organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2206-o2207

A monoclinic polymorph of (1E,5E)-1,5-bis­­(2-hy­dr­oxy­benzyl­­idene)thio­carbono­hydrazide

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 12 July 2011; accepted 27 July 2011; online 30 July 2011)

The title compound, C15H14N4O2S, is a derivative of thio­ureadihydrazide. In contrast to the previously reported polymorph (ortho­rhom­bic, space group Pbca, Z = 8), the current study revealed monoclinic symmetry (space group P21/n, Z = 4). The mol­ecule shows non-crystallographic C2 as well as approximate Cs symmetry. Intra­molecular bifurcated O—H⋯(N,S) hydrogen bonds, are present. In the crystal, inter­molecular N—H⋯S hydrogen bonds and C—H⋯π contacts connect the mol­ecules into undulating chains along the b axis. The shortest centroid–centroid distance between two aromatic systems is 4.5285 (12) Å.

Related literature

For the crystal structure of the ortho­rhom­bic polymorph of the title compound reported without three-dimensional coordinates, see: Yanping et al. (1999[Yanping, R., Rongbin, D., Liufang, W. & Jigui, W. (1999). Synth. Commun. 29, 613-617.]). For the crystal structure of a methyl­ated derivative of the title compound, see: Affan et al. (2010[Affan, M. A., Chee, D. N. A., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o555.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Structures containing similar C=S distances were retrieved from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For chelate ligands in coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4O2S

  • Mr = 314.36

  • Monoclinic, P 21 /c

  • a = 5.6020 (1) Å

  • b = 7.4260 (2) Å

  • c = 34.5220 (8) Å

  • β = 91.225 (1)°

  • V = 1435.80 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 200 K

  • 0.20 × 0.17 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 1.000

  • 13304 measured reflections

  • 3578 independent reflections

  • 2830 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.116

  • S = 1.11

  • 3578 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H81⋯N2 0.84 1.87 2.597 (2) 144
O1—H81⋯S1 0.84 2.99 3.7096 (14) 145
O2—H82⋯N4 0.84 1.89 2.617 (2) 144
O2—H82⋯S1 0.84 3.08 3.8135 (16) 147
N1—H71⋯S1i 0.86 (2) 2.53 (2) 3.3514 (17) 159 (2)
N3—H73⋯S1i 0.85 (3) 2.82 (3) 3.5605 (18) 147 (2)
C16—H16⋯Cg2i 0.95 2.81 3.423 (2) 123
C26—H26⋯Cg1i 0.95 2.74 3.438 (2) 130
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different donor atoms, a molecular set-up to accomodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, the title compound seemed particularily interesting due to its use as strictly neutral or – depending on the pH value – as anionic or cationic ligand. In addition, due to the set-up of its donor atoms, a multitude of differently-sized chelate ligands can be formed. The presence of a thioketo group as well as amino groups, hydroxyl groups and imine-type nitrogen atoms further enhances the versatility of the title compound's ligating abilities. In our continuous interest in elucidating the rules influencing the formation of coordination compounds with different set-ups of NOS-donor atoms, we determined the crystal structure of the title compound to enable comparative studies with geometric parameters in envisioned coordination compounds. Although the compound has been reported to crystallize in the orthorhombic space group Pbca (Yanping et al., 1999), we found a monoclinic polymorph. Furthermore, no three-dimensional coordinates have been deposited for the former structure solution. The molecular and crystal structure of a methyl-substituted derivative of the title compound is apparent in the literature as well (Affan et al., 2010).

The molecule is essentially planar. The least-squares planes defined by the carbon atoms of the phenyl groups (including the respective C=N moiety) intersect at an angle of only 5.33 (8) °. The least-squares plane defined by the atoms of the central N2C=S motif encloses angles of 7.26 (8) ° and 11.75 (7) ° with the aforementioned least-squares planes, respectively (Fig. 1). The C=N double bonds are invariably (E)-configured. The length of the C=S bond is in good agreement with values reported for other thioketones whose crystal structural data have been deposited with the Cambridge Structural Database (Allen, 2002), the reported range being 1.297–1.864 Å.

In the crystal structure, intra- as well as intermolecular hydrogen bonds are apparent. While the intramolecular hydrogen bond – stemming from the hydroxyl group – shows bifurcation between the sulfur atom as well as the imine-type nitrogen atom, the intermolecular hydrogen bonds exclusively have the sulfur atom as acceptor. The presence of the sulfur-supported hydrogen bond is complemented by the results of IR spectroscopy that show the presence of three bands in the region for hydrogen bonds between oxygen, nitrogen and sulfur. In addition, C–H···π contacts can be observed that involve hydrogen atoms on the aromatic system. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the bifurcated hydrogen bond is S(6)S(9) on the unitary level while the amino-group-supported hydrogen bonds necessitate a C11(4)C11(4) descriptor on the same level. A binary descriptor of R12(6) emphasizes the "chelation" of the sulfur atom by the two secondary amino groups. In total, the molecules are connected to waved, zigzag-type chains along the crystallographic b axis. The shortest intercentroid distance between two π-systems was measured at 4.5285 (12) Å and involves both aromatic moieties (Fig. 2).

Related literature top

For the crystal structure of the orthorhombic polymorph of the title compound reported without three-dimensional coordinates, see: Yanping et al. (1999). For the crystal structure of a methylated derivative of the title compound, see: Affan et al. (2010). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). Structures containing similar C=S distances were retrieved from the Cambridge Structural Database (Allen, 2002). For chelate ligands in coordination chemistry, see: Gade (1998).

Experimental top

The compound was prepared upon reacting thiocarbohydrazide (0.50 mmol) with ortho-hydroxybenzaldehyde (1.00 mmol) in refluxing ethanol (15 ml) under nitrogen in analogy to a published procedure (Yanping et al., 1999). Crystals suitable for the X-ray diffraction study were obtained upon slow evaporation of the reaction mixture.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl groups were allowed to rotate with a fixed angle around their respective C—O bonds to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)). The H atoms of the amine groups were located on a difference Fourier map and refined with individual displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. Depicted are intramolecular (green dashed lines) as well as intermolecular (blue dashed lines) hydrogen bonds and C–H···π contacts (red dashed lines). Symmetry operators: i -x + 1, y - 1/2, -z + 1/2; ii -x + 1, y + 1/2, -z + 1/2.
(1E,5E)-1,5-bis(2-hydroxybenzylidene)thiocarbonohydrazide top
Crystal data top
C15H14N4O2SF(000) = 656
Mr = 314.36Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3781 reflections
a = 5.6020 (1) Åθ = 3.3–28.2°
b = 7.4260 (2) ŵ = 0.24 mm1
c = 34.5220 (8) ÅT = 200 K
β = 91.225 (1)°Block, colourless
V = 1435.80 (6) Å30.20 × 0.17 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3578 independent reflections
Radiation source: fine-focus sealed tube2830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.879, Tmax = 1.000k = 99
13304 measured reflectionsl = 4645
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.6828P]
where P = (Fo2 + 2Fc2)/3
3578 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H14N4O2SV = 1435.80 (6) Å3
Mr = 314.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6020 (1) ŵ = 0.24 mm1
b = 7.4260 (2) ÅT = 200 K
c = 34.5220 (8) Å0.20 × 0.17 × 0.10 mm
β = 91.225 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3578 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2830 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 1.000Rint = 0.027
13304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.31 e Å3
3578 reflectionsΔρmin = 0.30 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12373 (8)0.21558 (7)0.258163 (14)0.02903 (14)
O10.1741 (2)0.2387 (2)0.36537 (4)0.0324 (3)
H810.22030.26370.34300.049*
O20.1378 (2)0.2458 (2)0.15547 (4)0.0383 (4)
H820.03820.27230.17310.057*
N10.5251 (3)0.3922 (2)0.27723 (4)0.0281 (4)
H710.646 (4)0.457 (3)0.2711 (6)0.037 (6)*
N20.4749 (3)0.3542 (2)0.31484 (4)0.0265 (3)
N30.4199 (3)0.4051 (2)0.21391 (5)0.0294 (4)
H730.546 (5)0.466 (4)0.2103 (7)0.053 (8)*
N40.2684 (3)0.3694 (2)0.18331 (4)0.0274 (3)
C10.3648 (3)0.3442 (2)0.24941 (5)0.0248 (4)
C20.6209 (3)0.4048 (2)0.34167 (5)0.0256 (4)
H20.76740.46130.33550.031*
C30.3279 (3)0.4210 (2)0.14954 (5)0.0255 (4)
H30.47390.48340.14600.031*
C110.5583 (3)0.3740 (2)0.38171 (5)0.0237 (4)
C120.3391 (3)0.2956 (3)0.39193 (5)0.0258 (4)
C130.2860 (3)0.2726 (3)0.43090 (6)0.0303 (4)
H130.13910.21860.43780.036*
C140.4458 (4)0.3279 (3)0.45949 (6)0.0319 (4)
H140.40730.31260.48600.038*
C150.6625 (4)0.4057 (3)0.44992 (6)0.0312 (4)
H150.77180.44390.46970.037*
C160.7166 (3)0.4266 (3)0.41139 (6)0.0270 (4)
H160.86560.47830.40490.032*
C210.1696 (3)0.3832 (2)0.11659 (5)0.0239 (4)
C220.0524 (3)0.2973 (3)0.12065 (6)0.0287 (4)
C230.1919 (4)0.2586 (3)0.08796 (6)0.0345 (5)
H230.34130.20000.09070.041*
C240.1148 (4)0.3048 (3)0.05168 (6)0.0368 (5)
H240.21140.27720.02950.044*
C250.1036 (4)0.3915 (3)0.04711 (6)0.0336 (5)
H250.15620.42340.02210.040*
C260.2414 (3)0.4301 (3)0.07948 (5)0.0277 (4)
H260.38960.49030.07650.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0237 (2)0.0299 (3)0.0336 (3)0.0028 (2)0.00372 (17)0.0010 (2)
O10.0251 (7)0.0398 (8)0.0323 (7)0.0086 (6)0.0007 (5)0.0014 (6)
O20.0254 (7)0.0448 (9)0.0447 (8)0.0075 (6)0.0017 (6)0.0091 (7)
N10.0250 (8)0.0338 (9)0.0255 (8)0.0060 (7)0.0014 (6)0.0048 (7)
N20.0276 (8)0.0275 (8)0.0245 (8)0.0005 (7)0.0027 (6)0.0037 (6)
N30.0279 (8)0.0351 (10)0.0250 (8)0.0074 (7)0.0010 (6)0.0033 (7)
N40.0258 (8)0.0285 (9)0.0277 (8)0.0019 (7)0.0019 (6)0.0007 (7)
C10.0240 (9)0.0211 (9)0.0292 (9)0.0036 (7)0.0019 (7)0.0003 (7)
C20.0230 (9)0.0236 (9)0.0303 (9)0.0002 (7)0.0023 (7)0.0041 (7)
C30.0235 (9)0.0235 (9)0.0296 (9)0.0008 (7)0.0003 (7)0.0003 (7)
C110.0233 (8)0.0193 (9)0.0286 (9)0.0021 (7)0.0031 (7)0.0026 (7)
C120.0226 (8)0.0226 (9)0.0322 (9)0.0013 (7)0.0016 (7)0.0008 (8)
C130.0265 (9)0.0299 (10)0.0347 (10)0.0021 (8)0.0073 (8)0.0050 (8)
C140.0372 (11)0.0314 (11)0.0273 (9)0.0063 (9)0.0054 (8)0.0023 (8)
C150.0358 (10)0.0312 (11)0.0264 (9)0.0010 (9)0.0037 (8)0.0011 (8)
C160.0234 (9)0.0235 (9)0.0340 (10)0.0007 (7)0.0018 (7)0.0009 (7)
C210.0224 (8)0.0197 (9)0.0296 (9)0.0029 (7)0.0016 (7)0.0014 (7)
C220.0230 (8)0.0233 (9)0.0397 (10)0.0028 (8)0.0002 (7)0.0021 (8)
C230.0250 (9)0.0249 (10)0.0534 (13)0.0002 (8)0.0081 (9)0.0013 (9)
C240.0354 (11)0.0314 (11)0.0428 (11)0.0076 (9)0.0158 (9)0.0074 (9)
C250.0367 (11)0.0353 (12)0.0288 (10)0.0099 (9)0.0027 (8)0.0024 (8)
C260.0254 (9)0.0255 (10)0.0319 (10)0.0032 (8)0.0002 (8)0.0008 (8)
Geometric parameters (Å, º) top
S1—C11.6867 (19)C12—C131.394 (3)
O1—C121.356 (2)C13—C141.381 (3)
O1—H810.8400C13—H130.9500
O2—C221.359 (2)C14—C151.390 (3)
O2—H820.8400C14—H140.9500
N1—C11.349 (2)C15—C161.379 (3)
N1—N21.364 (2)C15—H150.9500
N1—H710.86 (2)C16—H160.9500
N2—C21.279 (2)C21—C261.395 (3)
N3—C11.348 (2)C21—C221.407 (3)
N3—N41.367 (2)C22—C231.389 (3)
N3—H730.85 (3)C23—C241.377 (3)
N4—C31.278 (2)C23—H230.9500
C2—C111.451 (2)C24—C251.394 (3)
C2—H20.9500C24—H240.9500
C3—C211.455 (2)C25—C261.375 (3)
C3—H30.9500C25—H250.9500
C11—C161.396 (3)C26—H260.9500
C11—C121.411 (2)
C12—O1—H81109.5C13—C14—C15120.65 (17)
C22—O2—H82109.5C13—C14—H14119.7
C1—N1—N2118.38 (15)C15—C14—H14119.7
C1—N1—H71119.2 (15)C16—C15—C14119.13 (18)
N2—N1—H71121.9 (15)C16—C15—H15120.4
C2—N2—N1119.14 (16)C14—C15—H15120.4
C1—N3—N4119.14 (16)C15—C16—C11121.80 (18)
C1—N3—H73121.2 (17)C15—C16—H16119.1
N4—N3—H73119.7 (17)C11—C16—H16119.1
C3—N4—N3118.46 (16)C26—C21—C22118.51 (17)
N3—C1—N1113.38 (16)C26—C21—C3119.15 (16)
N3—C1—S1123.54 (14)C22—C21—C3122.33 (17)
N1—C1—S1123.06 (14)O2—C22—C23117.24 (17)
N2—C2—C11118.67 (16)O2—C22—C21123.01 (17)
N2—C2—H2120.7C23—C22—C21119.73 (18)
C11—C2—H2120.7C24—C23—C22120.37 (19)
N4—C3—C21119.25 (17)C24—C23—H23119.8
N4—C3—H3120.4C22—C23—H23119.8
C21—C3—H3120.4C23—C24—C25120.72 (19)
C16—C11—C12118.32 (17)C23—C24—H24119.6
C16—C11—C2119.49 (16)C25—C24—H24119.6
C12—C11—C2122.18 (17)C26—C25—C24118.90 (19)
O1—C12—C13117.24 (16)C26—C25—H25120.6
O1—C12—C11122.97 (16)C24—C25—H25120.6
C13—C12—C11119.79 (17)C25—C26—C21121.76 (18)
C14—C13—C12120.30 (18)C25—C26—H26119.1
C14—C13—H13119.9C21—C26—H26119.1
C12—C13—H13119.9
C1—N1—N2—C2177.46 (17)C13—C14—C15—C160.2 (3)
C1—N3—N4—C3176.94 (18)C14—C15—C16—C110.8 (3)
N4—N3—C1—N1178.39 (16)C12—C11—C16—C150.7 (3)
N4—N3—C1—S13.2 (3)C2—C11—C16—C15177.92 (17)
N2—N1—C1—N3173.21 (16)N4—C3—C21—C26176.19 (17)
N2—N1—C1—S18.4 (2)N4—C3—C21—C222.4 (3)
N1—N2—C2—C11176.08 (16)C26—C21—C22—O2179.74 (17)
N3—N4—C3—C21179.64 (16)C3—C21—C22—O21.1 (3)
N2—C2—C11—C16179.37 (17)C26—C21—C22—C231.1 (3)
N2—C2—C11—C122.0 (3)C3—C21—C22—C23177.55 (17)
C16—C11—C12—O1179.45 (17)O2—C22—C23—C24179.10 (18)
C2—C11—C12—O11.9 (3)C21—C22—C23—C240.4 (3)
C16—C11—C12—C130.0 (3)C22—C23—C24—C250.2 (3)
C2—C11—C12—C13178.65 (17)C23—C24—C25—C260.1 (3)
O1—C12—C13—C14179.87 (17)C24—C25—C26—C210.6 (3)
C11—C12—C13—C140.7 (3)C22—C21—C26—C251.2 (3)
C12—C13—C14—C150.6 (3)C3—C21—C26—C25177.45 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H81···N20.841.872.597 (2)144
O1—H81···S10.842.993.7096 (14)145
O2—H82···N40.841.892.617 (2)144
O2—H82···S10.843.083.8135 (16)147
N1—H71···S1i0.86 (2)2.53 (2)3.3514 (17)159 (2)
N3—H73···S1i0.85 (3)2.82 (3)3.5605 (18)147 (2)
C16—H16···Cg2i0.952.813.423 (2)123
C26—H26···Cg1i0.952.743.438 (2)130
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N4O2S
Mr314.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.6020 (1), 7.4260 (2), 34.5220 (8)
β (°) 91.225 (1)
V3)1435.80 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.20 × 0.17 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.879, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13304, 3578, 2830
Rint0.027
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.116, 1.11
No. of reflections3578
No. of parameters209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR97 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H81···N20.841.872.597 (2)144.2
O1—H81···S10.842.993.7096 (14)145.2
O2—H82···N40.841.892.617 (2)144.3
O2—H82···S10.843.083.8135 (16)146.6
N1—H71···S1i0.86 (2)2.53 (2)3.3514 (17)159 (2)
N3—H73···S1i0.85 (3)2.82 (3)3.5605 (18)147 (2)
C16—H16···Cg2i0.952.813.423 (2)123
C26—H26···Cg1i0.952.743.438 (2)130
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Mrs Gisela Bräuer for helpful discussions.

References

First citationAffan, M. A., Chee, D. N. A., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYanping, R., Rongbin, D., Liufang, W. & Jigui, W. (1999). Synth. Commun. 29, 613–617.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2206-o2207
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds