organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­bromo-6-[(hydroxyimino)methyl]phenol

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 13 July 2011; accepted 17 July 2011; online 23 July 2011)

In the title compound, C7H5Br4NO2, intra­molecular O—H⋯N hydrogen bonds are observed. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into dimers.

Related literature

For details of the preparation, see: Dey et al. (2003[Dey, M., Rao, C. P., Saarenketo, P. K., Pissanen, K., Kolehmainen, E. & Guionneau, P. (2003). Polyhedron. 22, 3515-3521.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5Br2NO2

  • Mr = 294.94

  • Triclinic, [P \overline 1]

  • a = 4.2590 (5) Å

  • b = 8.6742 (7) Å

  • c = 12.0831 (11) Å

  • α = 74.171 (1)°

  • β = 82.248 (2)°

  • γ = 79.028 (1)°

  • V = 419.98 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.60 mm−1

  • T = 293 K

  • 0.80 × 0.42 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.048, Tmax = 0.277

  • 2162 measured reflections

  • 1453 independent reflections

  • 987 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.160

  • S = 1.05

  • 1453 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −1.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.10 2.775 (8) 140
O2—H2⋯N1 0.82 1.88 2.601 (10) 147
Symmetry code: (i) -x+2, -y, -z+3.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The derivatives of salicylaldehyde are important chemical materials, because they are excellent ligands for transition metals. As part of our interest in these ligands, we report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1, where the dash line indicates the intramolecular O—H···N hydrogen bond.

All the non-H atoms of the title compound are located almost in one plane, as the atoms O1,O2 and N1 are shifted ca 0.1204 Å,0.0727Å and 0.0402Å out of the benzene ring plane, respectively.

The title compound formed dimer via intermolecular O—H···O hydrogen bonds and the dimers packed via π···π stacking interactions (3.4367 Å) (Fig. 2).

Related literature top

For details of the preparation, see: Dey et al. (2003).

Experimental top

3,5-dibromosalicylaldoxime were synthesized as follows: 0.2 mol (13.9 g) hydroxylamine hydrochloride in companied with 0.2 mol (8 g) NaOH were dissolved in 50 ml ethanol solution in a 250 ml round bottomed flask and stirred to homogeneous. After that, an ethanol solution (30 ml) with 0.2 mol (40 g) 3,5-dibromosalicylicaldehyde was added dropwise to this solution at 70 °C and refluxed for about 2 h. After cooling and filtrating, crude compound of 3,5-dibromosalicylaldoximewas gained. Pure compound of it was obtained by crystallizing from 20 ml ethanol solution (Dey, et al., 2003).

Crystals of 3,5-dibromosalicylaldoxime suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement top

All H atoms attached to C atoms and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Intramolecular hydrogen bonds are shown as dashed line.
[Figure 2] Fig. 2. A packing view down the a axis showing the three dimensional network.Intermolecular hydrogen bonds are shown as dashed lines. Intramolecular O—H···N hydrogen bonds have been omitted for the sake of clarity.
2,4-Dibromo-6-[(hydroxyimino)methyl]phenol top
Crystal data top
C7H5Br2NO2Z = 2
Mr = 294.94F(000) = 280
Triclinic, P1Dx = 2.332 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.2590 (5) ÅCell parameters from 808 reflections
b = 8.6742 (7) Åθ = 2.5–26.6°
c = 12.0831 (11) ŵ = 9.60 mm1
α = 74.171 (1)°T = 293 K
β = 82.248 (2)°Prism, white
γ = 79.028 (1)°0.80 × 0.42 × 0.18 mm
V = 419.98 (7) Å3
Data collection top
Rigaku R-AXIS RAPID CCD area-detector
diffractometer
1453 independent reflections
Radiation source: fine-focus sealed tube987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.5°
ϕ and ω scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 910
Tmin = 0.048, Tmax = 0.277l = 1314
2162 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0812P)2]
where P = (Fo2 + 2Fc2)/3
1453 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 1.50 e Å3
0 restraintsΔρmin = 1.30 e Å3
Crystal data top
C7H5Br2NO2γ = 79.028 (1)°
Mr = 294.94V = 419.98 (7) Å3
Triclinic, P1Z = 2
a = 4.2590 (5) ÅMo Kα radiation
b = 8.6742 (7) ŵ = 9.60 mm1
c = 12.0831 (11) ÅT = 293 K
α = 74.171 (1)°0.80 × 0.42 × 0.18 mm
β = 82.248 (2)°
Data collection top
Rigaku R-AXIS RAPID CCD area-detector
diffractometer
1453 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
987 reflections with I > 2σ(I)
Tmin = 0.048, Tmax = 0.277Rint = 0.037
2162 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.05Δρmax = 1.50 e Å3
1453 reflectionsΔρmin = 1.30 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.3846 (3)0.03675 (11)1.18327 (9)0.0501 (4)
Br20.1284 (3)0.71718 (11)1.09089 (9)0.0508 (4)
N10.9050 (19)0.2301 (9)1.5027 (7)0.040 (2)
O11.0649 (17)0.2544 (8)1.5855 (6)0.0474 (18)
H11.13770.16641.62690.071*
O20.6873 (17)0.0731 (7)1.3820 (6)0.0469 (18)
H20.77210.08461.43570.070*
C10.783 (2)0.3610 (10)1.4352 (8)0.037 (2)
H1A0.80770.45941.44710.045*
C20.609 (2)0.3625 (10)1.3421 (8)0.031 (2)
C30.575 (2)0.2192 (10)1.3157 (7)0.030 (2)
C40.424 (2)0.2277 (10)1.2216 (8)0.036 (2)
C50.287 (2)0.3756 (11)1.1518 (8)0.040 (2)
H50.18270.37981.08810.048*
C60.314 (2)0.5157 (10)1.1813 (8)0.036 (2)
C70.477 (2)0.5089 (11)1.2733 (8)0.038 (2)
H70.49940.60491.28960.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0685 (8)0.0273 (6)0.0611 (8)0.0064 (5)0.0103 (6)0.0208 (5)
Br20.0661 (8)0.0263 (6)0.0574 (8)0.0040 (5)0.0175 (5)0.0084 (5)
N10.044 (5)0.031 (4)0.048 (5)0.005 (4)0.002 (4)0.016 (4)
O10.063 (5)0.026 (3)0.058 (5)0.004 (3)0.025 (4)0.017 (3)
O20.067 (5)0.019 (3)0.055 (4)0.003 (3)0.015 (4)0.012 (3)
C10.031 (5)0.024 (5)0.055 (6)0.003 (4)0.005 (4)0.012 (5)
C20.022 (5)0.026 (5)0.048 (6)0.002 (4)0.002 (4)0.017 (4)
C30.038 (5)0.021 (4)0.030 (5)0.001 (4)0.003 (4)0.008 (4)
C40.037 (5)0.022 (5)0.051 (6)0.003 (4)0.004 (5)0.019 (4)
C50.043 (6)0.040 (6)0.040 (6)0.008 (5)0.006 (5)0.014 (5)
C60.044 (6)0.026 (5)0.038 (5)0.001 (4)0.001 (4)0.011 (4)
C70.036 (6)0.025 (5)0.053 (6)0.008 (4)0.003 (5)0.013 (4)
Geometric parameters (Å, º) top
Br1—C41.879 (8)C2—C71.377 (13)
Br2—C61.882 (9)C2—C31.402 (11)
N1—C11.268 (12)C3—C41.360 (13)
N1—O11.364 (10)C4—C51.397 (13)
O1—H10.8200C5—C61.384 (12)
O2—C31.339 (10)C5—H50.9300
O2—H20.8200C6—C71.371 (13)
C1—C21.424 (13)C7—H70.9300
C1—H1A0.9300
C1—N1—O1113.3 (7)C3—C4—C5122.1 (8)
N1—O1—H1109.5C3—C4—Br1120.1 (7)
C3—O2—H2109.5C5—C4—Br1117.8 (7)
N1—C1—C2122.3 (8)C6—C5—C4117.4 (9)
N1—C1—H1A118.9C6—C5—H5121.3
C2—C1—H1A118.9C4—C5—H5121.3
C7—C2—C3118.5 (9)C7—C6—C5121.0 (9)
C7—C2—C1119.4 (8)C7—C6—Br2120.3 (7)
C3—C2—C1122.0 (8)C5—C6—Br2118.7 (8)
O2—C3—C4119.1 (8)C6—C7—C2121.2 (8)
O2—C3—C2121.3 (8)C6—C7—H7119.4
C4—C3—C2119.7 (8)C2—C7—H7119.4
O1—N1—C1—C2179.2 (7)C2—C3—C4—Br1178.5 (6)
N1—C1—C2—C7178.8 (9)C3—C4—C5—C60.6 (14)
N1—C1—C2—C33.0 (14)Br1—C4—C5—C6179.4 (6)
C7—C2—C3—O2177.4 (8)C4—C5—C6—C72.0 (14)
C1—C2—C3—O24.4 (13)C4—C5—C6—Br2179.0 (7)
C7—C2—C3—C42.2 (13)C5—C6—C7—C22.5 (14)
C1—C2—C3—C4176.0 (8)Br2—C6—C7—C2178.6 (7)
O2—C3—C4—C5176.9 (8)C3—C2—C7—C60.3 (13)
C2—C3—C4—C52.7 (14)C1—C2—C7—C6178.6 (8)
O2—C3—C4—Br11.9 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.102.775 (8)140
O2—H2···N10.821.882.601 (10)147
Symmetry code: (i) x+2, y, z+3.

Experimental details

Crystal data
Chemical formulaC7H5Br2NO2
Mr294.94
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.2590 (5), 8.6742 (7), 12.0831 (11)
α, β, γ (°)74.171 (1), 82.248 (2), 79.028 (1)
V3)419.98 (7)
Z2
Radiation typeMo Kα
µ (mm1)9.60
Crystal size (mm)0.80 × 0.42 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.048, 0.277
No. of measured, independent and
observed [I > 2σ(I)] reflections
2162, 1453, 987
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.160, 1.05
No. of reflections1453
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 1.30

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.102.775 (8)140.0
O2—H2···N10.821.882.601 (10)146.7
Symmetry code: (i) x+2, y, z+3.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.  Google Scholar
First citationDey, M., Rao, C. P., Saarenketo, P. K., Pissanen, K., Kolehmainen, E. & Guionneau, P. (2003). Polyhedron. 22, 3515–3521.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds