metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1133-m1134

catena-Poly[[(aqualithium)-μ-3-carboxypyrazine-2-carboxylato-κ4O2,N1:O3,N4] monohydrate]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 11 July 2011; accepted 18 July 2011; online 23 July 2011)

The polymeric structure of the title compound {[Li(C6H3N2O4)(H2O)]·H2O}n, contains two symmetry-independent LiI complex units, both having distorted trigonal–bipyramidal coordination environments. The LiI ions are bridged by both the N and O atoms of the ligands, generating two symmetry-independent polymeric chains propagating along the b-axis direction. In both ligands, the second carboxyl­ato O atom remains protonated, serving as a donor in a short intra­molecular O—H⋯O hydrogen bond. The coordination of each LiI ion is completed by a water O atom. The ribbons are held together by a network of O—H⋯O hydrogen bonds in which the coordinated and uncoordinated water mol­ecules are donors and the carboxyl­ato O atoms act as acceptors.

Related literature

For the crystal structures of two LiI complexes with a pyrazine-2,3-dicarboxyl­ate ligand, see: Tombul et al. (2008[Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491-m492.]); Tombul & Güven (2009[Tombul, M. & Guven, K. (2009). Acta Cryst. E65, m1704-m1705.]). For the crystal structure of a LiI complex with a pyrazine-2,3,5,6-tetra­carboxyl­ate ligand, see: Starosta & Leciejewicz (2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561-m1562.]) and a pyrazine-2,5-dicarboxyl­ate ligand, see: Starosta & Leciejewicz (2011[Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m50-m51.]). For the crystal structures of two structural forms of pyrazine-2,3-dicarb­oxy­lic acid dihydrate, see: Takusagawa & Shimada (1973[Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121-1128.]); Premkumar et al. (2004[Premkumar, T., Govindarajan, S., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, o1305-o1306.]). For the crystal structures of Zn complexes with a pyrazine-2,3-dicarboxyl­ate ligand, see: Richard et al. (1974[Richard, P., Tranqui, D. & Bertaut, E. F. (1974). Acta Cryst. B30, 628-633.]); Ptasiewicz-Bąk & Leciejewicz (1999[Ptasiewicz-Bąk, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 1887-1893.]); Gryz et al. (2005[Gryz, M., Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 931-935.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C6H3N2O4)(H2O)]·H2O

  • Mr = 210.08

  • Monoclinic, P 21 /c

  • a = 12.673 (3) Å

  • b = 13.816 (3) Å

  • c = 10.956 (2) Å

  • β = 114.04 (3)°

  • V = 1752.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.32 × 0.14 × 0.09 mm

Data collection
  • Kuma KM4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.978, Tmax = 0.984

  • 3775 measured reflections

  • 3595 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.064

  • 3 standard reflections every 200 reflections intensity decay: 3.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.149

  • S = 0.94

  • 3595 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O11 2.014 (5)
Li1—N11 2.117 (4)
Li1—O15 1.985 (6)
Li1—O14i 2.005 (5)
Li1—N12i 2.162 (4)
Li2—O21 2.003 (5)
Li2—N21 2.138 (4)
Li2—O25 2.016 (5)
Li2—O24ii 2.024 (5)
Li2—N22ii 2.162 (4)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H3⋯O24ii 0.83 (3) 2.12 (4) 2.943 (3) 170 (3)
O2—H4⋯O13iii 0.93 (4) 1.93 (4) 2.841 (3) 169 (3)
O25—H251⋯O1ii 0.86 (3) 1.83 (4) 2.640 (3) 155 (3)
O25—H252⋯O21iv 0.87 (4) 1.97 (4) 2.819 (3) 166 (3)
O15—H152⋯O25v 0.97 (4) 1.93 (4) 2.837 (3) 154 (3)
O15—H151⋯O2vi 0.72 (6) 2.11 (6) 2.816 (3) 165 (7)
O12—H131⋯O13 0.78 (6) 1.64 (6) 2.393 (3) 162 (7)
O23—H231⋯O22 0.67 (6) 1.76 (6) 2.416 (3) 170 (7)
O1—H1⋯O11 0.82 (3) 1.90 (3) 2.717 (3) 176 (3)
O1—H2⋯O22vii 0.91 (4) 1.90 (4) 2.808 (3) 174 (3)
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+1; (iv) -x+1, -y, -z+2; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x-1, y, z; (vii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazine-2,3-dicarboxylate ligand shows a marked tendency to form metal coordination compounds depending on the conditions of chemical preparation. Three ZnII coordination polymers with the title ligand (2,3-PZDC) showing polymeric structures are known: a triclinic complex Zn(2,3-PZDC)(H2O)2.H2O (Richard et al., 1974); a monoclinic complex Zn(2,3-PZDC)(H2O)3. H2O (Ptasiewicz-Bąk & Leciejewicz, 1999), and a monoclinic [(H3O)1+]2 [Zn(2,3-PZDC)2]2- (Gryz, et al., 2005). Two LiI complexes with the title ligand have been recently reported (Tombul et al., 2008; Tombul & Güven, 2009). The asymmetric unit of the title compound contains two symmetry independent LiI ions, two ligand molecules, two coordinated and two crystal water molecules (Fig. 1, Table 1). LiI ions and the ligands form two parallel molecular chains propagating in the b direction. In each, the Li ion shows a distorted trigonal bipyramidal coordination. The Li1 ion is 0.017 (1)Å out of the basal plane composed of carboxylato O11, O14i and aqua O15 atoms; hetero N11 and N12i atoms are at axial positions. The equatorial plane in the case of the Li2 ion consists of carboxylate O21, O24ii and water O25 atoms; hetero N21 and N22ii form the apices. The Li2 ion is 0.012 (1)Å out of the basal plane. The observed Li—O and Li—N bond distances are characteristic for LiI complexes with diazine carboxylate ligands (Table 1). Each ligand uses both its N,O chelating sites to bridge LiI ions. The second carboxylato O atoms do not participate in coordination but remain protonated to maintain the charge balance. In both ligands these protons are active in short intra-molecular hydrogen bonds of 2.393 (3) Å and 2.416 (3) Å (Table 2). The same effect has been also observed in another LiI complex with the title ligand (Tombul et al., 2008), a complex with pyrazine-2,3,5,6-tetracarboxylate ligand (Starosta & Leciejewicz, 2010) and a complex with pyrazine -2,5-dicarboxylate ligand (Starosta & Leciejewicz, 2011). Bond lengths and bond angles within both pyrazine rings do not differ from those reported in the structures of two modifications of the parent acid (Takusagawa & Shimada, 1973; Premkumar, et al., 2004). Pyrazine rings are planar with r.m.s of 0.0040 (2) and 0.0094 (2) Å, for ligand 1 and 2, respectively. The carboxylate groups C17/O11/O12 and C8/O13/O14 make with the pyrazine ring 1 the dihedral angles of 4.8 (1)° and 3.8 (1)°, respectively. Dihedral angles made by the carboxylate groups C27/O21/O22 and C28/O23/O24 with the pyrazine ring 2 are 15.4 (2)° and 4.3 (1)°, respectively. Crystal and coordinated water molecules participate in a network of hydrogen bonds which connect the ribbons (Table 2, Fig. 2). They act as donors, the carboxylato O atoms as acceptors.

Related literature top

For the crystal structures of two LiI complexes with a pyrazine-2,3-dicarboxylate ligand, see: Tombul et al. (2008); Tombul & Güven (2009). For the crystal structure of a LiI complex with a pyrazine-2,3,5,6-tetracarboxylate ligand, see: Starosta & Leciejewicz (2010) and a pyrazine-2,5-dicarboxylate ligand, see: Starosta & Leciejewicz (2011). For the crystal structures of two structural forms of pyrazine-2,3-dicarboxylic acid dihydrate, see: Takusagawa & Shimada (1973); Premkumar et al. (2004). For the crystal structures of Zn(II) complexes with a pyrazine-2,3-dicarboxylate ligand, see: Richard et al. (1974); Ptasiewicz-Bąk & Leciejewicz (1999); Gryz et al. (2005).

Experimental top

A solution of 2 mmol s of LiOH in 50 mL of doubly distilled cold water was titrated with an aqueous solution of pyrazine-2,3-dicarboxylic acid dihydrate until the pH reached the value of 5.5. Then, the solution was boiled under reflux with stirring for 6 h. After cooling to room temperature the solution was left to crystallise. Polycrystalline material which was found after evaporation to dryness was repeatedly recrystallised from cold water until single-crystal plates appeared. They were washed with methanol and dried in air.

Refinement top

Water hydrogen atoms were located in a difference map and refined isotropically. H atoms attached to pyrazine-ring C atoms were positioned at calculated positions and were treated as riding on the parent atoms with C-H=0.93\%A and UUISO(H)=1.2UISO(C).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two structural units of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (i) -x, y - 1/2,-z + 3/2; (ii) -x + 1, y + 1/2, -z + 3/2; (iii) -x + 1, y - 1/2, -z + 3/2; (iv) -x, y + 1/2, -z + 3/2.
[Figure 2] Fig. 2. Packing diagram of the structure viewed along the b axis.
catena-Poly[[(aqualithium)-µ-3-carboxypyrazine-2-carboxylato- κ4O2,N1:O3,N4] monohydrate] top
Crystal data top
[Li(C6H3N2O4)(H2O)]·H2OF(000) = 864
Mr = 210.08Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.673 (3) Åθ = 6–15°
b = 13.816 (3) ŵ = 0.14 mm1
c = 10.956 (2) ÅT = 293 K
β = 114.04 (3)°Plates, colourless
V = 1752.0 (6) Å30.32 × 0.14 × 0.09 mm
Z = 8
Data collection top
Kuma KM4 four-circle
diffractometer
1811 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 27.7°, θmin = 1.8°
profile data from ω/2θ scansh = 014
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 180
Tmin = 0.978, Tmax = 0.984l = 1313
3775 measured reflections3 standard reflections every 200 reflections
3595 independent reflections intensity decay: 3.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0987P)2]
where P = (Fo2 + 2Fc2)/3
3595 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Li(C6H3N2O4)(H2O)]·H2OV = 1752.0 (6) Å3
Mr = 210.08Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.673 (3) ŵ = 0.14 mm1
b = 13.816 (3) ÅT = 293 K
c = 10.956 (2) Å0.32 × 0.14 × 0.09 mm
β = 114.04 (3)°
Data collection top
Kuma KM4 four-circle
diffractometer
1811 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.064
Tmin = 0.978, Tmax = 0.9843 standard reflections every 200 reflections
3775 measured reflections intensity decay: 3.4%
3595 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.28 e Å3
3595 reflectionsΔρmin = 0.36 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.01503 (17)0.17705 (13)0.7604 (2)0.0323 (5)
N120.00129 (18)0.02194 (13)0.7752 (2)0.0325 (5)
O140.1043 (2)0.12689 (12)0.6604 (2)0.0553 (6)
C130.0533 (2)0.02779 (15)0.7099 (2)0.0283 (5)
O130.17126 (19)0.00377 (13)0.5878 (2)0.0544 (6)
O110.07742 (16)0.28612 (11)0.6413 (2)0.0462 (5)
O120.1688 (2)0.16941 (14)0.5894 (2)0.0540 (6)
C170.1009 (2)0.19946 (16)0.6398 (3)0.0351 (6)
C120.0454 (2)0.12986 (15)0.7036 (2)0.0282 (5)
C180.1147 (2)0.03926 (17)0.6484 (3)0.0354 (6)
C150.0584 (2)0.02637 (18)0.8300 (3)0.0376 (6)
H150.09530.00750.87470.045*
C160.0671 (2)0.12673 (18)0.8224 (3)0.0372 (6)
H160.11010.15880.86140.045*
O210.41371 (16)0.10101 (11)0.8670 (2)0.0406 (5)
N220.51761 (17)0.40335 (13)0.7446 (2)0.0318 (5)
O240.39022 (18)0.51517 (11)0.8178 (2)0.0496 (6)
O220.33218 (18)0.22600 (12)0.9203 (2)0.0523 (6)
N210.53363 (18)0.20579 (13)0.7753 (2)0.0345 (5)
O230.3238 (2)0.40041 (15)0.9029 (3)0.0603 (7)
C280.3850 (2)0.42871 (16)0.8427 (3)0.0374 (6)
C220.4624 (2)0.25575 (15)0.8148 (2)0.0271 (5)
C230.4556 (2)0.35762 (14)0.8001 (2)0.0271 (5)
C270.3966 (2)0.18992 (16)0.8712 (3)0.0324 (6)
C260.5974 (2)0.25337 (17)0.7252 (3)0.0404 (7)
H260.64940.21960.70090.048*
C250.5878 (2)0.35298 (17)0.7085 (3)0.0383 (6)
H250.63210.38470.67080.046*
Li20.5322 (4)0.0529 (3)0.8042 (4)0.0371 (10)
O250.66173 (18)0.02579 (12)0.9834 (2)0.0389 (5)
O10.2117 (2)0.38123 (13)0.5402 (2)0.0502 (6)
O150.1887 (2)0.31162 (16)0.5473 (2)0.0532 (6)
Li10.0422 (4)0.3254 (3)0.7089 (5)0.0416 (10)
O20.71760 (19)0.12508 (13)0.5331 (2)0.0459 (5)
H30.695 (3)0.092 (2)0.581 (3)0.043 (9)*
H40.754 (3)0.092 (3)0.488 (4)0.080 (12)*
H2510.707 (3)0.009 (2)0.961 (3)0.055 (9)*
H2520.633 (3)0.004 (3)1.033 (3)0.064 (11)*
H1520.252 (3)0.355 (3)0.538 (4)0.083 (12)*
H1510.223 (5)0.268 (5)0.534 (7)0.15 (3)*
H1310.183 (5)0.115 (4)0.590 (6)0.15 (2)*
H2310.329 (5)0.353 (4)0.916 (5)0.12 (2)*
H10.169 (2)0.354 (2)0.568 (3)0.032 (8)*
H20.248 (3)0.342 (3)0.501 (4)0.079 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0411 (12)0.0160 (9)0.0441 (12)0.0021 (8)0.0218 (10)0.0018 (8)
N120.0398 (11)0.0159 (9)0.0466 (13)0.0001 (8)0.0227 (10)0.0039 (8)
O140.0881 (15)0.0120 (8)0.0887 (16)0.0007 (9)0.0594 (13)0.0029 (9)
C130.0363 (13)0.0097 (10)0.0397 (13)0.0019 (9)0.0163 (11)0.0003 (9)
O130.0865 (15)0.0181 (9)0.0901 (16)0.0039 (9)0.0680 (14)0.0005 (9)
O110.0621 (12)0.0096 (8)0.0848 (15)0.0024 (8)0.0482 (12)0.0064 (8)
O120.0775 (15)0.0164 (9)0.0968 (17)0.0029 (9)0.0648 (14)0.0060 (10)
C170.0456 (14)0.0131 (10)0.0541 (17)0.0001 (10)0.0279 (13)0.0036 (10)
C120.0354 (13)0.0127 (10)0.0380 (13)0.0035 (9)0.0164 (11)0.0023 (9)
C180.0506 (16)0.0155 (11)0.0486 (15)0.0026 (10)0.0288 (13)0.0020 (10)
C150.0490 (15)0.0209 (12)0.0519 (16)0.0001 (11)0.0298 (13)0.0058 (11)
C160.0474 (15)0.0234 (12)0.0483 (15)0.0073 (11)0.0272 (13)0.0054 (11)
O210.0552 (11)0.0099 (7)0.0693 (13)0.0023 (7)0.0383 (10)0.0053 (7)
N220.0382 (12)0.0162 (9)0.0433 (12)0.0031 (8)0.0187 (10)0.0052 (8)
O240.0805 (14)0.0101 (8)0.0791 (15)0.0036 (8)0.0538 (12)0.0022 (8)
O220.0747 (14)0.0180 (8)0.0953 (16)0.0062 (9)0.0666 (13)0.0091 (9)
N210.0464 (12)0.0153 (9)0.0504 (13)0.0069 (9)0.0286 (11)0.0053 (9)
O230.0965 (19)0.0157 (9)0.1049 (19)0.0075 (10)0.0781 (16)0.0063 (10)
C280.0554 (17)0.0122 (10)0.0566 (17)0.0037 (10)0.0352 (14)0.0018 (10)
C220.0348 (13)0.0119 (10)0.0377 (14)0.0031 (9)0.0182 (11)0.0038 (9)
C230.0343 (12)0.0112 (10)0.0388 (14)0.0022 (9)0.0179 (11)0.0020 (9)
C270.0399 (14)0.0161 (10)0.0458 (15)0.0021 (10)0.0223 (12)0.0058 (10)
C260.0515 (16)0.0216 (12)0.0630 (18)0.0098 (11)0.0386 (15)0.0085 (11)
C250.0473 (15)0.0238 (13)0.0537 (17)0.0024 (11)0.0307 (14)0.0100 (11)
Li20.052 (3)0.0131 (17)0.053 (3)0.0028 (17)0.028 (2)0.0018 (17)
O250.0508 (12)0.0159 (8)0.0592 (13)0.0004 (8)0.0319 (10)0.0022 (8)
O10.0647 (14)0.0193 (9)0.0889 (17)0.0108 (9)0.0540 (13)0.0094 (10)
O150.0506 (13)0.0231 (10)0.0787 (16)0.0043 (10)0.0190 (11)0.0035 (10)
Li10.056 (3)0.0126 (19)0.065 (3)0.0019 (17)0.033 (2)0.0019 (18)
O20.0672 (14)0.0219 (9)0.0581 (13)0.0051 (9)0.0351 (12)0.0045 (9)
Geometric parameters (Å, º) top
N11—C161.321 (3)O24—C281.233 (3)
N11—C121.337 (3)Li2—O24ii2.024 (5)
Li1—O112.014 (5)O22—C271.250 (3)
Li1—N112.117 (4)N21—C261.322 (3)
Li1—O151.985 (6)N21—C221.340 (3)
Li1—O14i2.005 (5)O23—C281.267 (3)
Li1—N12i2.162 (4)O23—H2310.67 (6)
N12—C151.322 (3)C28—C231.524 (3)
N12—C131.342 (3)C22—C231.415 (3)
Li1—N12i2.162 (4)C22—C271.525 (3)
O14—C181.231 (3)C26—C251.387 (3)
Li1—O14i2.005 (5)C26—H260.9300
C13—C121.413 (3)C25—H250.9300
C13—C181.531 (3)Li2—O212.003 (5)
O13—C181.258 (3)Li2—N212.138 (4)
O11—C171.235 (3)Li2—O252.016 (5)
O12—C171.267 (3)Li2—O24ii2.024 (5)
O12—H1310.78 (6)Li2—N22ii2.162 (4)
C17—C121.519 (3)O25—H2510.86 (3)
C15—C161.391 (3)O25—H2520.87 (4)
C15—H150.9300O1—H10.82 (3)
C16—H160.9300O1—H20.91 (4)
O21—C271.251 (3)O15—H1520.97 (4)
N22—C251.312 (3)O15—H1510.72 (6)
N22—C231.333 (3)O2—H30.83 (3)
Li2—N22ii2.162 (4)O2—H40.93 (4)
C16—N11—C12118.9 (2)C23—C22—C27128.4 (2)
C16—N11—Li1125.8 (2)N22—C23—C22120.2 (2)
C12—N11—Li1114.20 (19)N22—C23—C28111.30 (18)
C15—N12—C13118.65 (19)C22—C23—C28128.5 (2)
C15—N12—Li1iii128.2 (2)O22—C27—O21124.1 (2)
C13—N12—Li1iii112.88 (19)O22—C27—C22119.8 (2)
C18—O14—Li1iii119.3 (2)O21—C27—C22116.0 (2)
N12—C13—C12119.8 (2)N21—C26—C25120.8 (2)
N12—C13—C18111.86 (18)N21—C26—H26119.6
C12—C13—C18128.4 (2)C25—C26—H26119.6
C17—O11—Li1119.2 (2)N22—C25—C26121.3 (2)
C17—O12—H131121 (5)N22—C25—H25119.3
O11—C17—O12122.2 (2)C26—C25—H25119.3
O11—C17—C12116.6 (2)O21—Li2—O2598.9 (2)
O12—C17—C12121.1 (2)O21—Li2—O24ii161.1 (3)
N11—C12—C13120.4 (2)O25—Li2—O24ii100.0 (2)
N11—C12—C17111.46 (18)O21—Li2—N2177.02 (15)
C13—C12—C17128.1 (2)O25—Li2—N21106.0 (2)
O14—C18—O13123.3 (2)O24ii—Li2—N2196.94 (19)
O14—C18—C13116.9 (2)O21—Li2—N22ii102.6 (2)
O13—C18—C13119.8 (2)O25—Li2—N22ii95.94 (17)
N12—C15—C16121.5 (2)O24ii—Li2—N22ii76.26 (15)
N12—C15—H15119.3N21—Li2—N22ii157.9 (3)
C16—C15—H15119.3Li2—O25—H251101 (2)
N11—C16—C15120.7 (2)Li2—O25—H252108 (2)
N11—C16—H16119.6H251—O25—H252114 (3)
C15—C16—H16119.6H1—O1—H2116 (3)
C27—O21—Li2120.3 (2)Li1—O15—H152118 (2)
C25—N22—C23119.0 (2)Li1—O15—H151122 (5)
C25—N22—Li2iv126.7 (2)H152—O15—H15196 (5)
C23—N22—Li2iv113.48 (19)O15—Li1—O14i99.9 (2)
C28—O24—Li2iv118.7 (2)O15—Li1—O11102.5 (2)
C26—N21—C22118.94 (19)O14i—Li1—O11157.6 (3)
C26—N21—Li2126.6 (2)O15—Li1—N1197.8 (2)
C22—N21—Li2114.44 (19)O14i—Li1—N11101.3 (2)
C28—O23—H231113 (5)O11—Li1—N1176.82 (16)
O24—C28—O23120.9 (2)O15—Li1—N12i105.8 (2)
O24—C28—C23117.7 (2)O14i—Li1—N12i76.87 (16)
O23—C28—C23121.3 (2)O11—Li1—N12i95.81 (19)
N21—C22—C23119.6 (2)N11—Li1—N12i156.3 (3)
N21—C22—C27112.03 (19)H3—O2—H4116 (3)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···O24ii0.83 (3)2.12 (4)2.943 (3)170 (3)
O2—H4···O13v0.93 (4)1.93 (4)2.841 (3)169 (3)
O25—H251···O1ii0.86 (3)1.83 (4)2.640 (3)155 (3)
O25—H252···O21vi0.87 (4)1.97 (4)2.819 (3)166 (3)
O15—H152···O25vii0.97 (4)1.93 (4)2.837 (3)154 (3)
O15—H151···O2viii0.72 (6)2.11 (6)2.816 (3)165 (7)
O12—H131···O130.78 (6)1.64 (6)2.393 (3)162 (7)
O23—H231···O220.67 (6)1.76 (6)2.416 (3)170 (7)
O1—H1···O110.82 (3)1.90 (3)2.717 (3)176 (3)
O1—H2···O22ix0.91 (4)1.90 (4)2.808 (3)174 (3)
Symmetry codes: (ii) x+1, y1/2, z+3/2; (v) x+1, y, z+1; (vi) x+1, y, z+2; (vii) x1, y+1/2, z1/2; (viii) x1, y, z; (ix) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Li(C6H3N2O4)(H2O)]·H2O
Mr210.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.673 (3), 13.816 (3), 10.956 (2)
β (°) 114.04 (3)
V3)1752.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.32 × 0.14 × 0.09
Data collection
DiffractometerKuma KM4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3775, 3595, 1811
Rint0.064
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.149, 0.94
No. of reflections3595
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.36

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li1—O112.014 (5)Li2—O212.003 (5)
Li1—N112.117 (4)Li2—N212.138 (4)
Li1—O151.985 (6)Li2—O252.016 (5)
Li1—O14i2.005 (5)Li2—O24ii2.024 (5)
Li1—N12i2.162 (4)Li2—N22ii2.162 (4)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···O24ii0.83 (3)2.12 (4)2.943 (3)170 (3)
O2—H4···O13iii0.93 (4)1.93 (4)2.841 (3)169 (3)
O25—H251···O1ii0.86 (3)1.83 (4)2.640 (3)155 (3)
O25—H252···O21iv0.87 (4)1.97 (4)2.819 (3)166 (3)
O15—H152···O25v0.97 (4)1.93 (4)2.837 (3)154 (3)
O15—H151···O2vi0.72 (6)2.11 (6)2.816 (3)165 (7)
O12—H131···O130.78 (6)1.64 (6)2.393 (3)162 (7)
O23—H231···O220.67 (6)1.76 (6)2.416 (3)170 (7)
O1—H1···O110.82 (3)1.90 (3)2.717 (3)176 (3)
O1—H2···O22vii0.91 (4)1.90 (4)2.808 (3)174 (3)
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z+1; (iv) x+1, y, z+2; (v) x1, y+1/2, z1/2; (vi) x1, y, z; (vii) x, y+1/2, z1/2.
 

References

First citationGryz, M., Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 931–935.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPremkumar, T., Govindarajan, S., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, o1305–o1306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPtasiewicz-Bąk, H. & Leciejewicz, J. (1999). Pol. J. Chem. 73, 1887–1893.  Google Scholar
First citationRichard, P., Tranqui, D. & Bertaut, E. F. (1974). Acta Cryst. B30, 628–633.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561–m1562.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m50–m51.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1128.  CrossRef Web of Science Google Scholar
First citationTombul, M. & Guven, K. (2009). Acta Cryst. E65, m1704–m1705.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1133-m1134
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds