metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1136-m1137

catena-Poly[[(3-methyl­pyridine)­copper(I)]-μ-cyanido-copper(I)-μ-cyanido]

aSchool of Chemistry and Environment, South China Nomal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: dh@scnu.edu.cn

(Received 16 April 2011; accepted 15 July 2011; online 23 July 2011)

In the title complex, [Cu2(CN)2(C6H7N)]n, there are two copper atoms with different coordination environments. One Cu atom (Cu1) is linked to the two cyanide ligands, one N atom from a pyridine ring while the other (Cu2) is coordinated by the two cyanide ligands in a slightly distorted tetra­hedral geometry and linked to Cu1, forming a triangular coordination environment. The Cu atoms are bridged by bidentate cyanide ligands, forming an infinite Cu–CN chain. One cyanide ligand is equally disordered over two sets of sites, exchanging C and N atoms coordinated to both metal atoms. However, one cyanide group is not disordered and it coordinates to Cu1 via the N atom whereas its C-atom counterpart coordinates Cu2. The 3-methyl­pyridine (3MP) ligand coordinates through the N atom to Cu1 as a terminal ligand, which originates from decyanation of 3-pyridyl­acetonitrile under hydro­thermal conditions. Adjacent Cu–CN chains are inter­connected through Cu⋯Cu inter­actions [2.8364 (10) Å], forming a three-dimensional framework.

Related literature

For applications of coordination polymers, see: Gu & Xue (2007[Gu, X. & Xue, D. F. (2007). CrystEngComm, 9, 471-477.]); Cheng et al. (2007[Cheng, J. W., Zheng, S. T., Ma, E. & Yang, G. Y. (2007). Inorg. Chem. 46, 10534-10538.]); Ley et al. (2010[Ley, A. N., Dunaway, L. E., Brewster, T. P., Dembo, M. D., Harris, T. D., Bril-Robert, F., Li, X. B., Patterson, H. H. & Pike, R. B. (2010). Chem. Commun. 46, 4565-4567.]); Etaiw et al. (2009[Etaiw, S., El-din, H., Amer, S. A. & El-bendary, M. M. (2009). Polyhedron, 28, 2385-2390.]); Li et al. (2009[Li, Z. Y., Wang, N., Dai, J. W., Yue, S. T. & Li, Y. L. (2009). CrystEngComm, 11, 2003-2008.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(CN)2(C6H7N)]

  • Mr = 272.27

  • Monoclinic, P 21 /c

  • a = 9.3027 (18) Å

  • b = 12.090 (2) Å

  • c = 8.8738 (17) Å

  • β = 105.927 (2)°

  • V = 959.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.38 mm−1

  • T = 296 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.559, Tmax = 0.668

  • 4802 measured reflections

  • 1725 independent reflections

  • 1396 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.03

  • 1725 reflections

  • 107 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected bond lengths (Å)

N1—Cu1 2.057 (2)
C7—Cu2 1.839 (4)
C8—Cu1 1.886 (4)
C9—Cu2 1.838 (5)
Cu1—N2 1.891 (4)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much attention has been focused on the rational design and synthesis of coordination polymers due to their intriguing structural features as well as potential applications in catalysis, fluorscence, and as chemical sensors (Gu et al., 2007; Cheng et al., 2007; Ley et al., 2010; Etaiw et al., 2009). Some polymers with rigid ligands such as isonicotinic acid has been reported (Li et al., 2009). A cyano group is a well bridging ligand, which plays an important role in assembling of polymers acting as a monodentate, bidentate or tridentate ligand (Ley et al., 2010). A careful review of the literature suggests that 3-methylpyridine(3MP) use as a ligand to construct metal coordination framework has not been reported yet. Herein, we report the title complex synthesised by the reaction of cuprous cyanide and 3PAT ligands under hydrothermal conditions. Cu1 is coordinated by two cyano ligands, one nitrogen atom from pyridine ring and Cu2 centre with the Cu···Cu distance of 2.836 (4) Å, forming a slightly distorted tetrahedral coordination. Cu2 is coordinated by a carbon atom from one cyano ligand, whereas the second coordination sites is occupied either by N or C atoms (due to the disorder of ligand), and Cu1 centre forming a triangular coordination environment (Fig. 1, Table 1). The adjacent copper-cyano chains are joined through the Cu···Cu interaction forming a three dimensional framework. The site occupancy of cyano ligands C9N4 and C8N3 is 0.5, each.

Related literature top

For applications of coordination polymers, see: Gu & Xue (2007); Cheng et al. (2007); Ley et al. (2010); Etaiw et al. (2009); Li et al. (2009).

Experimental top

A mixture of 3-pyridylacetonitrile (2 mL), cuprous cyanide (0.092 g; 0.1 mmol), strong ammonia water (2 mL) and 8 mL water were sealed in a 23 mL teflon reactor, and the mixture was heated at 443 K for 3 d then cooled to room temperature at a rate of 5 K / h. Yellow crystals were obtained in a yield of 37% based on Cu.

Refinement top

All H atoms were placed in calculated positions and refined using a Riding model, with (C—H= 0.93–0.96 Å), and with Uiso(H) = 1.2 Ueq(C) for methyl H atoms. Two of the cyano ligands are disordered over two sites with occupancies 0.5:0.5.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex. Non-H atoms are shown as 50% probability displacement ellipsoids. Two of the cyano ligands N3/(C8) and N4/(C9) are disordered over two sites with occupancy 0.5, each.
catena-Poly[[(3-methylpyridine)copper(I)]-µ-cyanido-copper(I)-µ-cyanido] top
Crystal data top
[Cu2(CN)2(C6H7N)]F(000) = 536
Mr = 272.27Dx = 1.884 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1725 reflections
a = 9.3027 (18) Åθ = 2.3–25.2°
b = 12.090 (2) ŵ = 4.38 mm1
c = 8.8738 (17) ÅT = 296 K
β = 105.927 (2)°Block, yellow
V = 959.7 (3) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
1725 independent reflections
Radiation source: fine-focus sealed tube1396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1011
Tmin = 0.559, Tmax = 0.668k = 1314
4802 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0603P)2 + 1.271P]
where P = (Fo2 + 2Fc2)/3
1725 reflections(Δ/σ)max = 0.001
107 parametersΔρmax = 0.76 e Å3
2 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Cu2(CN)2(C6H7N)]V = 959.7 (3) Å3
Mr = 272.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3027 (18) ŵ = 4.38 mm1
b = 12.090 (2) ÅT = 296 K
c = 8.8738 (17) Å0.15 × 0.12 × 0.10 mm
β = 105.927 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1725 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1396 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.668Rint = 0.035
4802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.03Δρmax = 0.76 e Å3
1725 reflectionsΔρmin = 0.77 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3796 (8)0.8237 (6)0.1465 (8)0.085 (2)
H1A0.48150.82160.08320.127*
H1B0.36950.87830.22730.127*
H1C0.35200.75250.19330.127*
C20.2797 (3)0.8529 (3)0.0463 (4)0.0574 (13)
C30.1740 (4)0.7751 (2)0.0325 (3)0.0514 (12)
H30.16770.70760.08430.062*
N10.0778 (3)0.7981 (2)0.0587 (3)0.0464 (9)
C40.0872 (3)0.8990 (2)0.1361 (4)0.0539 (12)
H40.02280.91440.19710.065*
C50.1929 (4)0.9768 (2)0.1222 (4)0.0705 (16)
H50.19921.04420.17400.085*
C60.2891 (4)0.9537 (3)0.0310 (5)0.0703 (16)
H60.35991.00570.02180.084*
C70.2726 (5)0.7996 (4)0.2481 (5)0.0447 (11)
C80.0191 (5)0.5420 (3)0.0191 (5)0.0479 (10)0.50
C90.4653 (6)0.9731 (5)0.4697 (6)0.0674 (14)0.50
Cu10.07682 (7)0.68136 (4)0.07839 (7)0.0473 (2)
Cu20.35513 (8)0.88478 (6)0.37450 (8)0.0680 (3)
N20.2093 (5)0.7508 (4)0.1768 (5)0.0576 (11)
N30.0191 (5)0.5420 (3)0.0191 (5)0.0479 (10)0.50
N40.4653 (6)0.9731 (5)0.4697 (6)0.0674 (14)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.069 (4)0.102 (5)0.097 (5)0.027 (4)0.045 (4)0.012 (4)
C20.052 (3)0.061 (3)0.058 (3)0.013 (3)0.012 (3)0.001 (3)
C30.057 (3)0.051 (3)0.050 (3)0.010 (2)0.020 (2)0.008 (2)
N10.056 (2)0.040 (2)0.047 (2)0.0042 (18)0.0218 (18)0.0066 (17)
C40.066 (3)0.040 (3)0.052 (3)0.010 (2)0.012 (2)0.004 (2)
C50.071 (4)0.043 (3)0.089 (4)0.005 (3)0.008 (3)0.015 (3)
C60.066 (4)0.046 (3)0.093 (4)0.017 (3)0.011 (3)0.000 (3)
C70.052 (3)0.038 (3)0.050 (2)0.0047 (19)0.025 (2)0.0047 (19)
C80.059 (3)0.038 (2)0.057 (2)0.0056 (19)0.034 (2)0.0012 (19)
C90.073 (3)0.069 (3)0.066 (3)0.026 (3)0.029 (3)0.009 (3)
Cu10.0561 (4)0.0377 (4)0.0583 (4)0.0040 (2)0.0328 (3)0.0070 (2)
Cu20.0727 (5)0.0675 (5)0.0772 (5)0.0212 (4)0.0429 (4)0.0155 (4)
N20.067 (3)0.050 (3)0.068 (3)0.007 (2)0.038 (2)0.008 (2)
N30.059 (3)0.038 (2)0.057 (2)0.0056 (19)0.034 (2)0.0012 (19)
N40.073 (3)0.069 (3)0.066 (3)0.026 (3)0.029 (3)0.009 (3)
Geometric parameters (Å, º) top
C1—C21.493 (6)C5—H50.9300
C1—H1A0.9600C6—H60.9300
C1—H1B0.9600C7—N21.140 (5)
C1—H1C0.9600C7—Cu21.839 (4)
C2—C31.3900C8—N3i1.158 (8)
C2—C61.3900C8—C8i1.158 (8)
C3—N11.3900C8—Cu11.886 (4)
C3—H30.9300C9—N4ii1.150 (9)
N1—C41.3900C9—C9ii1.150 (9)
N1—Cu12.057 (2)C9—Cu21.838 (5)
C4—C51.3900Cu1—N21.891 (4)
C4—H40.9300Cu1—Cu2iii2.8364 (10)
C5—C61.3900Cu2—Cu1iv2.8364 (10)
C2—C1—H1A109.5C5—C6—C2120.0
C2—C1—H1B109.5C5—C6—H6120.0
H1A—C1—H1B109.5C2—C6—H6120.0
C2—C1—H1C109.5N2—C7—Cu2173.8 (5)
H1A—C1—H1C109.5N3i—C8—C8i0.0 (5)
H1B—C1—H1C109.5N3i—C8—Cu1178.1 (5)
C3—C2—C6120.0C8i—C8—Cu1178.1 (5)
C3—C2—C1117.6 (3)N4ii—C9—C9ii0.0 (5)
C6—C2—C1122.4 (3)N4ii—C9—Cu2178.9 (8)
C2—C3—N1120.0C9ii—C9—Cu2178.9 (8)
C2—C3—H3120.0C8—Cu1—N2142.80 (19)
N1—C3—H3120.0C8—Cu1—N1109.28 (15)
C4—N1—C3120.0N2—Cu1—N1107.10 (16)
C4—N1—Cu1120.73 (15)C8—Cu1—Cu2iii81.38 (15)
C3—N1—Cu1119.27 (15)N2—Cu1—Cu2iii79.83 (14)
N1—C4—C5120.0N1—Cu1—Cu2iii132.57 (9)
N1—C4—H4120.0C9—Cu2—C7169.9 (2)
C5—C4—H4120.0C9—Cu2—Cu1iv113.40 (17)
C6—C5—C4120.0C7—Cu2—Cu1iv76.72 (15)
C6—C5—H5120.0C7—N2—Cu1170.8 (5)
C4—C5—H5120.0
Symmetry codes: (i) x, y+1, z; (ii) x1, y+2, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(CN)2(C6H7N)]
Mr272.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.3027 (18), 12.090 (2), 8.8738 (17)
β (°) 105.927 (2)
V3)959.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.38
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.559, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
4802, 1725, 1396
Rint0.035
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.03
No. of reflections1725
No. of parameters107
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.77

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—Cu12.057 (2)Cu1—N21.891 (4)
C7—Cu21.839 (4)Cu1—Cu2i2.8364 (10)
C8—Cu11.886 (4)Cu2—Cu1ii2.8364 (10)
C9—Cu21.838 (5)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge South China Normal University and the National Natural Science Foundation of China (grant No. 20871048) for supporting this work.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. W., Zheng, S. T., Ma, E. & Yang, G. Y. (2007). Inorg. Chem. 46, 10534–10538.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEtaiw, S., El-din, H., Amer, S. A. & El-bendary, M. M. (2009). Polyhedron, 28, 2385–2390.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, X. & Xue, D. F. (2007). CrystEngComm, 9, 471–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationLey, A. N., Dunaway, L. E., Brewster, T. P., Dembo, M. D., Harris, T. D., Bril-Robert, F., Li, X. B., Patterson, H. H. & Pike, R. B. (2010). Chem. Commun. 46, 4565–4567.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. Y., Wang, N., Dai, J. W., Yue, S. T. & Li, Y. L. (2009). CrystEngComm, 11, 2003–2008.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1136-m1137
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds