organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Di­methyl [(9-anthr­yl)(4-methyl­anilino)meth­yl]phospho­nate

aInstitute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 103A, 1113 Sofia, Bulgaria
*Correspondence e-mail: kraicheva@yahoo.com

(Received 6 July 2011; accepted 11 July 2011; online 16 July 2011)

The title compound, C24H24NO3P, crystallizes as a racemate with two mol­ecules in the asymmetric unit. The structural features (bond lengths and angles) of the two mol­ecules are almost identical. The dihedral angle between the anthracene and toluidine rings is similar in the two mol­ecules, with values of 48.36 (9) and 51.15 (9)°. The methyl groups of one of the meth­oxy groups in one mol­ecule is disordered over two sets of sites, the major component having a site occupancy of 0.636 (3). In the crystal, both molecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds.

Related literature

For general background to the use of amino­phospho­nic acid derivatives in organic synthesis and as biologically active compounds, see: Cherkasov & Galkin (1998[Cherkasov, R. A. & Galkin, V. I. (1998). Usp. Khim. 67, 940-968.]); Orsini et al. (2010[Orsini, F., Sello, G. & Sisti, M. (2010). Curr. Med. Chem. 17, 264-289.]); Green (2000[Green, J. R. (2000). Med. Klin. 95/SII, 23-28.]); Rassukana et al. (2009[Rassukana, Y. V., Onys'ko, P. P., Kolotylo, M. V., Sinitsa, A. D., Łyźwa, P. & Mikołajczyk, M. (2009). Tetrahedron Lett. 50, 288-290.]); Kraicheva et al. (2011[Kraicheva, I., Tsacheva, I., Vodenicharova, E., Tashev. E., Tosheva, T., Kril, A., Topashka-Ancheva, M., Iliev, I., Gerassimova, Ts. & Troev, K. (2011). Eur. J. Med. Chem. Submitted.]) and references therein.

[Scheme 1]

Experimental

Crystal data
  • C24H24NO3P

  • Mr = 405.41

  • Triclinic, [P \overline 1]

  • a = 7.944 (3) Å

  • b = 11.389 (4) Å

  • c = 24.007 (4) Å

  • α = 100.92 (4)°

  • β = 91.63 (3)°

  • γ = 95.17 (4)°

  • V = 2121.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 290 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 8902 measured reflections

  • 8275 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.085

  • 3 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.090

  • wR(F2) = 0.278

  • S = 1.00

  • 8275 reflections

  • 539 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O11i 0.86 2.34 3.066 (6) 143
N2—H2⋯O21ii 0.86 2.62 3.239 (7) 130
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z+2.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995)[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

α-Aminophosphonic acid derivatives have gained widespread interest because of their versatile biological activity, that affords much opportunities of these compounds for pharmaceutical applications (Cherkasov & Galkin, 1998). They are considered to be bioisosteric phosphorus analogues of natural α-aminocarboxylic acids, in which the planar carboxylic acid group is replaced by a bulky phosphonic acid moiety (Orsini et al., 2010). Due to the tetrahedral configuration at phosphorus, aminophosphonates serve as stable analogues of the unstable tetrahedral carbon intermediates formed in enzymatic processes and therefore act as enzyme inhibitors Rassukana et al. (2009). Numerous aminophosphonate derivatives are used as haptens for catalytic antibodies, metabolic regulators, antibiotics, as well as therapeutics, including antihypertensive, antibacterial, antiviral and antitumor agents. The title compound has been synthesised and tested for cytotoxicity on Balb/c 3 T3 (clone 31) cells, for in vitro antitumor activity using a panel of six human epithelial cancer cell lines and for genotoxicity and antiproliferative activity in vivo Kraicheva et al. (2011). Here we report its crystal structure.

The title compound (Fig. 1) possesses three distinct functional groups: anthracen, dimethyl phosphonate and p-toluidine. It crystallizes with two independent molecules in the assymetric unit. The anthracen and toluidine moieties are nearly planar (with respective r.m.s. of 0.076/0.008 and 0.065/0.009 Å for molecule A and B). The interplanar angle beteween the anthracen and the toluidine is 48.36 (9) and 51.15 (9)°, respectively. In the crystal structure of the studied compound symmetrically equivalent molecules of opposite chirality-enantiomers are connected by centrosymmetric N—H···O hydrogen bonds into dimmers (Fig. 2). One of the four methyl groups (form the two dimethyl phosphonate fragments) is disordered over two positions. The positional disorder on the Cmethyl atom was resolved by finding alternative positions from the difference Fourier map, and was subsequently refined. The occupancy of the major component of the methyl group is 0.636 (3).

Related literature top

For general background to the use of aminophosphonic acid derivatives in organic synthesis and as biologically active compounds, see: Cherkasov & Galkin (1998); Orsini et al. (2010); Green (2000); Rassukana et al. (2009); Kraicheva et al. (2011) and references therein.

Experimental top

The studied compound was obtained according to Kraicheva et al. 2011. Suitable crystals were grown by slow evaporation from methanol/methylene chloride solution mixture (1:1 v/v) at room temperature.

Refinement top

All H atoms bonded to C or N were placed in idealised positions (C—Haromatic = 0.93 Å, C—Hmethine = 0.98 Å, C—Hmethyl = 0.96 Å and N—H = 0.86 Å. All H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C or N) and 1.5Ueq(Cmethyl).

The positional disorder on the C methyl atom was resolved by finding alternative positions from the difference Fourier map, and was subsequently refined over two positions. The occupanciy of the major component of the methyl fragment is 0.636 (3).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound with the atom numbering scheme showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. The minor disorder component is shown as dasshed lines.
[Figure 2] Fig. 2. The packing arrangement of the molecules in the unit cell showing the hydrogen-bonding interactions as dashed lines [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 2 - y, 2 - z].
rac-Dimethyl [(9-anthryl)(4-methylanilino)methyl]phosphonate top
Crystal data top
C24H24NO3PZ = 4
Mr = 405.41F(000) = 856
Triclinic, P1Dx = 1.269 Mg m3
Hall symbol: -P 1Melting point = 452–453 K
a = 7.944 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.389 (4) ÅCell parameters from 22 reflections
c = 24.007 (4) Åθ = 16.0–17.8°
α = 100.92 (4)°µ = 0.15 mm1
β = 91.63 (3)°T = 290 K
γ = 95.17 (4)°Prism, colourless
V = 2121.5 (11) Å30.24 × 0.22 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.085
Radiation source: Enraf Nonius FR590θmax = 26.0°, θmin = 0.9°
Graphite monochromatorh = 09
non–profiled ω/2τ scansk = 1413
8902 measured reflectionsl = 2929
8275 independent reflections3 standard reflections every 120 min
2944 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.278H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0998P)2]
where P = (Fo2 + 2Fc2)/3
8275 reflections(Δ/σ)max = 0.003
539 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C24H24NO3Pγ = 95.17 (4)°
Mr = 405.41V = 2121.5 (11) Å3
Triclinic, P1Z = 4
a = 7.944 (3) ÅMo Kα radiation
b = 11.389 (4) ŵ = 0.15 mm1
c = 24.007 (4) ÅT = 290 K
α = 100.92 (4)°0.24 × 0.22 × 0.20 mm
β = 91.63 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.085
8902 measured reflections3 standard reflections every 120 min
8275 independent reflections intensity decay: 1%
2944 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0900 restraints
wR(F2) = 0.278H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
8275 reflectionsΔρmin = 0.32 e Å3
539 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1010.5221 (8)0.7612 (5)0.5699 (2)0.0376 (16)
H1010.50810.84070.56150.045*
C1020.5951 (7)0.7858 (5)0.6315 (3)0.0388 (16)
C1030.6205 (8)0.9055 (6)0.6617 (3)0.0436 (17)
C1040.5628 (9)1.0076 (6)0.6425 (3)0.0520 (18)
H1040.50310.9960.60770.062*
C1050.5929 (10)1.1198 (6)0.6735 (3)0.070 (2)
H1050.55061.18340.66020.084*
C1060.6869 (11)1.1428 (7)0.7256 (4)0.078 (3)
H1060.71041.22110.74560.094*
C1070.7426 (10)1.0506 (7)0.7462 (3)0.069 (2)
H1070.80491.06630.78060.083*
C1080.7086 (8)0.9296 (7)0.7165 (3)0.0500 (18)
C1090.7569 (9)0.8358 (7)0.7409 (3)0.060 (2)
H1090.81580.85240.77590.073*
C1100.7177 (8)0.7162 (7)0.7130 (3)0.0500 (18)
C1110.7586 (11)0.6232 (8)0.7402 (3)0.075 (2)
H1110.81120.64180.77630.09*
C1120.7228 (11)0.5074 (8)0.7147 (4)0.082 (3)
H1120.75110.44620.73290.098*
C1130.6424 (11)0.4802 (7)0.6604 (4)0.071 (2)
H1130.61450.40010.64350.085*
C1140.6037 (9)0.5671 (6)0.6315 (3)0.058 (2)
H1140.55620.54550.59470.069*
C1150.6357 (8)0.6912 (6)0.6574 (3)0.0428 (16)
C16A0.217 (8)0.722 (3)0.4555 (8)0.108 (13)0.64 (7)
H16A0.15010.77810.44240.163*0.64 (7)
H16B0.16610.64170.44180.163*0.64 (7)
H16C0.32910.73020.44170.163*0.64 (7)
C16B0.120 (7)0.695 (4)0.467 (3)0.092 (15)0.36 (7)
H16D0.07770.75790.45040.138*0.36 (7)
H16E0.0270.6470.47840.138*0.36 (7)
H16F0.18080.64540.43890.138*0.36 (7)
C1170.0511 (11)0.6710 (9)0.6141 (4)0.111 (3)
H17A0.00630.66090.57760.167*
H17B0.00020.72980.64080.167*
H17C0.04220.59580.62680.167*
C1180.7049 (8)0.7741 (5)0.4881 (3)0.0402 (16)
C1190.7440 (9)0.8952 (6)0.5003 (3)0.060 (2)
H1190.72540.93740.53630.072*
C1200.8111 (10)0.9574 (6)0.4600 (3)0.065 (2)
H1200.83421.04050.46940.078*
C1210.8434 (10)0.8983 (7)0.4070 (3)0.061 (2)
C1220.8069 (10)0.7770 (7)0.3948 (3)0.073 (2)
H1220.83030.73480.35920.087*
C1230.7351 (9)0.7143 (6)0.4344 (3)0.0528 (19)
H1230.70750.63170.42440.063*
C1240.9191 (11)0.9658 (7)0.3632 (3)0.084 (3)
H24A0.93431.05020.37890.127*
H24B0.84420.95170.330.127*
H24C1.02660.93780.3530.127*
C2010.0364 (8)0.7345 (5)0.9271 (2)0.0399 (16)
H2010.01580.65630.93830.048*
C2020.0977 (8)0.7055 (6)0.8668 (3)0.0409 (16)
C2030.0967 (8)0.5839 (6)0.8392 (3)0.0457 (17)
C2040.0218 (9)0.4839 (6)0.8613 (3)0.060 (2)
H2040.03070.49780.89570.072*
C2050.0264 (11)0.3685 (7)0.8325 (4)0.077 (2)
H2050.02410.30540.84770.092*
C2060.1059 (12)0.3430 (9)0.7805 (4)0.087 (3)
H2060.10960.26390.76190.105*
C2070.1757 (11)0.4331 (8)0.7581 (3)0.081 (3)
H2070.22930.41540.7240.097*
C2080.1710 (9)0.5562 (7)0.7847 (3)0.060 (2)
C2090.2349 (9)0.6472 (8)0.7585 (3)0.062 (2)
H2090.28470.62840.72380.074*
C2100.2256 (9)0.7655 (8)0.7832 (3)0.059 (2)
C2110.2790 (11)0.8597 (9)0.7548 (3)0.076 (3)
H2110.31850.83960.71840.092*
C2120.2756 (12)0.9752 (9)0.7773 (4)0.087 (3)
H2120.31721.03440.7580.104*
C2130.2078 (10)1.0066 (7)0.8312 (3)0.073 (2)
H2130.20191.08730.84660.087*
C2140.1508 (9)0.9223 (6)0.8612 (3)0.059 (2)
H2140.10770.94620.89670.071*
C2150.1562 (8)0.7976 (6)0.8386 (3)0.0460 (17)
C2160.2316 (14)0.7801 (11)1.0400 (4)0.139 (5)
H16G0.16750.85731.0460.208*
H16H0.17350.72711.05880.208*
H16I0.34130.78861.05530.208*
C2170.4401 (10)0.7696 (9)0.8752 (4)0.101 (3)
H17D0.49730.71030.84530.151*
H17E0.44060.84760.86560.151*
H17F0.4970.76870.90990.151*
C2180.2376 (8)0.7492 (6)1.0106 (3)0.0442 (17)
C2190.2670 (8)0.6297 (6)1.0007 (3)0.0491 (18)
H2190.23730.58190.96530.059*
C2200.3395 (9)0.5800 (6)1.0424 (3)0.060 (2)
H2200.35620.49891.03440.072*
C2210.3879 (9)0.6457 (7)1.0953 (3)0.059 (2)
C2220.3618 (10)0.7680 (7)1.1050 (3)0.065 (2)
H2220.39340.81621.14020.079*
C2230.2902 (9)0.8174 (6)1.0631 (3)0.0533 (19)
H2230.27670.89911.07030.064*
C2240.4689 (12)0.5892 (8)1.1404 (3)0.094 (3)
H24D0.38280.54521.15760.141*
H24E0.52760.6511.16890.141*
H24F0.54750.53551.12330.141*
N10.6388 (7)0.7089 (4)0.5283 (2)0.0470 (15)
H10.66730.63790.52830.056*
N20.1617 (7)0.8036 (4)0.9698 (2)0.0470 (14)
H20.18890.87840.96990.056*
O110.3150 (6)0.5491 (4)0.5302 (2)0.0685 (15)
O120.2263 (8)0.7445 (4)0.5129 (2)0.0842 (18)
O130.2235 (6)0.7100 (5)0.6101 (2)0.0815 (17)
O210.1452 (6)0.9311 (4)0.9540 (2)0.0797 (17)
O220.2498 (7)0.7329 (5)0.9825 (2)0.0760 (16)
O230.2654 (6)0.7425 (5)0.8827 (2)0.0772 (16)
P10.3154 (2)0.67682 (16)0.55329 (8)0.0498 (6)
P20.1609 (2)0.80141 (17)0.93785 (8)0.0507 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1010.044 (4)0.032 (3)0.039 (4)0.008 (3)0.007 (3)0.009 (3)
C1020.032 (4)0.047 (4)0.038 (4)0.001 (3)0.011 (3)0.010 (3)
C1030.046 (4)0.047 (4)0.038 (4)0.000 (3)0.010 (3)0.010 (3)
C1040.066 (5)0.043 (4)0.044 (4)0.003 (4)0.001 (4)0.006 (3)
C1050.094 (7)0.047 (5)0.064 (5)0.003 (4)0.009 (5)0.005 (4)
C1060.090 (7)0.052 (5)0.082 (7)0.003 (5)0.003 (5)0.011 (5)
C1070.066 (6)0.081 (6)0.049 (5)0.001 (5)0.005 (4)0.015 (5)
C1080.036 (4)0.065 (5)0.045 (4)0.001 (4)0.008 (3)0.004 (4)
C1090.050 (5)0.082 (6)0.048 (5)0.000 (4)0.004 (4)0.014 (4)
C1100.040 (4)0.068 (5)0.050 (4)0.018 (4)0.009 (4)0.024 (4)
C1110.091 (7)0.082 (6)0.056 (5)0.022 (5)0.006 (5)0.017 (5)
C1120.097 (7)0.083 (7)0.078 (6)0.037 (6)0.000 (5)0.039 (5)
C1130.091 (7)0.054 (5)0.076 (6)0.018 (4)0.008 (5)0.025 (4)
C1140.068 (5)0.051 (5)0.059 (5)0.013 (4)0.008 (4)0.021 (4)
C1150.045 (4)0.048 (4)0.038 (4)0.006 (3)0.004 (3)0.013 (3)
C16A0.11 (3)0.18 (2)0.050 (11)0.06 (2)0.016 (13)0.020 (11)
C16B0.03 (2)0.17 (3)0.07 (3)0.02 (2)0.011 (17)0.01 (2)
C1170.058 (7)0.151 (9)0.121 (9)0.012 (6)0.021 (6)0.026 (7)
C1180.052 (4)0.033 (4)0.036 (4)0.008 (3)0.004 (3)0.006 (3)
C1190.078 (6)0.053 (5)0.047 (4)0.001 (4)0.028 (4)0.005 (4)
C1200.078 (6)0.046 (4)0.071 (6)0.001 (4)0.021 (5)0.012 (4)
C1210.071 (6)0.067 (5)0.052 (5)0.012 (4)0.010 (4)0.023 (4)
C1220.094 (7)0.073 (6)0.047 (5)0.002 (5)0.019 (5)0.000 (4)
C1230.067 (5)0.047 (4)0.040 (4)0.007 (4)0.012 (4)0.001 (3)
C1240.098 (7)0.091 (6)0.075 (6)0.007 (5)0.026 (5)0.041 (5)
C2010.044 (4)0.041 (4)0.036 (4)0.006 (3)0.003 (3)0.012 (3)
C2020.032 (4)0.052 (4)0.040 (4)0.006 (3)0.001 (3)0.011 (3)
C2030.036 (4)0.055 (5)0.042 (4)0.006 (3)0.006 (3)0.000 (3)
C2040.062 (5)0.052 (5)0.060 (5)0.002 (4)0.004 (4)0.001 (4)
C2050.073 (6)0.065 (6)0.086 (7)0.003 (5)0.012 (5)0.002 (5)
C2060.076 (7)0.078 (7)0.091 (8)0.017 (6)0.017 (6)0.026 (6)
C2070.076 (7)0.092 (7)0.059 (6)0.013 (6)0.008 (5)0.026 (5)
C2080.056 (5)0.079 (6)0.040 (4)0.009 (4)0.001 (4)0.004 (4)
C2090.042 (5)0.099 (7)0.042 (4)0.011 (4)0.005 (4)0.002 (5)
C2100.054 (5)0.088 (6)0.036 (4)0.003 (4)0.001 (4)0.018 (4)
C2110.072 (6)0.106 (7)0.052 (5)0.007 (6)0.009 (4)0.016 (5)
C2120.102 (8)0.111 (8)0.055 (6)0.018 (6)0.002 (5)0.050 (6)
C2130.088 (7)0.067 (5)0.064 (6)0.007 (5)0.004 (5)0.024 (5)
C2140.077 (6)0.059 (5)0.043 (4)0.010 (4)0.003 (4)0.019 (4)
C2150.039 (4)0.054 (5)0.043 (4)0.003 (3)0.004 (3)0.008 (3)
C2160.128 (10)0.198 (13)0.083 (8)0.021 (9)0.039 (7)0.024 (8)
C2170.060 (6)0.146 (9)0.096 (7)0.028 (6)0.014 (5)0.018 (6)
C2180.042 (4)0.057 (5)0.035 (4)0.007 (3)0.003 (3)0.010 (3)
C2190.060 (5)0.041 (4)0.044 (4)0.014 (3)0.008 (4)0.001 (3)
C2200.064 (5)0.051 (5)0.068 (5)0.014 (4)0.001 (4)0.019 (4)
C2210.049 (5)0.084 (6)0.050 (5)0.019 (4)0.001 (4)0.026 (4)
C2220.073 (6)0.083 (6)0.045 (5)0.017 (5)0.004 (4)0.018 (4)
C2230.062 (5)0.052 (4)0.044 (4)0.013 (4)0.003 (4)0.003 (4)
C2240.103 (8)0.118 (8)0.072 (6)0.023 (6)0.008 (5)0.042 (6)
N10.067 (4)0.031 (3)0.047 (3)0.012 (3)0.017 (3)0.010 (3)
N20.052 (4)0.044 (3)0.046 (3)0.001 (3)0.002 (3)0.014 (3)
O110.061 (4)0.039 (3)0.100 (4)0.002 (2)0.011 (3)0.001 (3)
O120.107 (5)0.066 (4)0.076 (4)0.014 (3)0.046 (4)0.012 (3)
O130.044 (3)0.117 (5)0.071 (4)0.006 (3)0.015 (3)0.010 (3)
O210.064 (4)0.054 (3)0.121 (5)0.020 (3)0.010 (3)0.010 (3)
O220.079 (4)0.078 (4)0.068 (4)0.001 (3)0.032 (3)0.007 (3)
O230.044 (3)0.113 (4)0.069 (4)0.020 (3)0.012 (3)0.000 (3)
P10.0489 (12)0.0455 (11)0.0529 (12)0.0063 (9)0.0024 (10)0.0041 (9)
P20.0466 (13)0.0537 (13)0.0515 (12)0.0109 (10)0.0074 (10)0.0058 (10)
Geometric parameters (Å, º) top
C101—N11.463 (7)C201—P21.808 (6)
C101—C1021.538 (8)C201—H2010.98
C101—P11.820 (6)C202—C2151.404 (8)
C101—H1010.98C202—C2031.416 (8)
C102—C1151.398 (8)C203—C2041.434 (9)
C102—C1031.412 (8)C203—C2081.442 (9)
C103—C1041.435 (8)C204—C2051.369 (9)
C103—C1081.440 (9)C204—H2040.93
C104—C1051.349 (9)C205—C2061.409 (12)
C104—H1040.93C205—H2050.93
C105—C1061.405 (10)C206—C2071.331 (11)
C105—H1050.93C206—H2060.93
C106—C1071.345 (10)C207—C2081.431 (10)
C106—H1060.93C207—H2070.93
C107—C1081.425 (9)C208—C2091.377 (10)
C107—H1070.93C209—C2101.375 (10)
C108—C1091.389 (9)C209—H2090.93
C109—C1101.402 (9)C210—C2111.418 (10)
C109—H1090.93C210—C2151.449 (9)
C110—C1111.401 (9)C211—C2121.327 (11)
C110—C1151.437 (9)C211—H2110.93
C111—C1121.346 (10)C212—C2131.410 (11)
C111—H1110.93C212—H2120.93
C112—C1131.403 (10)C213—C2141.359 (9)
C112—H1120.93C213—H2130.93
C113—C1141.364 (9)C214—C2151.426 (9)
C113—H1130.93C214—H2140.93
C114—C1151.429 (9)C216—O221.383 (10)
C114—H1140.93C216—H16G0.96
C16A—O121.350 (18)C216—H16H0.96
C16A—H16A0.96C216—H16I0.96
C16A—H16B0.96C217—O231.462 (9)
C16A—H16C0.96C217—H17D0.96
C16B—O121.37 (3)C217—H17E0.96
C16B—H16D0.96C217—H17F0.96
C16B—H16E0.96C218—C2191.379 (8)
C16B—H16F0.96C218—C2231.381 (8)
C117—O131.413 (9)C218—N21.402 (7)
C117—H17A0.96C219—C2201.377 (9)
C117—H17B0.96C219—H2190.93
C117—H17C0.96C220—C2211.370 (9)
C118—C1191.360 (8)C220—H2200.93
C118—C1231.378 (8)C221—C2221.403 (10)
C118—N11.409 (8)C221—C2241.517 (9)
C119—C1201.393 (9)C222—C2231.375 (9)
C119—H1190.93C222—H2220.93
C120—C1211.366 (10)C223—H2230.93
C120—H1200.93C224—H24D0.96
C121—C1221.359 (10)C224—H24E0.96
C121—C1241.522 (9)C224—H24F0.96
C122—C1231.398 (10)N1—H10.86
C122—H1220.93N2—H20.86
C123—H1230.93O11—P11.455 (5)
C124—H24A0.96O12—P11.542 (5)
C124—H24B0.96O13—P11.563 (5)
C124—H24C0.96O21—P21.447 (5)
C201—N21.469 (7)O22—P21.586 (5)
C201—C2021.526 (8)O23—P21.546 (5)
N1—C101—C102113.6 (5)C202—C203—C204124.2 (6)
N1—C101—P1108.0 (4)C202—C203—C208119.3 (7)
C102—C101—P1118.9 (4)C204—C203—C208116.5 (6)
N1—C101—H101105C205—C204—C203121.1 (7)
C102—C101—H101105C205—C204—H204119.4
P1—C101—H101105C203—C204—H204119.4
C115—C102—C103120.3 (6)C204—C205—C206121.5 (9)
C115—C102—C101120.6 (5)C204—C205—H205119.3
C103—C102—C101119.0 (5)C206—C205—H205119.3
C102—C103—C104125.1 (6)C207—C206—C205119.5 (8)
C102—C103—C108118.8 (6)C207—C206—H206120.3
C104—C103—C108116.1 (6)C205—C206—H206120.3
C105—C104—C103121.8 (7)C206—C207—C208122.2 (8)
C105—C104—H104119.1C206—C207—H207118.9
C103—C104—H104119.1C208—C207—H207118.9
C104—C105—C106121.4 (8)C209—C208—C207120.5 (7)
C104—C105—H105119.3C209—C208—C203120.4 (7)
C106—C105—H105119.3C207—C208—C203119.1 (8)
C107—C106—C105119.5 (7)C210—C209—C208120.6 (7)
C107—C106—H106120.2C210—C209—H209119.7
C105—C106—H106120.2C208—C209—H209119.7
C106—C107—C108121.6 (7)C209—C210—C211121.2 (8)
C106—C107—H107119.2C209—C210—C215120.9 (7)
C108—C107—H107119.2C211—C210—C215117.9 (7)
C109—C108—C107120.2 (7)C212—C211—C210123.4 (8)
C109—C108—C103120.4 (7)C212—C211—H211118.3
C107—C108—C103119.3 (7)C210—C211—H211118.3
C108—C109—C110120.6 (7)C211—C212—C213118.7 (8)
C108—C109—H109119.7C211—C212—H212120.6
C110—C109—H109119.7C213—C212—H212120.6
C111—C110—C109119.4 (7)C214—C213—C212122.0 (8)
C111—C110—C115121.2 (7)C214—C213—H213119
C109—C110—C115119.4 (6)C212—C213—H213119
C112—C111—C110120.9 (8)C213—C214—C215120.6 (7)
C112—C111—H111119.5C213—C214—H214119.7
C110—C111—H111119.5C215—C214—H214119.7
C111—C112—C113119.1 (7)C202—C215—C214123.8 (6)
C111—C112—H112120.4C202—C215—C210118.8 (6)
C113—C112—H112120.4C214—C215—C210117.4 (7)
C114—C113—C112122.4 (8)O22—C216—H16G109.5
C114—C113—H113118.8O22—C216—H16H109.5
C112—C113—H113118.8H16G—C216—H16H109.5
C113—C114—C115120.4 (7)O22—C216—H16I109.5
C113—C114—H114119.8H16G—C216—H16I109.5
C115—C114—H114119.8H16H—C216—H16I109.5
C102—C115—C114124.1 (6)O23—C217—H17D109.5
C102—C115—C110120.0 (6)O23—C217—H17E109.5
C114—C115—C110115.9 (6)H17D—C217—H17E109.5
O12—C16A—H16A109.5O23—C217—H17F109.5
O12—C16A—H16B109.5H17D—C217—H17F109.5
H16A—C16A—H16B109.5H17E—C217—H17F109.5
O12—C16A—H16C109.5C219—C218—C223117.1 (6)
H16A—C16A—H16C109.5C219—C218—N2123.2 (6)
H16B—C16A—H16C109.5C223—C218—N2119.6 (6)
O12—C16B—H16D109.5C220—C219—C218121.1 (6)
O12—C16B—H16E109.5C220—C219—H219119.5
H16D—C16B—H16E109.5C218—C219—H219119.5
O12—C16B—H16F109.5C221—C220—C219122.4 (7)
H16D—C16B—H16F109.5C221—C220—H220118.8
H16E—C16B—H16F109.5C219—C220—H220118.8
O13—C117—H17A109.5C220—C221—C222116.6 (6)
O13—C117—H17B109.5C220—C221—C224121.5 (7)
H17A—C117—H17B109.5C222—C221—C224121.9 (7)
O13—C117—H17C109.5C223—C222—C221120.8 (7)
H17A—C117—H17C109.5C223—C222—H222119.6
H17B—C117—H17C109.5C221—C222—H222119.6
C119—C118—C123117.6 (6)C222—C223—C218121.9 (7)
C119—C118—N1122.6 (6)C222—C223—H223119
C123—C118—N1119.8 (6)C218—C223—H223119
C118—C119—C120121.6 (6)C221—C224—H24D109.5
C118—C119—H119119.2C221—C224—H24E109.5
C120—C119—H119119.2H24D—C224—H24E109.5
C121—C120—C119121.0 (7)C221—C224—H24F109.5
C121—C120—H120119.5H24D—C224—H24F109.5
C119—C120—H120119.5H24E—C224—H24F109.5
C122—C121—C120117.7 (7)C118—N1—C101120.5 (5)
C122—C121—C124121.1 (7)C118—N1—H1119.7
C120—C121—C124121.2 (7)C101—N1—H1119.7
C121—C122—C123121.6 (7)C218—N2—C201121.0 (5)
C121—C122—H122119.2C218—N2—H2119.5
C123—C122—H122119.2C201—N2—H2119.5
C118—C123—C122120.4 (7)C16A—O12—P1128.7 (11)
C118—C123—H123119.8C16B—O12—P1127 (2)
C122—C123—H123119.8C117—O13—P1121.2 (5)
C121—C124—H24A109.5C216—O22—P2120.8 (6)
C121—C124—H24B109.5C217—O23—P2119.7 (5)
H24A—C124—H24B109.5O11—P1—O12112.9 (3)
C121—C124—H24C109.5O11—P1—O13115.9 (3)
H24A—C124—H24C109.5O12—P1—O13103.5 (3)
H24B—C124—H24C109.5O11—P1—C101116.3 (3)
N2—C201—C202115.3 (5)O12—P1—C101104.2 (3)
N2—C201—P2107.6 (4)O13—P1—C101102.5 (3)
C202—C201—P2118.4 (4)O21—P2—O23118.1 (3)
N2—C201—H201104.7O21—P2—O22114.8 (3)
C202—C201—H201104.7O23—P2—O22101.1 (3)
P2—C201—H201104.7O21—P2—C201115.3 (3)
C215—C202—C203119.7 (6)O23—P2—C201102.0 (3)
C215—C202—C201120.9 (6)O22—P2—C201103.4 (3)
C203—C202—C201119.4 (6)
N1—C101—C102—C11564.1 (7)C204—C203—C208—C2074.0 (10)
P1—C101—C102—C11564.7 (7)C207—C208—C209—C210177.9 (7)
N1—C101—C102—C103116.0 (6)C203—C208—C209—C2101.4 (11)
P1—C101—C102—C103115.2 (6)C208—C209—C210—C211175.1 (7)
C115—C102—C103—C104171.1 (6)C208—C209—C210—C2153.0 (11)
C101—C102—C103—C1048.8 (9)C209—C210—C211—C212178.6 (8)
C115—C102—C103—C1088.0 (9)C215—C210—C211—C2123.1 (12)
C101—C102—C103—C108172.1 (6)C210—C211—C212—C2133.3 (14)
C102—C103—C104—C105179.5 (7)C211—C212—C213—C2142.0 (13)
C108—C103—C104—C1051.4 (10)C212—C213—C214—C2150.6 (12)
C103—C104—C105—C1061.9 (12)C203—C202—C215—C214175.3 (6)
C104—C105—C106—C1072.7 (13)C201—C202—C215—C2145.2 (10)
C105—C106—C107—C1080.1 (13)C203—C202—C215—C2104.4 (9)
C106—C107—C108—C109175.2 (8)C201—C202—C215—C210175.2 (6)
C106—C107—C108—C1033.5 (11)C213—C214—C215—C202179.2 (7)
C102—C103—C108—C1094.5 (10)C213—C214—C215—C2100.5 (10)
C104—C103—C108—C109174.7 (6)C209—C210—C215—C2020.2 (10)
C102—C103—C108—C107176.8 (6)C211—C210—C215—C202178.1 (6)
C104—C103—C108—C1074.0 (9)C209—C210—C215—C214179.8 (7)
C107—C108—C109—C110177.3 (7)C211—C210—C215—C2141.6 (10)
C103—C108—C109—C1101.3 (10)C223—C218—C219—C2202.5 (10)
C108—C109—C110—C111176.0 (7)N2—C218—C219—C220178.9 (6)
C108—C109—C110—C1153.7 (10)C218—C219—C220—C2210.8 (11)
C109—C110—C111—C112180.0 (8)C219—C220—C221—C2220.7 (11)
C115—C110—C111—C1120.3 (12)C219—C220—C221—C224179.5 (7)
C110—C111—C112—C1130.4 (13)C220—C221—C222—C2230.4 (11)
C111—C112—C113—C1142.2 (13)C224—C221—C222—C223179.2 (7)
C112—C113—C114—C1153.7 (12)C221—C222—C223—C2181.5 (12)
C103—C102—C115—C114175.6 (6)C219—C218—C223—C2222.9 (11)
C101—C102—C115—C1144.3 (10)N2—C218—C223—C222178.5 (7)
C103—C102—C115—C1105.7 (9)C119—C118—N1—C10135.5 (9)
C101—C102—C115—C110174.4 (6)C123—C118—N1—C101145.7 (6)
C113—C114—C115—C102177.9 (7)C102—C101—N1—C118113.7 (6)
C113—C114—C115—C1103.3 (10)P1—C101—N1—C118112.1 (5)
C111—C110—C115—C102179.5 (7)C219—C218—N2—C20130.8 (9)
C109—C110—C115—C1020.2 (10)C223—C218—N2—C201150.7 (6)
C111—C110—C115—C1141.7 (10)C202—C201—N2—C218107.5 (6)
C109—C110—C115—C114178.6 (6)P2—C201—N2—C218117.9 (5)
C123—C118—C119—C1200.4 (11)C16A—O12—P1—O1132 (4)
N1—C118—C119—C120179.2 (7)C16B—O12—P1—O1116 (4)
C118—C119—C120—C1211.4 (12)C16A—O12—P1—O13158 (4)
C119—C120—C121—C1220.4 (12)C16B—O12—P1—O13110 (4)
C119—C120—C121—C124179.1 (7)C16A—O12—P1—C10195 (4)
C120—C121—C122—C1231.5 (12)C16B—O12—P1—C101143 (4)
C124—C121—C122—C123179.1 (7)C117—O13—P1—O1157.8 (7)
C119—C118—C123—C1221.4 (11)C117—O13—P1—O1266.3 (7)
N1—C118—C123—C122177.4 (7)C117—O13—P1—C101174.4 (7)
C121—C122—C123—C1182.4 (12)N1—C101—P1—O1134.0 (5)
N2—C201—C202—C21559.1 (8)C102—C101—P1—O1197.4 (5)
P2—C201—C202—C21570.3 (7)N1—C101—P1—O1290.9 (4)
N2—C201—C202—C203120.4 (6)C102—C101—P1—O12137.7 (5)
P2—C201—C202—C203110.2 (6)N1—C101—P1—O13161.5 (4)
C215—C202—C203—C204172.4 (6)C102—C101—P1—O1330.1 (5)
C201—C202—C203—C2048.1 (9)C217—O23—P2—O2154.9 (7)
C215—C202—C203—C2086.0 (9)C217—O23—P2—O2271.2 (6)
C201—C202—C203—C208173.5 (6)C217—O23—P2—C201177.6 (6)
C202—C203—C204—C205179.5 (7)C216—O22—P2—O2132.4 (8)
C208—C203—C204—C2052.0 (10)C216—O22—P2—O23160.7 (7)
C203—C204—C205—C2060.6 (12)C216—O22—P2—C20194.0 (8)
C204—C205—C206—C2071.2 (13)N2—C201—P2—O2137.4 (5)
C205—C206—C207—C2080.9 (14)C202—C201—P2—O2195.6 (5)
C206—C207—C208—C209175.8 (8)N2—C201—P2—O23166.7 (4)
C206—C207—C208—C2033.6 (12)C202—C201—P2—O2333.7 (6)
C202—C203—C208—C2093.2 (10)N2—C201—P2—O2288.7 (4)
C204—C203—C208—C209175.4 (6)C202—C201—P2—O22138.4 (5)
C202—C203—C208—C207177.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11i0.862.343.066 (6)143
N2—H2···O21ii0.862.623.239 (7)130
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC24H24NO3P
Mr405.41
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)7.944 (3), 11.389 (4), 24.007 (4)
α, β, γ (°)100.92 (4), 91.63 (3), 95.17 (4)
V3)2121.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8902, 8275, 2944
Rint0.085
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.278, 1.00
No. of reflections8275
No. of parameters539
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O11i0.862.343.066 (6)142.8
N2—H2···O21ii0.862.623.239 (7)130.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+2.
 

Acknowledgements

Thanks are due to the Bulgarian National Science Fund of the Ministry of Education and Science for financial support under contract DTK 02/34 (2009).

References

First citationCherkasov, R. A. & Galkin, V. I. (1998). Usp. Khim. 67, 940–968.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreen, J. R. (2000). Med. Klin. 95/SII, 23–28.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKraicheva, I., Tsacheva, I., Vodenicharova, E., Tashev. E., Tosheva, T., Kril, A., Topashka-Ancheva, M., Iliev, I., Gerassimova, Ts. & Troev, K. (2011). Eur. J. Med. Chem. Submitted.  Google Scholar
First citationOrsini, F., Sello, G. & Sisti, M. (2010). Curr. Med. Chem. 17, 264–289.  CrossRef CAS PubMed Google Scholar
First citationRassukana, Y. V., Onys'ko, P. P., Kolotylo, M. V., Sinitsa, A. D., Łyźwa, P. & Mikołajczyk, M. (2009). Tetrahedron Lett. 50, 288–290.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds