋯Cl3iv 0.90 2.56 3.276 (3) 137
N2—H2C⋯Cl2iv 0.90 2.76 3.323 (3) 122
N2—H2D⋯Cl3v 0.90 2.73 3.413 (3) 133
N2—H2D⋯Cl4iii 0.90 2.74 3.497 (3) 142
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Currently, the area of coordination polymers has undergone much development, with the aim of designing new materials with interesting physical properties. Numerous one-, two- and three-dimensional structures have been synthesized and characterized. (Xiong, et al., 1999; Ye, et al., 2005; Zhao et al., 2008) In the present work, a reaction of MOR cations, HCl, and cadmium(II) chloride has produced a novel one-dimensional coordination polymer, in which N–H–Cl hydrogen bonds interactions aggregate the anions and cations into a two-dimensional network.

Quite different from that observed in the dimeric coordination compound of (MOR)2Cu2Cl6 (Willett et al., 2005), which links one morphine in each copper atom forming a semi-coordinate bond. The title compound [C8H20Cd2N2O2Cl6] exhibits a new coordinated mode. It is shown that two Cd centers have quite different coordination environments. The Cd1 atom is octahedrally coordinated by four Cl atoms and two O atoms from two MOR ligands. The Cd2 atom is octahedrally coordinated by six Cl atoms. Interestingly, adjacent Cd ions are interconnected alternately by paired chloride bridges to generate an infinite one-dimensional coordination chain along the a axis.The compound is assembled into layer structures via 6 kinds of N–H—Cl synthons as shown in Fig 2. Due to the interaction of N–H—Cl hydrogen bond,from which the two protons on a given NH2+ group form bifurcated hydrogen bonds, the polymer constitute a two-dimensional framework at [1 1 0].

Related literature top

For general background to one-, two- and three-dimensional coordination polymers , see: Xiong et al. (1999); Ye et al. (2005); Zhao et al. (2008). For the dimeric coordination compound [(MOR)2Cu2Cl6] (MOR = morpholinium), see: Willett et al. (2005).

Experimental top

MOR 0.87 g(1 mmol) was dissolved in ethanol,with carefully dripping hydrochloric acid 1 g(30%). After stirring 20 min, 2.5 g(.0.85 mmol)of dissolved cadmium chloride by water was mixed. Then filtering the solution to keep it cleaning. The reaction solution was cooled down to room temperature to volatilization. Colorless needlelike crystals was obtained on the tube wall after three days and of average size 0.13 x 0.28 x 0.42 mm

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with C—H =0.97 Å, Uiso(H) = 1.2 Ueq(C), N—H = 0.90 Å, Uiso(H)= 1.5 Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View along the c axis of the packing arrangement and intermolecular hydrogen bonds for the title compound.
catena-Poly[(dichloridocadmium)-di-µ-chlorido- [bis(morpholinium-κO)cadmium]-di-µ-chlorido] top
Crystal data top
[Cd2Cl6(C4H10NO)2]F(000) = 1184
Mr = 613.78Dx = 2.283 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ac 2abCell parameters from 1977 reflections
a = 7.0496 (14) Åθ = 3.1–27.5°
b = 14.404 (3) ŵ = 3.28 mm1
c = 17.583 (4) ÅT = 298 K
V = 1785.4 (7) Å3Needle, colourless
Z = 40.45 × 0.30 × 0.15 mm
Data collection top
Rigaku SCXmini
diffractometer
4100 independent reflections
Radiation source: fine-focus sealed tube3893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.319, Tmax = 0.611l = 2222
18533 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0224P)2 + 0.3409P]
where P = (Fo2 + 2Fc2)/3
4100 reflections(Δ/σ)max = 0.003
181 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cd2Cl6(C4H10NO)2]V = 1785.4 (7) Å3
Mr = 613.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0496 (14) ŵ = 3.28 mm1
b = 14.404 (3) ÅT = 298 K
c = 17.583 (4) Å0.45 × 0.30 × 0.15 mm
Data collection top
Rigaku SCXmini
diffractometer
4100 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3893 reflections with I > 2σ(I)
Tmin = 0.319, Tmax = 0.611Rint = 0.035
18533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
4100 reflectionsΔρmin = 0.61 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.72480 (3)0.507712 (15)0.684293 (13)0.02333 (6)
Cd20.23018 (3)0.497301 (15)0.589235 (12)0.02517 (6)
Cl20.41966 (11)0.59933 (5)0.69463 (4)0.02457 (16)
Cl40.90345 (12)0.60740 (6)0.58524 (5)0.03148 (19)
Cl61.03220 (11)0.42036 (6)0.70226 (5)0.03077 (19)
Cl30.37109 (12)0.60596 (6)0.49228 (5)0.03157 (19)
Cl10.53066 (12)0.38288 (6)0.61612 (5)0.03188 (19)
O10.8396 (3)0.61772 (16)0.78576 (12)0.0280 (5)
N11.0415 (4)0.7015 (2)0.90750 (17)0.0360 (7)
H1A1.01270.76230.90540.043*
H1B1.12140.69280.94680.043*
C40.7403 (5)0.6518 (2)0.85098 (19)0.0347 (8)
H4A0.62660.61510.85900.042*
H4B0.70230.71560.84230.042*
C30.8640 (6)0.6466 (3)0.9206 (2)0.0425 (10)
H3A0.79630.67140.96410.051*
H3B0.89600.58240.93130.051*
C21.1364 (5)0.6735 (3)0.8358 (2)0.0386 (9)
H2A1.18790.61140.84140.046*
H2B1.24080.71550.82540.046*
C10.9997 (5)0.6753 (3)0.77094 (18)0.0325 (8)
H1C0.95760.73850.76240.039*
H1D1.06290.65390.72520.039*
Cl50.10021 (12)0.37744 (6)0.49674 (5)0.03176 (19)
O20.6243 (3)0.43396 (16)0.80860 (13)0.0319 (6)
C80.3919 (5)0.3182 (2)0.8424 (2)0.0315 (8)
H8A0.25870.30890.85410.038*
H8B0.42340.28040.79850.038*
C70.4274 (4)0.4181 (2)0.8249 (2)0.0318 (8)
H7A0.35140.43650.78150.038*
H7B0.38950.45590.86800.038*
C60.7363 (5)0.4118 (2)0.87368 (17)0.0316 (8)
H6A0.69790.45060.91610.038*
H6B0.86870.42460.86290.038*
N20.5099 (4)0.28953 (19)0.90858 (16)0.0300 (7)
H2C0.49620.22820.91650.036*
H2D0.46990.31940.95050.036*
C50.7142 (5)0.3111 (2)0.8952 (2)0.0351 (8)
H5A0.76290.27200.85470.042*
H5B0.78650.29820.94100.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01729 (11)0.02593 (12)0.02677 (12)0.00002 (11)0.00033 (8)0.00048 (10)
Cd20.02531 (12)0.02594 (12)0.02425 (12)0.00506 (12)0.00041 (8)0.00121 (10)
Cl20.0224 (4)0.0255 (4)0.0258 (4)0.0022 (3)0.0006 (3)0.0002 (3)
Cl40.0300 (4)0.0365 (5)0.0280 (4)0.0000 (4)0.0046 (3)0.0075 (4)
Cl60.0213 (4)0.0357 (4)0.0353 (5)0.0040 (3)0.0011 (3)0.0101 (4)
Cl30.0338 (5)0.0352 (5)0.0256 (4)0.0084 (4)0.0023 (3)0.0036 (4)
Cl10.0281 (4)0.0280 (4)0.0395 (5)0.0002 (3)0.0061 (4)0.0057 (4)
O10.0246 (12)0.0347 (13)0.0246 (12)0.0051 (10)0.0029 (9)0.0076 (10)
N10.0292 (16)0.0423 (18)0.0365 (17)0.0039 (14)0.0070 (14)0.0152 (15)
C40.0261 (19)0.045 (2)0.0327 (18)0.0024 (17)0.0074 (16)0.0129 (15)
C30.045 (2)0.053 (3)0.029 (2)0.007 (2)0.0011 (17)0.0127 (18)
C20.0267 (19)0.051 (2)0.038 (2)0.0008 (17)0.0012 (16)0.0165 (18)
C10.0271 (19)0.043 (2)0.027 (2)0.0098 (16)0.0036 (15)0.0054 (15)
Cl50.0317 (4)0.0331 (4)0.0305 (4)0.0060 (4)0.0034 (4)0.0049 (4)
O20.0229 (12)0.0453 (14)0.0276 (13)0.0066 (11)0.0028 (10)0.0131 (11)
C80.0253 (18)0.035 (2)0.034 (2)0.0018 (15)0.0012 (15)0.0027 (16)
C70.0211 (17)0.039 (2)0.0357 (19)0.0013 (15)0.0048 (14)0.0137 (16)
C60.032 (2)0.0362 (18)0.0265 (18)0.0057 (16)0.0049 (15)0.0055 (13)
N20.0386 (18)0.0201 (14)0.0312 (16)0.0014 (13)0.0028 (13)0.0020 (12)
C50.036 (2)0.0305 (18)0.039 (2)0.0028 (17)0.0134 (17)0.0035 (15)
Geometric parameters (Å, º) top
Cd1—O12.520 (2)C3—H3A0.9700
Cd1—Cl62.5257 (9)C3—H3B0.9700
Cd1—Cl22.5301 (9)C2—C11.494 (5)
Cd1—O22.531 (2)C2—H2A0.9700
Cd1—Cl12.5579 (9)C2—H2B0.9700
Cd1—Cl42.5848 (9)C1—H1C0.9700
Cd2—Cl32.5184 (9)C1—H1D0.9700
Cd2—Cl52.5427 (9)O2—C61.427 (4)
Cd2—Cl6i2.6694 (9)O2—C71.436 (4)
Cd2—Cl22.7163 (9)C8—N21.489 (4)
Cd2—Cl12.7251 (10)C8—C71.493 (5)
Cd2—Cl4i2.7974 (10)C8—H8A0.9700
Cl4—Cd2ii2.7974 (10)C8—H8B0.9700
Cl6—Cd2ii2.6694 (9)C7—H7A0.9700
O1—C11.424 (4)C7—H7B0.9700
O1—C41.430 (4)C6—C51.508 (4)
N1—C21.482 (4)C6—H6A0.9700
N1—C31.498 (5)C6—H6B0.9700
N1—H1A0.9000N2—C51.492 (5)
N1—H1B0.9000N2—H2C0.9000
C4—C31.505 (5)N2—H2D0.9000
C4—H4A0.9700C5—H5A0.9700
C4—H4B0.9700C5—H5B0.9700
O1—Cd1—Cl687.09 (6)N1—C3—H3A109.8
O1—Cd1—Cl283.92 (5)C4—C3—H3A109.8
Cl6—Cd1—Cl2168.61 (3)N1—C3—H3B109.8
O1—Cd1—O275.07 (7)C4—C3—H3B109.8
Cl6—Cd1—O285.59 (6)H3A—C3—H3B108.2
Cl2—Cd1—O285.34 (6)N1—C2—C1110.7 (3)
O1—Cd1—Cl1161.03 (5)N1—C2—H2A109.5
Cl6—Cd1—Cl199.64 (3)C1—C2—H2A109.5
Cl2—Cd1—Cl186.87 (3)N1—C2—H2B109.5
O2—Cd1—Cl187.70 (6)C1—C2—H2B109.5
O1—Cd1—Cl488.36 (6)H2A—C2—H2B108.1
Cl6—Cd1—Cl486.73 (3)O1—C1—C2111.2 (3)
Cl2—Cd1—Cl499.96 (3)O1—C1—H1C109.4
O2—Cd1—Cl4162.05 (6)C2—C1—H1C109.4
Cl1—Cd1—Cl4109.60 (3)O1—C1—H1D109.4
Cl3—Cd2—Cl597.53 (3)C2—C1—H1D109.4
Cl3—Cd2—Cl6i165.51 (3)H1C—C1—H1D108.0
Cl5—Cd2—Cl6i90.34 (3)C6—O2—C7109.9 (2)
Cl3—Cd2—Cl286.08 (3)C6—O2—Cd1129.16 (18)
Cl5—Cd2—Cl2168.80 (3)C7—O2—Cd1120.65 (18)
Cl6i—Cd2—Cl288.50 (3)N2—C8—C7109.5 (3)
Cl3—Cd2—Cl1100.76 (3)N2—C8—H8A109.8
Cl5—Cd2—Cl188.88 (3)C7—C8—H8A109.8
Cl6i—Cd2—Cl191.50 (3)N2—C8—H8B109.8
Cl2—Cd2—Cl180.02 (3)C7—C8—H8B109.8
Cl3—Cd2—Cl4i87.45 (3)H8A—C8—H8B108.2
Cl5—Cd2—Cl4i94.14 (3)O2—C7—C8110.9 (3)
Cl6i—Cd2—Cl4i79.84 (3)O2—C7—H7A109.5
Cl2—Cd2—Cl4i96.62 (3)C8—C7—H7A109.5
Cl1—Cd2—Cl4i170.83 (3)O2—C7—H7B109.5
Cd1—Cl2—Cd294.98 (3)C8—C7—H7B109.5
Cd1—Cl4—Cd2ii93.98 (3)H7A—C7—H7B108.1
Cd1—Cl6—Cd2ii98.55 (3)O2—C6—C5111.1 (3)
Cd1—Cl1—Cd294.13 (3)O2—C6—H6A109.4
C1—O1—C4109.6 (2)C5—C6—H6A109.4
C1—O1—Cd1119.39 (18)O2—C6—H6B109.4
C4—O1—Cd1128.78 (19)C5—C6—H6B109.4
C2—N1—C3111.4 (3)H6A—C6—H6B108.0
C2—N1—H1A109.4C8—N2—C5111.0 (3)
C3—N1—H1A109.4C8—N2—H2C109.4
C2—N1—H1B109.4C5—N2—H2C109.4
C3—N1—H1B109.4C8—N2—H2D109.4
H1A—N1—H1B108.0C5—N2—H2D109.4
O1—C4—C3110.6 (3)H2C—N2—H2D108.0
O1—C4—H4A109.5N2—C5—C6109.8 (3)
C3—C4—H4A109.5N2—C5—H5A109.7
O1—C4—H4B109.5C6—C5—H5A109.7
C3—C4—H4B109.5N2—C5—H5B109.7
H4A—C4—H4B108.1C6—C5—H5B109.7
N1—C3—C4109.5 (3)H5A—C5—H5B108.2
O1—Cd1—Cl2—Cd2178.93 (5)Cl4—Cd1—O1—C120.0 (2)
Cl6—Cd1—Cl2—Cd2140.85 (12)Cl6—Cd1—O1—C4132.1 (3)
O2—Cd1—Cl2—Cd2103.48 (6)Cl2—Cd1—O1—C440.9 (3)
Cl1—Cd1—Cl2—Cd215.53 (3)O2—Cd1—O1—C445.9 (3)
Cl4—Cd1—Cl2—Cd293.82 (3)Cl1—Cd1—O1—C420.5 (4)
Cl3—Cd2—Cl2—Cd186.89 (3)Cl4—Cd1—O1—C4141.1 (3)
Cl5—Cd2—Cl2—Cd122.39 (15)C1—O1—C4—C363.0 (4)
Cl6i—Cd2—Cl2—Cd1106.55 (3)Cd1—O1—C4—C3134.4 (3)
Cl1—Cd2—Cl2—Cd114.76 (3)C2—N1—C3—C452.2 (4)
Cl4i—Cd2—Cl2—Cd1173.86 (2)O1—C4—C3—N157.9 (4)
O1—Cd1—Cl4—Cd2ii94.39 (6)C3—N1—C2—C151.6 (4)
Cl6—Cd1—Cl4—Cd2ii7.21 (3)C4—O1—C1—C262.0 (4)
Cl2—Cd1—Cl4—Cd2ii177.92 (2)Cd1—O1—C1—C2133.6 (2)
O2—Cd1—Cl4—Cd2ii72.00 (19)N1—C2—C1—O156.4 (4)
Cl1—Cd1—Cl4—Cd2ii91.87 (3)O1—Cd1—O2—C653.8 (2)
O1—Cd1—Cl6—Cd2ii96.14 (6)Cl6—Cd1—O2—C634.3 (2)
Cl2—Cd1—Cl6—Cd2ii134.03 (12)Cl2—Cd1—O2—C6138.8 (2)
O2—Cd1—Cl6—Cd2ii171.38 (6)Cl1—Cd1—O2—C6134.2 (2)
Cl1—Cd1—Cl6—Cd2ii101.71 (3)Cl4—Cd1—O2—C630.6 (4)
Cl4—Cd1—Cl6—Cd2ii7.62 (3)O1—Cd1—O2—C7118.8 (2)
O1—Cd1—Cl1—Cd276.43 (18)Cl6—Cd1—O2—C7153.1 (2)
Cl6—Cd1—Cl1—Cd2173.94 (3)Cl2—Cd1—O2—C733.9 (2)
Cl2—Cd1—Cl1—Cd215.46 (3)Cl1—Cd1—O2—C753.2 (2)
O2—Cd1—Cl1—Cd2100.92 (6)Cl4—Cd1—O2—C7142.0 (2)
Cl4—Cd1—Cl1—Cd284.00 (3)C6—O2—C7—C862.2 (4)
Cl3—Cd2—Cl1—Cd169.44 (3)Cd1—O2—C7—C8123.8 (2)
Cl5—Cd2—Cl1—Cd1166.90 (3)N2—C8—C7—O258.5 (4)
Cl6i—Cd2—Cl1—Cd1102.80 (3)C7—O2—C6—C561.0 (4)
Cl2—Cd2—Cl1—Cd114.58 (3)Cd1—O2—C6—C5125.7 (3)
Cl6—Cd1—O1—C166.8 (2)C7—C8—N2—C554.2 (4)
Cl2—Cd1—O1—C1120.2 (2)C8—N2—C5—C653.1 (4)
O2—Cd1—O1—C1153.0 (2)O2—C6—C5—N256.5 (4)
Cl1—Cd1—O1—C1178.43 (19)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl5iii0.902.523.203 (3)133
N1—H1A···Cl6iv0.902.983.733 (4)143
N1—H1B···Cl5v0.902.383.183 (3)149
N2—H2C···Cl3vi0.902.563.276 (3)137
N2—H2C···Cl2vi0.902.763.323 (3)122
N2—H2D···Cl3vii0.902.733.413 (3)133
N2—H2D···Cl4v0.902.743.497 (3)142
Symmetry codes: (iii) x+1, y+1/2, z+3/2; (iv) x+2, y+1/2, z+3/2; (v) x+3/2, y+1, z+1/2; (vi) x+1, y1/2, z+3/2; (vii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd2Cl6(C4H10NO)2]
Mr613.78
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.0496 (14), 14.404 (3), 17.583 (4)
V3)1785.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.45 × 0.30 × 0.15
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.319, 0.611
No. of measured, independent and
observed [I > 2σ(I)] reflections
18533, 4100, 3893
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.051, 1.07
No. of reflections4100
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.61

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl5i0.902.523.203 (3)133.2
N1—H1A···Cl6ii0.902.983.733 (4)142.6
N1—H1B···Cl5iii0.902.383.183 (3)149.3
N2—H2C···Cl3iv0.902.563.276 (3)137.1
N2—H2C···Cl2iv0.902.763.323 (3)121.9
N2—H2D···Cl3v0.902.733.413 (3)133.2
N2—H2D···Cl4iii0.902.743.497 (3)142.2
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x+3/2, y+1, z+1/2; (iv) x+1, y1/2, z+3/2; (v) x+1/2, y+1, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (20871028) and Jiangsu Province NSF (BK2008029).

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillett, R. D., Butcher, R., Landee, C. P. & Twamley, B. T. (2005). Polyhedron, 24, 2222–2231.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208–225.  Web of Science PubMed CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H. Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds