metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ4-glutarato-di-μ3-glutarato-bis­­(1,10-phenanthroline)diyttrium(III)]

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: Zhuhonglin1@nbu.edu.cn

(Received 16 June 2011; accepted 7 July 2011; online 13 July 2011)

In the title complex, [Y2(C5H6O4)3(C12H8N2)2]n, three glutarate groups and two 1,10-phenanthroline mol­ecules surround the two YIII ions. Both YIII ions are coordinated by two N atoms from the 1,10-phenanthroline, seven O atoms from five glutarate groups in a distorted tricapped trigonal–prismatic geometry. The YIII ions are bridged by glutarate ligands in three modes, forming a layered, polymeric structure. The resulting layers are assembled by ππ stacking inter­actions [centroid–centroid distances = 3.740 (3) and 3.571 (3) Å] into a three-dimensional supra­molecular architecture.

Related literature

For general background to applications of coordination polymers as functional materials, see: Koo et al. (2010[Koo, B. K., Kim, J. & Lee, U. (2010). Inorg. Chim. Acta, 363, 1760-1766.]). For related structures, see: Zhang et al. (2003[Zhang, L. P., Wan, Y. H. & Jin, L. P. (2003). J. Mol. Struct. 646, 169-178.]): Yin & Yu (2007[Yin, Y.-B. & Yu, H.-X. (2007). Acta Cryst. E63, m2804.]).

[Scheme 1]

Experimental

Crystal data
  • [Y2(C5H6O4)3(C12H8N2)2]

  • Mr = 928.52

  • Triclinic, [P \overline 1]

  • a = 8.7681 (18) Å

  • b = 13.418 (3) Å

  • c = 16.410 (3) Å

  • α = 83.83 (3)°

  • β = 84.41 (3)°

  • γ = 75.09 (3)°

  • V = 1849.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.19 mm−1

  • T = 293 K

  • 0.23 × 0.17 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.790, Tmax = 0.810

  • 17986 measured reflections

  • 8240 independent reflections

  • 5620 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.076

  • S = 1.02

  • 8240 reflections

  • 514 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Y1—O2i 2.314 (2)
Y1—O1ii 2.314 (2)
Y1—O6iii 2.315 (2)
Y1—O3 2.386 (2)
Y1—O5 2.441 (3)
Y1—O4 2.455 (3)
Y1—O6 2.537 (2)
Y1—N2 2.538 (3)
Y1—N1 2.592 (3)
Y2—O10iv 2.269 (3)
Y2—O12v 2.317 (2)
Y2—O11i 2.329 (2)
Y2—O7 2.375 (3)
Y2—O9 2.397 (3)
Y2—O8 2.413 (3)
Y2—N4 2.570 (3)
Y2—N3 2.649 (3)
Y2—O10 2.823 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+2, -y, -z+1; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+1, -z+2.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976)[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decades, growing attention has been paid to rational design and synthesis of coordination polymers due to their potential applications as functional materials (Koo et al., 2010). We report here the preparation and crystal structures of one interesting coordination polymers constructed by Yttrium(III) centers, 1,10-phenanthroline and glutarate, namely [Y2(phen)2(glu)3]n.

The asymmetric unit of the title compound contains two YIII ions, two phen molecules and three glutarate anions. Both YIII ions are coordinated by seven oxygen atoms from five glutarate ligands and two nitrogen atoms from a chelating phen ligand (Fig. 1). The Y-O/N bond distances fall in a range from 2.269 to 2.823 Å (Table 1). Each of YIII ions exhibits the coordination geometry of distorted tricapped trigonal prism. The glutarate ligands exhibit three types of linking modes to bridge YIII ions into the polymeric structure: (a) bridging bidentate and chelating bidentate; (b) chelating/bridging tridentate and bridging bidentate; (c) chelating/bridging tridentate and chelating bidentate (Zhang et al., 2003). The YIII ions are bridged by glutarate anions to form layers parallel to (011) (Fig. 2). ππ stacking interactions of phen ligands with separation distances between centres of gravity of 3.740 (3)Å and 3.571 (3) Å [involving the rings: N1-C15-C14_C13_C12-C16 and C9-C10-C11-C12-C16-C17 with symmetry operation of the second ring (1-x,1-y,1-z), and the ring C26-C27-C28-C29-C33-C34 and its symmetry related one (3-x,-y,2-z)] generate a three-dimensional structure (Yin et al., 2007).

Related literature top

For general background to applications of coordination polymers as functional materials , see: Koo et al. (2010). For related structures, see: Zhang et al. (2003): Yin & Yu (2007).

Experimental top

YCl3.nH2O were prepared by dissolving 0.0339 g Y2O3 (0.15 mmol) in dilute hydrochloric acid and then dried. A mixture of YCl3.nH2O, H2glu (0.0396 g, 0.30 mmol), phen (0.0595 g, 0.30 mmol) and H2O (10 mL) was stirred and adjusted to pH 4.0 with a 1M NaOH solution, then transferred and sealed into an 23 mL-Teflon-lined autoclave, which was heated at 443 K for three days. After cooling to room temperature at a rate of 10 K /3 h, colourless block-like crystals were obtained, washed with ethanol and dried in air.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O–H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at the 30% probability level. [Symmetry codes used: (#1)-x + 1, -y, -z + 1;(#2)-x + 2, -y, -z + 1; (#3)x + 1, y, z;(#4)-x + 2, -y + 1, -z + 2;(#5)-x + 1, -y + 1, -z + 2].
[Figure 2] Fig. 2. The view of layered structure parallel to (011).
Poly[µ4-glutarato-di-µ3-glutarato-bis(1,10-phenanthroline)diyttrium(III)] top
Crystal data top
[Y2(C5H6O4)3(C12H8N2)2]Z = 2
Mr = 928.52F(000) = 940
Triclinic, P1Dx = 1.667 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7681 (18) ÅCell parameters from 17986 reflections
b = 13.418 (3) Åθ = 3.1–27.5°
c = 16.410 (3) ŵ = 3.19 mm1
α = 83.83 (3)°T = 293 K
β = 84.41 (3)°Block, colorless
γ = 75.09 (3)°0.23 × 0.17 × 0.08 mm
V = 1849.9 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8240 independent reflections
Radiation source: fine-focus sealed tube5620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1011
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1517
Tmin = 0.790, Tmax = 0.810l = 2121
17986 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0145P)2 + 1.8882P]
where P = (Fo2 + 2Fc2)/3
8240 reflections(Δ/σ)max = 0.001
514 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Y2(C5H6O4)3(C12H8N2)2]γ = 75.09 (3)°
Mr = 928.52V = 1849.9 (6) Å3
Triclinic, P1Z = 2
a = 8.7681 (18) ÅMo Kα radiation
b = 13.418 (3) ŵ = 3.19 mm1
c = 16.410 (3) ÅT = 293 K
α = 83.83 (3)°0.23 × 0.17 × 0.08 mm
β = 84.41 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8240 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5620 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.810Rint = 0.056
17986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
8240 reflectionsΔρmin = 0.43 e Å3
514 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.86495 (3)0.13918 (2)0.47569 (2)0.02109 (9)
Y21.08369 (4)0.36263 (3)0.95322 (2)0.02321 (9)
O10.2367 (3)0.05407 (18)0.40997 (15)0.0315 (6)
O20.0995 (2)0.11228 (18)0.39369 (15)0.0289 (6)
C10.2239 (4)0.0409 (3)0.3887 (2)0.0235 (8)
C20.3754 (4)0.0700 (3)0.3574 (2)0.0288 (8)
H2A0.42460.02740.31320.035*
H2B0.44650.05270.40140.035*
C30.3610 (4)0.1817 (3)0.3264 (2)0.0301 (9)
H3A0.31450.22550.37030.036*
H3B0.29100.20020.28190.036*
C40.5215 (4)0.2014 (3)0.2958 (2)0.0352 (9)
H4A0.56370.16030.24980.042*
H4B0.50540.27360.27540.042*
C50.6438 (4)0.1773 (3)0.3585 (2)0.0289 (8)
O30.6014 (3)0.1760 (2)0.43423 (16)0.0344 (6)
O40.7872 (3)0.1615 (2)0.33384 (16)0.0381 (7)
C60.9464 (5)0.3403 (3)0.3483 (3)0.0496 (12)
H6A0.98730.28550.31580.059*
C70.9710 (5)0.4368 (4)0.3198 (3)0.0716 (18)
H7A1.02570.44590.26920.086*
C80.9139 (5)0.5172 (4)0.3667 (4)0.0727 (18)
H8A0.93220.58160.34920.087*
C90.8272 (5)0.5034 (3)0.4419 (3)0.0506 (12)
C100.7514 (6)0.5851 (3)0.4922 (4)0.0662 (15)
H10A0.76740.65080.47800.079*
C110.6573 (6)0.5693 (3)0.5594 (3)0.0636 (15)
H11A0.60750.62450.59010.076*
C120.6328 (5)0.4693 (3)0.5841 (3)0.0435 (10)
C130.5314 (5)0.4493 (3)0.6519 (3)0.0529 (12)
H13A0.47700.50280.68330.063*
C140.5121 (5)0.3519 (3)0.6718 (3)0.0510 (12)
H14A0.44350.33850.71600.061*
C150.5979 (4)0.2725 (3)0.6243 (2)0.0381 (10)
H15A0.58630.20580.63910.046*
C160.7104 (4)0.3848 (3)0.5381 (2)0.0303 (9)
C170.8068 (4)0.4031 (3)0.4656 (3)0.0352 (9)
N10.6947 (3)0.2871 (2)0.55945 (19)0.0301 (7)
N20.8689 (3)0.3220 (2)0.41867 (19)0.0334 (8)
O51.0269 (3)0.19778 (18)0.56407 (17)0.0349 (6)
O61.0951 (3)0.03082 (18)0.55413 (15)0.0283 (6)
C181.1170 (4)0.1111 (3)0.5808 (2)0.0253 (8)
C191.2573 (4)0.0989 (3)0.6293 (2)0.0327 (9)
H19A1.34750.10380.59130.039*
H19B1.28090.03000.65750.039*
C201.2400 (4)0.1761 (3)0.6919 (2)0.0302 (8)
H20A1.21210.24530.66450.036*
H20B1.34130.16670.71460.036*
C211.1166 (4)0.1671 (3)0.7617 (2)0.0391 (10)
H21A1.01300.18690.74000.047*
H21B1.13510.09530.78360.047*
C221.1154 (4)0.2328 (3)0.8310 (2)0.0303 (8)
O71.0446 (3)0.2144 (2)0.89935 (16)0.0391 (7)
O81.1848 (3)0.30470 (19)0.81974 (16)0.0350 (6)
N31.1495 (3)0.2053 (2)1.06709 (19)0.0322 (7)
N41.3751 (3)0.2628 (2)0.96125 (19)0.0309 (7)
C231.4860 (4)0.2898 (3)0.9096 (3)0.0397 (10)
H23A1.45430.34310.86890.048*
C241.6475 (4)0.2434 (3)0.9121 (3)0.0484 (12)
H24A1.72110.26780.87620.058*
C251.6946 (4)0.1624 (3)0.9681 (3)0.0482 (12)
H25A1.80180.13040.97060.058*
C261.5831 (4)0.1261 (3)1.0222 (3)0.0399 (10)
C271.6204 (5)0.0371 (3)1.0784 (3)0.0488 (12)
H27A1.72540.00021.08090.059*
C281.5091 (5)0.0050 (3)1.1281 (3)0.0505 (12)
H28A1.53820.05391.16410.061*
C291.3447 (5)0.0601 (3)1.1268 (3)0.0393 (10)
C301.2247 (5)0.0300 (3)1.1789 (3)0.0477 (11)
H30A1.24850.02911.21520.057*
C311.0733 (5)0.0883 (3)1.1757 (3)0.0517 (12)
H31A0.99260.07091.21090.062*
C321.0410 (5)0.1744 (3)1.1188 (3)0.0453 (11)
H32A0.93660.21291.11690.054*
C331.3023 (4)0.1483 (3)1.0723 (2)0.0310 (9)
C341.4212 (4)0.1816 (3)1.0173 (2)0.0316 (9)
O90.8805 (3)0.4364 (2)0.86084 (17)0.0397 (7)
O100.8741 (3)0.5612 (2)0.93698 (16)0.0369 (6)
C350.8169 (4)0.5247 (3)0.8827 (2)0.0267 (8)
C360.6670 (4)0.5873 (3)0.8467 (2)0.0294 (8)
H36A0.66800.57330.78990.035*
H36B0.65930.66050.84820.035*
C370.5252 (4)0.5590 (3)0.8961 (2)0.0366 (10)
H37A0.53920.48470.89750.044*
H37B0.52430.57580.95220.044*
C380.3649 (4)0.6125 (3)0.8636 (2)0.0299 (9)
H38A0.34410.68650.86750.036*
H38B0.36680.60090.80620.036*
C390.2333 (4)0.5717 (3)0.9121 (2)0.0254 (8)
O110.2193 (3)0.48505 (19)0.89713 (16)0.0320 (6)
O120.1485 (3)0.62867 (18)0.96418 (15)0.0301 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.01882 (17)0.01929 (18)0.0244 (2)0.00400 (12)0.00107 (13)0.00074 (15)
Y20.01906 (17)0.0280 (2)0.0232 (2)0.00726 (13)0.00089 (14)0.00379 (16)
O10.0322 (13)0.0228 (14)0.0346 (16)0.0032 (10)0.0066 (11)0.0014 (11)
O20.0202 (12)0.0280 (14)0.0339 (15)0.0022 (10)0.0023 (10)0.0042 (11)
C10.0223 (17)0.025 (2)0.022 (2)0.0055 (13)0.0008 (14)0.0014 (15)
C20.0203 (17)0.031 (2)0.033 (2)0.0043 (14)0.0017 (15)0.0011 (17)
C30.0236 (18)0.030 (2)0.039 (2)0.0097 (14)0.0111 (15)0.0052 (17)
C40.032 (2)0.043 (2)0.034 (2)0.0173 (16)0.0100 (16)0.0111 (19)
C50.029 (2)0.022 (2)0.034 (2)0.0070 (14)0.0031 (16)0.0049 (16)
O30.0246 (13)0.0450 (17)0.0326 (16)0.0065 (11)0.0026 (11)0.0040 (13)
O40.0224 (13)0.0559 (18)0.0341 (16)0.0092 (11)0.0009 (11)0.0019 (13)
C60.046 (2)0.040 (3)0.051 (3)0.0022 (19)0.013 (2)0.014 (2)
C70.063 (3)0.047 (3)0.080 (4)0.004 (2)0.030 (3)0.028 (3)
C80.062 (3)0.037 (3)0.106 (5)0.010 (2)0.019 (3)0.026 (3)
C90.046 (2)0.024 (2)0.077 (4)0.0073 (18)0.001 (2)0.008 (2)
C100.077 (3)0.022 (3)0.099 (5)0.015 (2)0.001 (3)0.002 (3)
C110.076 (3)0.028 (3)0.087 (4)0.008 (2)0.001 (3)0.019 (3)
C120.044 (2)0.032 (2)0.055 (3)0.0070 (17)0.001 (2)0.013 (2)
C130.057 (3)0.047 (3)0.053 (3)0.001 (2)0.003 (2)0.026 (2)
C140.061 (3)0.053 (3)0.039 (3)0.015 (2)0.014 (2)0.018 (2)
C150.038 (2)0.035 (2)0.039 (3)0.0058 (17)0.0079 (18)0.0083 (19)
C160.0248 (18)0.023 (2)0.041 (2)0.0009 (14)0.0078 (16)0.0046 (17)
C170.0265 (19)0.026 (2)0.050 (3)0.0027 (15)0.0052 (17)0.0024 (19)
N10.0261 (16)0.0282 (17)0.0347 (19)0.0050 (12)0.0029 (13)0.0002 (14)
N20.0312 (17)0.0286 (18)0.036 (2)0.0036 (13)0.0020 (14)0.0059 (15)
O50.0334 (14)0.0221 (14)0.0481 (18)0.0020 (10)0.0158 (12)0.0086 (12)
O60.0308 (13)0.0267 (14)0.0294 (15)0.0083 (10)0.0074 (10)0.0034 (12)
C180.0214 (17)0.030 (2)0.025 (2)0.0053 (14)0.0003 (14)0.0077 (16)
C190.0267 (19)0.032 (2)0.038 (2)0.0019 (14)0.0105 (16)0.0133 (18)
C200.0301 (19)0.028 (2)0.035 (2)0.0071 (14)0.0072 (16)0.0081 (17)
C210.043 (2)0.044 (3)0.036 (2)0.0173 (18)0.0023 (18)0.010 (2)
C220.0267 (19)0.031 (2)0.033 (2)0.0054 (15)0.0039 (16)0.0077 (17)
O70.0433 (15)0.0429 (17)0.0338 (17)0.0169 (12)0.0061 (12)0.0077 (13)
O80.0347 (14)0.0405 (16)0.0349 (16)0.0179 (11)0.0054 (11)0.0118 (13)
N30.0293 (16)0.0290 (18)0.037 (2)0.0052 (12)0.0002 (14)0.0040 (15)
N40.0271 (16)0.0334 (18)0.0319 (19)0.0078 (12)0.0002 (13)0.0030 (15)
C230.033 (2)0.040 (2)0.046 (3)0.0083 (17)0.0017 (18)0.007 (2)
C240.032 (2)0.049 (3)0.064 (3)0.0100 (18)0.009 (2)0.015 (2)
C250.026 (2)0.054 (3)0.063 (3)0.0017 (18)0.000 (2)0.018 (2)
C260.032 (2)0.043 (3)0.043 (3)0.0027 (17)0.0106 (18)0.018 (2)
C270.037 (2)0.051 (3)0.048 (3)0.0100 (19)0.016 (2)0.003 (2)
C280.059 (3)0.039 (3)0.044 (3)0.010 (2)0.019 (2)0.002 (2)
C290.048 (2)0.036 (2)0.033 (2)0.0033 (18)0.0126 (19)0.0070 (19)
C300.069 (3)0.033 (2)0.037 (3)0.008 (2)0.011 (2)0.004 (2)
C310.057 (3)0.046 (3)0.050 (3)0.017 (2)0.004 (2)0.007 (2)
C320.038 (2)0.040 (3)0.052 (3)0.0071 (18)0.006 (2)0.006 (2)
C330.035 (2)0.029 (2)0.029 (2)0.0054 (15)0.0077 (16)0.0068 (17)
C340.0282 (19)0.035 (2)0.030 (2)0.0003 (15)0.0102 (16)0.0093 (18)
O90.0385 (15)0.0385 (17)0.0366 (17)0.0027 (12)0.0061 (12)0.0058 (13)
O100.0367 (14)0.0544 (18)0.0282 (15)0.0261 (12)0.0073 (11)0.0009 (13)
C350.0163 (17)0.043 (2)0.0202 (19)0.0097 (15)0.0013 (14)0.0051 (17)
C360.0257 (18)0.036 (2)0.028 (2)0.0121 (15)0.0047 (15)0.0035 (17)
C370.0272 (19)0.046 (2)0.037 (2)0.0164 (16)0.0046 (16)0.0134 (19)
C380.0220 (18)0.034 (2)0.031 (2)0.0068 (14)0.0035 (15)0.0038 (17)
C390.0189 (17)0.029 (2)0.027 (2)0.0054 (14)0.0026 (14)0.0005 (16)
O110.0277 (13)0.0332 (15)0.0356 (16)0.0109 (10)0.0061 (11)0.0043 (12)
O120.0242 (13)0.0307 (14)0.0343 (16)0.0075 (10)0.0037 (11)0.0016 (12)
Geometric parameters (Å, º) top
Y1—O2i2.314 (2)C16—N11.358 (4)
Y1—O1ii2.314 (2)C16—C171.428 (5)
Y1—O6iii2.315 (2)C17—N21.366 (5)
Y1—O32.386 (2)O5—C181.246 (4)
Y1—O52.441 (3)O6—C181.270 (4)
Y1—O42.455 (3)O6—Y1iii2.315 (2)
Y1—O62.537 (2)C18—C191.495 (5)
Y1—N22.538 (3)C19—C201.505 (5)
Y1—N12.592 (3)C19—H19A0.9700
Y1—C52.779 (4)C19—H19B0.9700
Y1—C182.859 (4)C20—C211.514 (5)
Y1—Y1iii3.9205 (15)C20—H20A0.9700
Y2—O10iv2.269 (3)C20—H20B0.9700
Y2—O12v2.317 (2)C21—C221.509 (5)
Y2—O11i2.329 (2)C21—H21A0.9700
Y2—O72.375 (3)C21—H21B0.9700
Y2—O92.397 (3)C22—O81.256 (4)
Y2—O82.413 (3)C22—O71.260 (4)
Y2—N42.570 (3)N3—C321.330 (4)
Y2—N32.649 (3)N3—C331.367 (4)
Y2—C222.744 (4)N4—C231.324 (4)
Y2—O102.823 (3)N4—C341.352 (4)
Y2—C352.985 (4)C23—C241.395 (5)
O1—C11.264 (4)C23—H23A0.9300
O1—Y1ii2.314 (2)C24—C251.351 (6)
O2—C11.255 (4)C24—H24A0.9300
O2—Y1vi2.314 (2)C25—C261.402 (6)
C1—C21.507 (4)C25—H25A0.9300
C2—C31.508 (5)C26—C271.416 (6)
C2—H2A0.9700C26—C341.429 (5)
C2—H2B0.9700C27—C281.337 (6)
C3—C41.525 (4)C27—H27A0.9300
C3—H3A0.9700C28—C291.442 (5)
C3—H3B0.9700C28—H28A0.9300
C4—C51.510 (5)C29—C331.396 (5)
C4—H4A0.9700C29—C301.404 (6)
C4—H4B0.9700C30—C311.359 (6)
C5—O41.254 (4)C30—H30A0.9300
C5—O31.261 (4)C31—C321.392 (5)
C6—N21.314 (5)C31—H31A0.9300
C6—C71.392 (6)C32—H32A0.9300
C6—H6A0.9300C33—C341.438 (5)
C7—C81.354 (7)O9—C351.248 (4)
C7—H7A0.9300O10—C351.262 (4)
C8—C91.406 (6)O10—Y2iv2.269 (3)
C8—H8A0.9300C35—C361.502 (4)
C9—C171.411 (5)C36—C371.526 (4)
C9—C101.427 (6)C36—H36A0.9700
C10—C111.343 (6)C36—H36B0.9700
C10—H10A0.9300C37—C381.523 (5)
C11—C121.424 (6)C37—H37A0.9700
C11—H11A0.9300C37—H37B0.9700
C12—C131.402 (6)C38—C391.522 (4)
C12—C161.416 (5)C38—H38A0.9700
C13—C141.362 (6)C38—H38B0.9700
C13—H13A0.9300C39—O111.253 (4)
C14—C151.400 (5)C39—O121.261 (4)
C14—H14A0.9300O11—Y2vi2.329 (2)
C15—N11.325 (4)O12—Y2v2.317 (2)
C15—H15A0.9300
O2i—Y1—O1ii136.47 (8)O4—C5—Y162.0 (2)
O2i—Y1—O6iii77.41 (9)O3—C5—Y158.93 (19)
O1ii—Y1—O6iii73.73 (9)C4—C5—Y1178.2 (3)
O2i—Y1—O3128.25 (9)C5—O3—Y194.2 (2)
O1ii—Y1—O383.72 (9)C5—O4—Y191.1 (2)
O6iii—Y1—O389.75 (9)N2—C6—C7123.8 (4)
O2i—Y1—O580.79 (9)N2—C6—H6A118.1
O1ii—Y1—O589.26 (9)C7—C6—H6A118.1
O6iii—Y1—O5124.28 (8)C8—C7—C6119.0 (4)
O3—Y1—O5141.65 (9)C8—C7—H7A120.5
O2i—Y1—O474.53 (8)C6—C7—H7A120.5
O1ii—Y1—O4128.63 (9)C7—C8—C9120.1 (4)
O6iii—Y1—O478.31 (9)C7—C8—H8A120.0
O3—Y1—O453.73 (8)C9—C8—H8A120.0
O5—Y1—O4141.72 (9)C8—C9—C17117.0 (4)
O2i—Y1—O668.63 (8)C8—C9—C10124.1 (4)
O1ii—Y1—O671.91 (8)C17—C9—C10118.8 (4)
O6iii—Y1—O672.29 (10)C11—C10—C9121.6 (4)
O3—Y1—O6152.82 (8)C11—C10—H10A119.2
O5—Y1—O652.02 (8)C9—C10—H10A119.2
O4—Y1—O6136.72 (8)C10—C11—C12120.9 (4)
O2i—Y1—N277.91 (9)C10—C11—H11A119.6
O1ii—Y1—N2139.47 (9)C12—C11—H11A119.6
O6iii—Y1—N2145.78 (10)C13—C12—C16117.0 (4)
O3—Y1—N287.22 (10)C13—C12—C11123.2 (4)
O5—Y1—N274.03 (10)C16—C12—C11119.7 (4)
O4—Y1—N272.51 (10)C14—C13—C12120.3 (4)
O6—Y1—N2119.13 (9)C14—C13—H13A119.9
O2i—Y1—N1136.02 (9)C12—C13—H13A119.9
O1ii—Y1—N175.86 (9)C13—C14—C15118.6 (4)
O6iii—Y1—N1146.27 (8)C13—C14—H14A120.7
O3—Y1—N172.67 (9)C15—C14—H14A120.7
O5—Y1—N169.05 (9)N1—C15—C14123.6 (4)
O4—Y1—N1110.76 (9)N1—C15—H15A118.2
O6—Y1—N1111.37 (9)C14—C15—H15A118.2
N2—Y1—N163.74 (10)N1—C16—C12122.6 (4)
O2i—Y1—C5101.34 (10)N1—C16—C17118.5 (3)
O1ii—Y1—C5106.81 (10)C12—C16—C17118.9 (3)
O6iii—Y1—C583.31 (10)N2—C17—C9122.3 (4)
O3—Y1—C526.92 (9)N2—C17—C16117.5 (3)
O5—Y1—C5151.60 (9)C9—C17—C16120.1 (4)
O4—Y1—C526.82 (9)C15—N1—C16117.8 (3)
O6—Y1—C5155.01 (9)C15—N1—Y1123.8 (2)
N2—Y1—C578.72 (11)C16—N1—Y1118.3 (2)
N1—Y1—C591.86 (10)C6—N2—C17117.9 (3)
O2i—Y1—C1872.41 (9)C6—N2—Y1121.5 (3)
O1ii—Y1—C1880.43 (9)C17—N2—Y1120.1 (2)
O6iii—Y1—C1898.61 (10)C18—O5—Y196.2 (2)
O3—Y1—C18159.19 (9)C18—O6—Y1iii160.8 (2)
O5—Y1—C1825.67 (8)C18—O6—Y191.13 (19)
O4—Y1—C18146.64 (8)Y1iii—O6—Y1107.71 (10)
O6—Y1—C1826.36 (8)O5—C18—O6120.5 (3)
N2—Y1—C1896.11 (11)O5—C18—C19121.3 (3)
N1—Y1—C1890.35 (10)O6—C18—C19118.1 (3)
C5—Y1—C18172.75 (10)O5—C18—Y158.08 (18)
O2i—Y1—Y1iii68.62 (6)O6—C18—Y162.51 (17)
O1ii—Y1—Y1iii68.51 (6)C19—C18—Y1175.0 (2)
O6iii—Y1—Y1iii38.06 (6)C18—C19—C20115.8 (3)
O3—Y1—Y1iii124.96 (7)C18—C19—H19A108.3
O5—Y1—Y1iii86.24 (6)C20—C19—H19A108.3
O4—Y1—Y1iii110.58 (7)C18—C19—H19B108.3
O6—Y1—Y1iii34.23 (6)C20—C19—H19B108.3
N2—Y1—Y1iii143.45 (6)H19A—C19—H19B107.4
N1—Y1—Y1iii136.64 (7)C19—C20—C21113.9 (3)
C5—Y1—Y1iii121.18 (8)C19—C20—H20A108.8
C18—Y1—Y1iii60.56 (8)C21—C20—H20A108.8
O10iv—Y2—O12v77.40 (9)C19—C20—H20B108.8
O10iv—Y2—O11i75.51 (9)C21—C20—H20B108.8
O12v—Y2—O11i133.77 (9)H20A—C20—H20B107.7
O10iv—Y2—O7148.71 (9)C22—C21—C20114.2 (3)
O12v—Y2—O788.66 (9)C22—C21—H21A108.7
O11i—Y2—O7131.21 (9)C20—C21—H21A108.7
O10iv—Y2—O9124.70 (9)C22—C21—H21B108.7
O12v—Y2—O976.41 (9)C20—C21—H21B108.7
O11i—Y2—O989.28 (9)H21A—C21—H21B107.6
O7—Y2—O977.41 (10)O8—C22—O7121.1 (4)
O10iv—Y2—O8146.55 (8)O8—C22—C21119.6 (3)
O12v—Y2—O8135.99 (9)O7—C22—C21119.3 (3)
O11i—Y2—O876.75 (9)O8—C22—Y261.55 (19)
O7—Y2—O854.46 (8)O7—C22—Y259.85 (19)
O9—Y2—O872.94 (9)C21—C22—Y2174.3 (3)
O10iv—Y2—N484.42 (10)C22—O7—Y292.8 (2)
O12v—Y2—N4135.98 (9)C22—O8—Y291.2 (2)
O11i—Y2—N477.18 (9)C32—N3—C33116.5 (3)
O7—Y2—N486.64 (10)C32—N3—Y2123.9 (2)
O9—Y2—N4143.92 (10)C33—N3—Y2119.5 (2)
O8—Y2—N471.46 (10)C23—N4—C34117.6 (3)
O10iv—Y2—N377.12 (10)C23—N4—Y2120.4 (2)
O12v—Y2—N374.34 (9)C34—N4—Y2122.0 (2)
O11i—Y2—N3132.89 (9)N4—C23—C24124.2 (4)
O7—Y2—N372.15 (10)N4—C23—H23A117.9
O9—Y2—N3137.77 (10)C24—C23—H23A117.9
O8—Y2—N3109.74 (9)C25—C24—C23118.5 (4)
N4—Y2—N362.57 (9)C25—C24—H24A120.7
O10iv—Y2—C22163.37 (10)C23—C24—H24A120.7
O12v—Y2—C22112.29 (10)C24—C25—C26120.5 (4)
O11i—Y2—C22103.94 (10)C24—C25—H25A119.8
O7—Y2—C2227.30 (9)C26—C25—H25A119.8
O9—Y2—C2271.66 (10)C25—C26—C27124.3 (4)
O8—Y2—C2227.24 (9)C25—C26—C34116.9 (4)
N4—Y2—C2279.32 (10)C27—C26—C34118.8 (4)
N3—Y2—C2292.18 (11)C28—C27—C26121.9 (4)
O10iv—Y2—O1076.57 (10)C28—C27—H27A119.0
O12v—Y2—O1068.15 (8)C26—C27—H27A119.0
O11i—Y2—O1069.54 (8)C27—C28—C29121.2 (4)
O7—Y2—O10124.08 (8)C27—C28—H28A119.4
O9—Y2—O1048.56 (9)C29—C28—H28A119.4
O8—Y2—O10110.43 (9)C33—C29—C30118.2 (4)
N4—Y2—O10144.79 (8)C33—C29—C28118.9 (4)
N3—Y2—O10137.84 (8)C30—C29—C28122.9 (4)
C22—Y2—O10119.18 (9)C31—C30—C29119.2 (4)
O10iv—Y2—C35101.03 (11)C31—C30—H30A120.4
O12v—Y2—C3569.16 (9)C29—C30—H30A120.4
O11i—Y2—C3580.16 (9)C30—C31—C32118.9 (4)
O7—Y2—C3599.85 (10)C30—C31—H31A120.6
O9—Y2—C3523.74 (10)C32—C31—H31A120.6
O8—Y2—C3592.24 (10)N3—C32—C31124.4 (4)
N4—Y2—C35154.55 (9)N3—C32—H32A117.8
N3—Y2—C35142.85 (9)C31—C32—H32A117.8
C22—Y2—C3595.17 (11)N3—C33—C29122.8 (3)
O10—Y2—C3524.90 (9)N3—C33—C34117.1 (3)
O10iv—Y2—Y2iv43.19 (7)C29—C33—C34120.1 (3)
O12v—Y2—Y2iv67.34 (7)N4—C34—C26122.2 (3)
O11i—Y2—Y2iv67.20 (6)N4—C34—C33118.7 (3)
O7—Y2—Y2iv151.36 (6)C26—C34—C33119.1 (4)
O9—Y2—Y2iv81.74 (7)C35—O9—Y2105.6 (2)
O8—Y2—Y2iv135.85 (7)C35—O10—Y2iv166.4 (2)
N4—Y2—Y2iv121.33 (8)C35—O10—Y284.7 (2)
N3—Y2—Y2iv113.30 (7)Y2iv—O10—Y2103.43 (10)
C22—Y2—Y2iv152.26 (8)O9—C35—O10120.7 (3)
O10—Y2—Y2iv33.38 (6)O9—C35—C36120.1 (3)
C35—Y2—Y2iv57.99 (8)O10—C35—C36119.2 (3)
C1—O1—Y1ii132.1 (2)O9—C35—Y250.68 (18)
C1—O2—Y1vi135.6 (2)O10—C35—Y270.3 (2)
O2—C1—O1126.3 (3)C36—C35—Y2167.8 (3)
O2—C1—C2117.9 (3)C35—C36—C37109.4 (3)
O1—C1—C2115.8 (3)C35—C36—H36A109.8
C1—C2—C3116.5 (3)C37—C36—H36A109.8
C1—C2—H2A108.2C35—C36—H36B109.8
C3—C2—H2A108.2C37—C36—H36B109.8
C1—C2—H2B108.2H36A—C36—H36B108.2
C3—C2—H2B108.2C38—C37—C36115.1 (3)
H2A—C2—H2B107.3C38—C37—H37A108.5
C2—C3—C4111.6 (3)C36—C37—H37A108.5
C2—C3—H3A109.3C38—C37—H37B108.5
C4—C3—H3A109.3C36—C37—H37B108.5
C2—C3—H3B109.3H37A—C37—H37B107.5
C4—C3—H3B109.3C39—C38—C37111.0 (3)
H3A—C3—H3B108.0C39—C38—H38A109.4
C5—C4—C3115.7 (3)C37—C38—H38A109.4
C5—C4—H4A108.4C39—C38—H38B109.4
C3—C4—H4A108.4C37—C38—H38B109.4
C5—C4—H4B108.4H38A—C38—H38B108.0
C3—C4—H4B108.4O11—C39—O12126.0 (3)
H4A—C4—H4B107.4O11—C39—C38117.4 (3)
O4—C5—O3121.0 (3)O12—C39—C38116.6 (3)
O4—C5—C4118.8 (3)C39—O11—Y2vi138.4 (2)
O3—C5—C4120.2 (3)C39—O12—Y2v138.6 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+2, y+1, z+2; (v) x+1, y+1, z+2; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Y2(C5H6O4)3(C12H8N2)2]
Mr928.52
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7681 (18), 13.418 (3), 16.410 (3)
α, β, γ (°)83.83 (3), 84.41 (3), 75.09 (3)
V3)1849.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.23 × 0.17 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.790, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
17986, 8240, 5620
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.076, 1.02
No. of reflections8240
No. of parameters514
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.43

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
Y1—O2i2.314 (2)Y2—O10iv2.269 (3)
Y1—O1ii2.314 (2)Y2—O12v2.317 (2)
Y1—O6iii2.315 (2)Y2—O11i2.329 (2)
Y1—O32.386 (2)Y2—O72.375 (3)
Y1—O52.441 (3)Y2—O92.397 (3)
Y1—O42.455 (3)Y2—O82.413 (3)
Y1—O62.537 (2)Y2—N42.570 (3)
Y1—N22.538 (3)Y2—N32.649 (3)
Y1—N12.592 (3)Y2—O102.823 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+2, y+1, z+2; (v) x+1, y+1, z+2.
 

Acknowledgements

This project was supported by the K. C. Wong Magna Fund in Ningbo University.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKoo, B. K., Kim, J. & Lee, U. (2010). Inorg. Chim. Acta, 363, 1760–1766.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, Y.-B. & Yu, H.-X. (2007). Acta Cryst. E63, m2804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L. P., Wan, Y. H. & Jin, L. P. (2003). J. Mol. Struct. 646, 169–178.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds