organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Hy­dr­oxy-2,5,7,8-tetra­methyl-3,4-di­hydro-2H-1-benzo­pyran-2-carbo­nitrile, from synchrotron data

aSynchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Biosciences Division, Bldg. 202, Argonne, IL 60439, USA, and bInstitute of Chemistry, University of Białystok, Piłsudskiego 11/4, 15-443 Białystok, Poland
*Correspondence e-mail: kbrzezinski@anl.gov

(Received 23 June 2011; accepted 28 June 2011; online 6 July 2011)

The crystal structure of the title compound, C14H17NO2, solved and refined against synchrotron diffraction data, contains one formula unit in an asymmetric unit. In the crystal, mol­ecules form right-handed helices located at the 21 screw axis parallel to the a-axis direction, generated by O—H⋯N hydrogen bonding between the hy­droxy group and carbonitrile group of an adjacent mol­ecule.

Related literature

For background to the chemistry of chroman compounds and their applications as anti­oxidants and anti-inflammatory agents, see Cohen et al. (1989[Cohen, N., Schaer, B., Saucy, G., Borer, R., Todaro, L. & Chiu, A. M. (1989). J. Org. Chem. 54, 3282-3292.]); van Acker et al. (1993[Acker van, S. A. B. E., Koymans, L. M. H. & Bast, A. (1993). Free Rad. Biol. Med. 15, 311-328.]); Boscoboinik et al. (1995[Boscoboinik, D., Özer, N., Moser, U. & Azzi, A. (1995). Arch. Biochem. Biophys. 318, 241-246.]). For the preparation of nitriles from primary amides, see: Campagna et al. (1977[Campagna, F., Carotti, A. & Casini, G. (1977). Tetrahedron Lett. 21, 1813-1816.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO2

  • Mr = 231.29

  • Orthorhombic, P 21 21 21

  • a = 5.890 (5) Å

  • b = 10.30 (1) Å

  • c = 19.710 (19) Å

  • V = 1195.7 (19) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.75000 Å

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.1 × 0.03 × 0.01 mm

Data collection
  • MAR 300 CCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Tmin = 0.991, Tmax = 0.999

  • 15411 measured reflections

  • 1818 independent reflections

  • 1815 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.00

  • 1818 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15⋯N13i 0.84 2.23 3.013 (2) 155
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SER-CAT APS beamline software; cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and pyMOL (DeLano, 2002[DeLano, W. L. (2002). The pyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Substituded chromans (3,4-dihydro-2H-1-benzopyrans) are an important class of compounds possessing significant biological properties (Cohen et al., 1989). The title compound is potentially more active as an antioxidant than 6-hydroxy-2,2,5,7,8-pentamethylchroman, the model compound of α-tocopherol (Van Acker et al., 1993). Carbonitrile derivatives appear to inhibit smooth muscle cell proliferation by the non-antioxidant mechanism (Boscoboinik et al., 1995).

The asymmetric unit contains one molecule of the title compound (Fig. 1). The crystal, formed spontaneously, contains a homochiral molecule (not established experimentally). Hydrogen atoms of C14, C16 and C17 methyl groups are partially disorded and are modelled in two alternative conformations. For one conformation of the C14 methyl group, notable is a short intramolecular interaction between hydroxy H15 and H14C atoms. Such a short distance could indicate some refinement problem but on the other hand problematic hydrogen atom positions are clearly confirmed by OMIT map (Fig. 2). The hydrogen bond network is based on the interaction between hydroxy group and carbonitrile group of a subsequent molecule. Such interactions generate the right handed helices located at the 21 screw axis parallel to a direction (Fig. 3). A high quality diffraction data revealed a detailed electron density distribution among a molecule of the title compound. The difference Fourier synthesis indicates clearly a presence of valence electrons for most of covalent bonds (Fig. 4a). This is especially noticeable for tetrahedral deformation of electron density distribution at C2 atom and its neighbourhood (Fig. 4 b). In this case positive peaks are located on covalent bonds and correspond to valence electrons. Negative peaks are positioned in a regular and symmetrical manner indicating the electron density shift in the bond direction.

Related literature top

For background to the chemistry of chroman compounds and their applications as antioxidants and anti-inflammatory agents, see Cohen et al. (1989); van Acker et al. (1993); Boscoboinik et al. (1995). For the preparation of nitriles from primary amides, see: Campagna et al. (1977).

Experimental top

Anhydrous pyridine (26 µL, 0.32 mmol) and trifluoroacetic anhydride (25 µL, 0.18 mmol) were added dropwise to rac-6-hydroxy- 2,5,7,8-tetramethylchroman-2-carboxamide (40 mg, 0.16 mmol) solution in dry THF (2 mL) at 273 K. The reaction mixture was warmed to room temperature and further stirred for 18 h. The reaction mixture was diluted with CHCl3, washed with water and brine. The organic layer was dried over anhydrous Na2SO4, filtered off and concentrated in vacuo. The crude product was purified by flash column chromatography (hexane/ethyl acetate 85:15) to give the title compound as a tan solid (15.2 mg, 41% yield). M.p. 423–425 K (from ethyl acetate/hexane v/v 1:2); 1H NMR (400 MHz, CDCl3): δ 4.34 (s, 1H), 2.93 (ddd, J = 17.6, 12.3 and 6.6 Hz, 1H), 2.77 (ddd, J = 17.0, 6.2 and 1.7 Hz, 1H), 2.31 (ddd, J = 13.8, 6.6 and 2.0 Hz, 1H), 2.17 (s, 3H), 2.13 (s, 6H), 1.96 (ddd, J = 13.8, 12.3 and 6.2 Hz, 1H), 1.83 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 146.3, 144.1, 122.9, 121.7, 120.0, 118.6, 116.5, 69.8, 32.6, 26.9, 21.2, 12.1, 11.8, 11.3; IR (KBr) νmax/cm-1: 3527, 2930, 2235 (–CN), 1463, 1261; ESI-MS, m/z: 254 [MNa+, 100%]. The crystallization was carried out at room temperature by slow evaporation of the racemic mixture of 3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-carbonitrile solution in acetone yielding homochiral crystals (chiral resolution).

Refinement top

The absolute configuration at C2 has not been established. Hydrogen atoms were constrained to idealised positions with C—H distances fixed at 0.98–0.99 Å and Uiso(H) = 1.5Ueq(C) for methyl and hydroxy hydrogen atoms and 1.2Ueq(C) for methylene ones. The sum of occupancies of alternative positions of disordered atoms of was constrained to unity.

Computing details top

Data collection: SER-CAT APS beamline software; cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The OMIT map at hydrogen atoms bounded to O15 and C14 (conformation occupied by H14A—C atoms) contoured at 0.21 e Å-3 (4.5 σ level, green). Dashed line represents a short intramolecular hydrogen–hydrogen contact.
[Figure 3] Fig. 3. The packing diagram viewed along a axis. Dashed lines represent hydrogen bonds. For clarity, only hydrogen atoms engaged in hydrogen bond formation are shown.
[Figure 4] Fig. 4. The deformation of electron distribution revealed in difference Fourier synthesis; (a) The Fobs and difference syntheses for a title compound contoured at 2.27 e Å3 (2.0 σ level, blue) and ±0.13 e Å-3 (±3.5 σ level, green and red), respectively; (b) The Fobs and difference syntheses contoured at 2.27 e Å-3 (2.0 σ level, blue), ±0.11 e Å3 (±3.0 σ level, green and red), respectively, hydrogen atoms are omitted.
6-Hydroxy-2,5,7,8-tetramethyl-3,4-dihydro-2H-1-benzopyran-2-carbonitrile top
Crystal data top
C14H17NO2F(000) = 496
Mr = 231.29Dx = 1.285 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.75000 Å
Hall symbol: P 2ac 2abCell parameters from 1841 reflections
a = 5.890 (5) Åθ = 2.2–30.9°
b = 10.30 (1) ŵ = 0.09 mm1
c = 19.710 (19) ÅT = 100 K
V = 1195.7 (19) Å3Needle, colourless
Z = 40.1 × 0.03 × 0.01 mm
Data collection top
MAR 300 CCD
diffractometer
1818 independent reflections
Radiation source: SER-CAT 22-ID synchrotron beamline APS, USA1815 reflections with I > 2σ(I)
Si111 double crystal monochromatorRint = 0.031
ω scansθmax = 30.9°, θmin = 2.2°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 08
Tmin = 0.991, Tmax = 0.999k = 014
15411 measured reflectionsl = 026
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.297P]
where P = (Fo2 + 2Fc2)/3
1818 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H17NO2V = 1195.7 (19) Å3
Mr = 231.29Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.75000 Å
a = 5.890 (5) ŵ = 0.09 mm1
b = 10.30 (1) ÅT = 100 K
c = 19.710 (19) Å0.1 × 0.03 × 0.01 mm
Data collection top
MAR 300 CCD
diffractometer
1818 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
1815 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.999Rint = 0.031
15411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
1818 reflectionsΔρmin = 0.20 e Å3
158 parameters
Special details top

Experimental. The crystal was mounted with vaseline on a pin-attached capillary. Upon mounting, the crystal was quenched to 100 K in a nitrogen-gas stream supplied by an Oxford Cryo-Jet. Diffraction data were measured at the station 22-ID of the APS synchrotron by rotation method.

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.64100 (17)0.44132 (9)0.20022 (4)0.0181 (2)
C20.5481 (2)0.32600 (13)0.22950 (6)0.0185 (3)
C30.2980 (2)0.31287 (15)0.21136 (6)0.0216 (3)
H3A0.21310.38770.23010.026*
H3B0.23630.23280.23220.026*
C40.2641 (2)0.30738 (13)0.13455 (6)0.0189 (2)
H4A0.29140.21760.11860.023*
H4B0.10490.33020.12370.023*
C50.3920 (2)0.42209 (11)0.02739 (6)0.0139 (2)
C60.5435 (2)0.50415 (11)0.00586 (6)0.0139 (2)
C70.7196 (2)0.56738 (11)0.02858 (6)0.0146 (2)
C80.7490 (2)0.54480 (11)0.09804 (6)0.0143 (2)
C90.6003 (2)0.45959 (12)0.13083 (5)0.0141 (2)
C100.4216 (2)0.39890 (11)0.09736 (6)0.0141 (2)
C110.5889 (3)0.33520 (14)0.30557 (6)0.0246 (3)
H11A0.50300.40860.32410.037*
H11B0.75110.34820.31420.037*
H11C0.53870.25470.32740.037*
C120.6795 (2)0.21322 (13)0.20181 (6)0.0190 (3)
N130.7821 (2)0.12765 (12)0.18050 (6)0.0254 (3)
C140.2015 (2)0.35690 (13)0.01042 (6)0.0205 (3)
H14A0.05870.37020.01410.031*0.66 (2)
H14B0.23270.26370.01400.031*0.66 (2)
H14C0.18910.39440.05600.031*0.66 (2)
H14D0.26460.29430.04280.031*0.34 (2)
H14E0.11310.42240.03490.031*0.34 (2)
H14F0.10280.31150.02180.031*0.34 (2)
O150.52747 (19)0.52971 (9)0.07450 (4)0.0209 (2)
H150.44040.47530.09270.031*
C160.8761 (2)0.65795 (13)0.00891 (7)0.0212 (3)
H16A0.83370.66020.05700.032*0.68 (2)
H16B1.03280.62720.00450.032*0.68 (2)
H16C0.86350.74540.01030.032*0.68 (2)
H16D0.78880.70770.04230.032*0.32 (2)
H16E0.99370.60750.03220.032*0.32 (2)
H16F0.94750.71770.02340.032*0.32 (2)
C150.9388 (2)0.61130 (12)0.13588 (6)0.0189 (2)
H17A0.93420.58570.18370.028*0.85 (3)
H17B0.92050.70560.13230.028*0.85 (3)
H17C1.08490.58580.11620.028*0.85 (3)
H17D0.99530.55380.17170.028*0.15 (3)
H17E0.88190.69180.15620.028*0.15 (3)
H17F1.06240.63150.10430.028*0.15 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0230 (4)0.0199 (4)0.0114 (4)0.0028 (4)0.0020 (4)0.0008 (3)
C20.0221 (6)0.0208 (6)0.0125 (5)0.0001 (5)0.0020 (4)0.0019 (4)
C30.0197 (6)0.0291 (6)0.0161 (5)0.0006 (6)0.0032 (5)0.0042 (5)
C40.0177 (5)0.0226 (6)0.0164 (5)0.0046 (5)0.0003 (5)0.0033 (4)
C50.0156 (5)0.0128 (5)0.0134 (5)0.0006 (4)0.0004 (4)0.0012 (4)
C60.0186 (5)0.0121 (5)0.0112 (5)0.0014 (4)0.0005 (4)0.0001 (4)
C70.0166 (6)0.0119 (5)0.0154 (5)0.0001 (4)0.0022 (4)0.0003 (4)
C80.0142 (5)0.0135 (5)0.0154 (5)0.0004 (4)0.0001 (4)0.0031 (4)
C90.0165 (5)0.0148 (5)0.0109 (4)0.0018 (5)0.0001 (4)0.0006 (4)
C100.0145 (5)0.0144 (5)0.0133 (5)0.0002 (4)0.0011 (4)0.0006 (4)
C110.0305 (7)0.0306 (7)0.0128 (5)0.0027 (6)0.0004 (5)0.0017 (5)
C120.0217 (6)0.0217 (6)0.0136 (5)0.0018 (5)0.0003 (5)0.0024 (4)
N130.0292 (6)0.0258 (6)0.0212 (5)0.0014 (5)0.0015 (5)0.0008 (4)
C140.0210 (6)0.0218 (6)0.0187 (5)0.0054 (5)0.0039 (5)0.0012 (5)
O150.0296 (5)0.0211 (4)0.0119 (4)0.0058 (4)0.0021 (4)0.0021 (3)
C160.0224 (6)0.0187 (5)0.0224 (5)0.0052 (5)0.0034 (5)0.0030 (5)
C150.0172 (5)0.0191 (5)0.0205 (5)0.0019 (5)0.0023 (5)0.0037 (4)
Geometric parameters (Å, º) top
O1—C91.4011 (18)C11—H11B0.9800
O1—C21.4296 (18)C11—H11C0.9800
C2—C121.499 (2)C12—N131.148 (2)
C2—C111.521 (2)C14—H14A0.9800
C2—C31.522 (2)C14—H14B0.9800
C3—C41.528 (2)C14—H14C0.9800
C3—H3A0.9900C14—H14D0.9800
C3—H3B0.9900C14—H14E0.9800
C4—C101.5121 (18)C14—H14F0.9800
C4—H4A0.9900O15—H150.8400
C4—H4B0.9900C16—H16A0.9800
C5—C61.3928 (18)C16—H16B0.9800
C5—C101.4103 (19)C16—H16C0.9800
C5—C141.5050 (19)C16—H16D0.9800
C6—O151.3815 (18)C16—H16E0.9800
C6—C71.4006 (18)C16—H16F0.9800
C7—C81.400 (2)C15—H17A0.9800
C7—C161.5051 (19)C15—H17B0.9800
C8—C91.3981 (18)C15—H17C0.9800
C8—C151.5080 (19)C15—H17D0.9800
C9—C101.3909 (18)C15—H17E0.9800
C11—H11A0.9800C15—H17F0.9800
C9—O1—C2116.12 (10)C5—C14—H14E109.4
O1—C2—C12107.40 (12)H14A—C14—H14E72.0
O1—C2—C11106.61 (11)H14B—C14—H14E137.6
C12—C2—C11109.00 (11)H14C—C14—H14E40.3
O1—C2—C3110.46 (11)H14D—C14—H14E109.5
C12—C2—C3110.22 (12)C5—C14—H14F109.5
C11—C2—C3112.95 (11)H14A—C14—H14F40.3
C2—C3—C4111.25 (11)H14B—C14—H14F72.0
C2—C3—H3A109.4H14C—C14—H14F137.6
C4—C3—H3A109.4H14D—C14—H14F109.5
C2—C3—H3B109.4H14E—C14—H14F109.5
C4—C3—H3B109.4C6—O15—H15109.5
H3A—C3—H3B108.0C7—C16—H16A109.5
C10—C4—C3112.16 (11)C7—C16—H16B109.5
C10—C4—H4A109.2H16A—C16—H16B109.5
C3—C4—H4A109.2C7—C16—H16C109.5
C10—C4—H4B109.2H16A—C16—H16C109.5
C3—C4—H4B109.2H16B—C16—H16C109.5
H4A—C4—H4B107.9C7—C16—H16D109.4
C6—C5—C10118.93 (11)H16A—C16—H16D37.3
C6—C5—C14121.01 (12)H16B—C16—H16D136.3
C10—C5—C14120.05 (11)H16C—C16—H16D75.0
O15—C6—C5122.20 (11)C7—C16—H16E109.5
O15—C6—C7115.88 (11)H16A—C16—H16E74.9
C5—C6—C7121.92 (12)H16B—C16—H16E37.3
C8—C7—C6119.24 (11)H16C—C16—H16E136.2
C8—C7—C16120.50 (12)H16D—C16—H16E109.5
C6—C7—C16120.26 (12)C7—C16—H16F109.5
C7—C8—C9118.62 (11)H16A—C16—H16F136.2
C7—C8—C15120.00 (11)H16B—C16—H16F75.0
C9—C8—C15121.38 (12)H16C—C16—H16F37.3
C10—C9—C8122.48 (12)H16D—C16—H16F109.5
C10—C9—O1122.14 (11)H16E—C16—H16F109.5
C8—C9—O1115.37 (11)C8—C15—H17A109.5
C9—C10—C5118.77 (11)C8—C15—H17B109.5
C9—C10—C4120.97 (11)H17A—C15—H17B109.5
C5—C10—C4120.26 (11)C8—C15—H17C109.5
C2—C11—H11A109.5H17A—C15—H17C109.5
C2—C11—H11B109.5H17B—C15—H17C109.5
H11A—C11—H11B109.5C8—C15—H17D109.5
C2—C11—H11C109.5H17A—C15—H17D32.1
H11A—C11—H11C109.5H17B—C15—H17D133.5
H11B—C11—H11C109.5H17C—C15—H17D79.9
N13—C12—C2179.29 (15)C8—C15—H17E109.5
C5—C14—H14A109.5H17A—C15—H17E79.9
C5—C14—H14B109.5H17B—C15—H17E32.1
H14A—C14—H14B109.5H17C—C15—H17E133.5
C5—C14—H14C109.5H17D—C15—H17E109.5
H14A—C14—H14C109.5C8—C15—H17F109.5
H14B—C14—H14C109.5H17A—C15—H17F133.5
C5—C14—H14D109.5H17B—C15—H17F79.9
H14A—C14—H14D137.6H17C—C15—H17F32.1
H14B—C14—H14D40.3H17D—C15—H17F109.5
H14C—C14—H14D72.0H17E—C15—H17F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15···N13i0.842.233.013 (2)155
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H17NO2
Mr231.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.890 (5), 10.30 (1), 19.710 (19)
V3)1195.7 (19)
Z4
Radiation typeSynchrotron, λ = 0.75000 Å
µ (mm1)0.09
Crystal size (mm)0.1 × 0.03 × 0.01
Data collection
DiffractometerMAR 300 CCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski et al., 2003)
Tmin, Tmax0.991, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
15411, 1818, 1815
Rint0.031
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.00
No. of reflections1818
No. of parameters158
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: SER-CAT APS beamline software, HKL-2000 (Otwinowski & Minor, 1997), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15···N13i0.842.233.013 (2)155
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported in part by the Intra­mural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. X-ray data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. Use of the APS was supported by the US Department of Energy under contract No. W-31–109-Eng-38.

References

First citationAcker van, S. A. B. E., Koymans, L. M. H. & Bast, A. (1993). Free Rad. Biol. Med. 15, 311–328.  PubMed Web of Science Google Scholar
First citationBoscoboinik, D., Özer, N., Moser, U. & Azzi, A. (1995). Arch. Biochem. Biophys. 318, 241–246.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCampagna, F., Carotti, A. & Casini, G. (1977). Tetrahedron Lett. 21, 1813–1816.  CrossRef Google Scholar
First citationCohen, N., Schaer, B., Saucy, G., Borer, R., Todaro, L. & Chiu, A. M. (1989). J. Org. Chem. 54, 3282–3292.  CSD CrossRef CAS Web of Science Google Scholar
First citationDeLano, W. L. (2002). The pyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds