organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′,3′,4′,5′,7′,8′-Hexa­fluoro-1,1′′,2,2′′,3,3′′,4,4′′-octa­phenyl-2′,6′-di­hydro­di­spiro­[cyclo­penta-1,3-diene-5,2′-naphthalene-6′,5′′-cyclo­penta-1′′,3′′-diene] di­chloro­methane monosolvate

aDepartment of Chemistry, School of Science, Beijing Technology and Business University, Beijing 100048, People's Republic of China
*Correspondence e-mail: lish@th.btbu.edu.cn

(Received 7 July 2011; accepted 27 July 2011; online 30 July 2011)

The mol­ecule of the title compound, C66H40F6·CH2Cl2, is centrosymmetric; the dihedral angle between the central fluorinated unit and the cyclo­penta­diene ring is 88.36 (7)°. The dihedral angles between the cyclo­penta­diene ring and the four surrounding phenyl rings are in the range 26.6 (1)–65.6 (1)°. Centrosymmetric cavities in the crystal structure are populated by disordered dichloro­methane solvent mol­ecules.

Related literature

For the synthesis of partially fluorinated polycyclic aromatic compounds, see: Cho et al. (2005[Cho, D. M., Parkin, S. R. & Watson, M. D. (2005). Org. Lett. 7, 1067-1068.]); Morrison et al. (2005[Morrison, D. J., Trefz, T. K., Piers, W. E., McDonald, R. & Parvez, M. (2005). J. Org. Chem. 70, 5309-5312.]); Swartz et al. (2005[Swartz, C. R., Parkin, S. R., Bullock, J. E., Anthony, J. E., Mayer, A. C. & Malliaras, G. G. (2005). Org. Lett. 7, 3163-3166.]); Wang et al. (2006[Wang, Z., Wang, C. & Xi, Z. (2006). Tetrahedron Lett. 47, 4157-4160.]); Chen et al. (2006[Chen, Z., Muller, P. & Swager, T. M. (2006). Org. Lett. 8, 273-276.]); Tannaci et al. (2007[Tannaci, J. F., Noji, M., McBee, J. & Tilley, T. D. (2007). J. Org. Chem. 72, 5567-5573.]). For a one-pot synthetic protocol for partially fluorinated acenes, see: Li et al. (2008[Li, S., Xiang, J., Mei, X. & Xu, C. (2008). Tetrahedron Lett. 49, 1690-1693.]).

[Scheme 1]

Experimental

Crystal data
  • C66H40F6·CH2Cl2

  • Mr = 1031.91

  • Triclinic, [P \overline 1]

  • a = 9.1652 (18) Å

  • b = 11.814 (2) Å

  • c = 12.353 (3) Å

  • α = 79.67 (3)°

  • β = 73.38 (3)°

  • γ = 84.91 (3)°

  • V = 1259.9 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.28 × 0.26 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.966

  • 10301 measured reflections

  • 5748 independent reflections

  • 4416 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.213

  • S = 1.15

  • 5748 reflections

  • 352 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation. Tokyo. Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polycyclic aromatic acenes have received considerable attention in the past few decades due to their potential for construction of organic electronic devices. During the synthesis of the partially fluorinated polycyclic aromatic compounds, the title molecule was isolated as a byproduct. Its centrosymmetric molecular structure is shown in Fig. 1. The dihedral angle between the central naphthalene ring and cyclopenta diene ring is 88.36 (7)°. A molecule of solvate dichloromethane was found disordered over crystallographic inversion center.

Related literature top

For the synthesis of partially fluorinated polycyclic aromatic compounds, see: Cho et al. (2005); Morrison et al. (2005); Swartz et al. (2005); Wang et al. (2006); Chen et al. (2006); Tannaci et al. (2007). For the one-pot synthetic protocol for partially fluorinated acenes, see: Li et al. (2008).

Experimental top

A mixture of granular lithium (18.2 mg, 2.6 mmol) and naphthalene (336.3 mg, 2.6 mmol) in THF was stirred at room temperature for 4 h. To the resulting solution of lithium naphthalenide, a solution of diphenylacetylene (311.6 mg, 1.75 mmol) in THF (4 ml) was added at room temperature. After stirring for 20 min, perfluoronaphthalene (123 mg, 0.45 mmol) in THF (5 ml) was added to the reaction mixture at room temperature. The reaction mixture was stirred for 1 h and then quenched with a saturated aqueous solution of NH4Cl. The mixture was extracted with ethyl ether. The organic layer was washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The resulting mixture was gradually passed through a silica gel column with different ratio of petroleum ether/ethyl acetate mixture as an eluent, followed by further purification by recrystallization (CH2Cl2/acetone) yielding pale yellow crystals.

Refinement top

H atoms were located in a difference map and then were placed geometrically and refined using a riding model with CH(dichloromethane) = 0.99Å and aromatic C–H = 0.95Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with solvate dichloromethane, showing atom labelling and 50% probability displacement ellipsoids for non-H atoms.
1',3',4',5',7',8'-hexafluoro-2,2'',3,3'',4,4'',5,5''- octaphenyldispiro[cyclopentane-1,2'-naphthalene-6',1''-cyclopentane]- 2,2'',4,4''-tetraene top
Crystal data top
C66H40F6·CH2Cl2Z = 1
Mr = 1031.91F(000) = 532
Triclinic, P1Dx = 1.360 Mg m3
a = 9.1652 (18) ÅMo Kα radiation, λ = 0.71069 Å
b = 11.814 (2) ÅCell parameters from 17659 reflections
c = 12.353 (3) Åθ = 1.8–27.5°
α = 79.67 (3)°µ = 0.20 mm1
β = 73.38 (3)°T = 173 K
γ = 84.91 (3)°Block, pale yellow
V = 1259.9 (4) Å30.28 × 0.26 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
5748 independent reflections
Radiation source: fine-focus sealed tube4416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.947, Tmax = 0.966k = 1515
10301 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.7579P]
where P = (Fo2 + 2Fc2)/3
5748 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.42 e Å3
Crystal data top
C66H40F6·CH2Cl2γ = 84.91 (3)°
Mr = 1031.91V = 1259.9 (4) Å3
Triclinic, P1Z = 1
a = 9.1652 (18) ÅMo Kα radiation
b = 11.814 (2) ŵ = 0.20 mm1
c = 12.353 (3) ÅT = 173 K
α = 79.67 (3)°0.28 × 0.26 × 0.18 mm
β = 73.38 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
5748 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4416 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.966Rint = 0.073
10301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0923 restraints
wR(F2) = 0.213H-atom parameters constrained
S = 1.15Δρmax = 0.36 e Å3
5748 reflectionsΔρmin = 0.42 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.1344 (2)0.35667 (14)0.68083 (15)0.0317 (4)
F20.0308 (2)0.55799 (15)0.71831 (14)0.0308 (4)
F30.18434 (19)0.19572 (14)0.54824 (15)0.0301 (4)
C40.0195 (3)0.4898 (2)0.5551 (2)0.0206 (6)
C50.0901 (3)0.3773 (2)0.5839 (2)0.0224 (6)
C60.2157 (3)0.2222 (2)0.2463 (2)0.0215 (6)
C70.0815 (3)0.3093 (2)0.4048 (2)0.0221 (6)
C80.1140 (3)0.2963 (2)0.5183 (2)0.0226 (6)
C90.0066 (3)0.5733 (2)0.6191 (2)0.0224 (6)
C100.0675 (3)0.1649 (2)0.2990 (2)0.0217 (6)
C110.0668 (3)0.1207 (3)0.2037 (3)0.0276 (6)
H110.12540.19120.20250.033*
C120.2288 (3)0.3027 (2)0.3068 (2)0.0223 (6)
C130.0118 (3)0.2112 (2)0.3926 (2)0.0213 (6)
C140.1075 (3)0.0321 (3)0.2480 (2)0.0245 (6)
H140.19520.04180.27570.029*
C150.1602 (3)0.1787 (2)0.4738 (2)0.0221 (6)
C160.3274 (3)0.1966 (2)0.1389 (2)0.0235 (6)
C170.2780 (3)0.1859 (3)0.0443 (3)0.0258 (6)
H170.17210.19190.04990.031*
C180.0215 (3)0.0706 (2)0.2524 (2)0.0207 (6)
C190.4833 (3)0.1866 (3)0.1293 (3)0.0304 (7)
H190.51890.19280.19300.036*
C200.3517 (3)0.0349 (3)0.5605 (3)0.0310 (7)
H200.38340.04130.56880.037*
C210.2565 (3)0.2554 (3)0.5369 (3)0.0294 (7)
H210.22390.33080.53140.035*
C220.3820 (3)0.1667 (3)0.0578 (3)0.0307 (7)
H220.34740.16030.12190.037*
C230.2089 (3)0.0658 (3)0.4899 (3)0.0269 (6)
H230.14290.00970.45190.032*
C240.3519 (3)0.3845 (2)0.2820 (2)0.0234 (6)
C250.4435 (4)0.3824 (3)0.3557 (3)0.0347 (7)
H250.42570.32880.42490.042*
C260.1052 (3)0.0846 (3)0.2092 (3)0.0289 (7)
H260.16470.15460.21120.035*
C270.1446 (4)0.0030 (3)0.1637 (3)0.0365 (8)
H270.23050.00760.13390.044*
C280.4482 (3)0.1143 (3)0.6187 (3)0.0334 (7)
H280.54690.09340.66560.040*
C290.0598 (4)0.1062 (3)0.1611 (3)0.0323 (7)
H290.08790.16650.13050.039*
C310.3810 (4)0.4643 (3)0.1820 (3)0.0317 (7)
H310.31920.46750.13140.038*
C320.5360 (3)0.1567 (3)0.0658 (3)0.0327 (7)
H320.60710.14240.13530.039*
C330.4987 (4)0.5394 (3)0.1546 (3)0.0400 (8)
H330.51750.59330.08560.048*
C340.3997 (3)0.2246 (3)0.6082 (3)0.0338 (7)
H340.46400.27910.64960.041*
C350.5869 (3)0.1674 (3)0.0263 (3)0.0355 (8)
H350.69300.16180.01980.043*
C360.5888 (4)0.5358 (3)0.2279 (3)0.0408 (8)
H360.67020.58670.20900.049*
C370.5606 (4)0.4587 (3)0.3276 (3)0.0417 (8)
H370.62180.45720.37820.050*
Cl10.0868 (8)0.3795 (4)0.0111 (8)0.117 (2)0.50
Cl20.0383 (12)0.5927 (6)0.0056 (8)0.162 (4)0.50
C380.0563 (14)0.4593 (14)0.0020 (13)0.094 (4)0.50
H38A0.08150.42610.07030.113*0.50
H38B0.14710.44480.06510.113*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0465 (10)0.0238 (9)0.0303 (9)0.0017 (8)0.0210 (8)0.0035 (8)
F20.0434 (10)0.0266 (9)0.0272 (9)0.0028 (7)0.0160 (8)0.0084 (8)
F30.0380 (10)0.0196 (8)0.0332 (10)0.0042 (7)0.0123 (8)0.0041 (7)
C40.0216 (13)0.0167 (12)0.0233 (14)0.0045 (10)0.0064 (11)0.0008 (11)
C50.0219 (13)0.0230 (14)0.0217 (13)0.0038 (11)0.0060 (10)0.0005 (11)
C60.0190 (13)0.0217 (13)0.0243 (14)0.0023 (10)0.0060 (10)0.0040 (11)
C70.0228 (13)0.0180 (13)0.0248 (14)0.0029 (10)0.0041 (11)0.0047 (11)
C80.0229 (13)0.0169 (13)0.0269 (15)0.0019 (10)0.0063 (11)0.0010 (11)
C90.0235 (13)0.0219 (14)0.0221 (14)0.0036 (11)0.0064 (11)0.0023 (11)
C100.0183 (12)0.0186 (13)0.0283 (14)0.0002 (10)0.0072 (11)0.0032 (11)
C110.0273 (14)0.0232 (15)0.0300 (15)0.0016 (11)0.0019 (12)0.0081 (13)
C120.0214 (13)0.0224 (14)0.0226 (14)0.0018 (11)0.0060 (11)0.0027 (12)
C130.0205 (13)0.0171 (13)0.0259 (14)0.0025 (10)0.0063 (11)0.0021 (11)
C140.0207 (13)0.0276 (15)0.0253 (14)0.0000 (11)0.0049 (11)0.0079 (12)
C150.0227 (13)0.0213 (13)0.0223 (13)0.0028 (10)0.0063 (11)0.0024 (11)
C160.0255 (14)0.0176 (13)0.0246 (14)0.0028 (11)0.0017 (11)0.0039 (11)
C170.0201 (13)0.0286 (15)0.0281 (15)0.0068 (11)0.0037 (11)0.0050 (12)
C180.0187 (12)0.0223 (13)0.0205 (13)0.0046 (10)0.0026 (10)0.0045 (11)
C190.0262 (15)0.0327 (16)0.0299 (16)0.0008 (12)0.0075 (12)0.0000 (13)
C200.0316 (15)0.0295 (16)0.0313 (16)0.0106 (12)0.0054 (13)0.0044 (13)
C210.0269 (15)0.0244 (15)0.0341 (16)0.0024 (11)0.0021 (12)0.0068 (13)
C220.0336 (16)0.0306 (16)0.0277 (16)0.0072 (13)0.0043 (13)0.0079 (13)
C230.0261 (14)0.0240 (14)0.0287 (15)0.0023 (11)0.0039 (12)0.0046 (12)
C240.0218 (13)0.0210 (13)0.0270 (14)0.0029 (10)0.0034 (11)0.0072 (12)
C250.0331 (16)0.0360 (17)0.0350 (17)0.0132 (13)0.0106 (13)0.0023 (15)
C260.0291 (15)0.0222 (14)0.0386 (17)0.0040 (11)0.0155 (13)0.0016 (13)
C270.0411 (18)0.0307 (17)0.0441 (19)0.0085 (14)0.0243 (15)0.0011 (15)
C280.0227 (14)0.0416 (19)0.0320 (16)0.0069 (13)0.0019 (12)0.0023 (14)
C290.0419 (18)0.0266 (16)0.0323 (16)0.0133 (13)0.0136 (14)0.0036 (14)
C310.0347 (16)0.0268 (15)0.0356 (17)0.0078 (13)0.0127 (13)0.0017 (14)
C320.0293 (15)0.0350 (17)0.0271 (15)0.0004 (13)0.0043 (12)0.0077 (14)
C330.047 (2)0.0312 (17)0.0377 (19)0.0139 (15)0.0073 (15)0.0023 (15)
C340.0295 (16)0.0342 (17)0.0331 (17)0.0017 (13)0.0001 (13)0.0095 (14)
C350.0223 (14)0.0395 (19)0.0370 (18)0.0033 (13)0.0028 (13)0.0027 (15)
C360.0344 (17)0.0363 (18)0.049 (2)0.0212 (14)0.0042 (15)0.0032 (16)
C370.0335 (17)0.050 (2)0.048 (2)0.0134 (15)0.0175 (15)0.0084 (18)
Cl10.127 (3)0.065 (3)0.176 (6)0.009 (3)0.088 (3)0.003 (3)
Cl20.279 (11)0.087 (3)0.127 (4)0.045 (5)0.064 (7)0.003 (3)
C380.072 (7)0.122 (8)0.096 (9)0.045 (6)0.029 (7)0.055 (10)
Geometric parameters (Å, º) top
F1—C51.346 (3)C20—C231.387 (4)
F2—C91.343 (3)C20—H200.9500
F3—C81.344 (3)C21—C341.392 (4)
C4—C91.335 (4)C21—H210.9500
C4—C51.457 (4)C22—C321.382 (4)
C4—C4i1.478 (5)C22—H220.9500
C5—C81.327 (4)C23—H230.9500
C6—C121.343 (4)C24—C311.388 (4)
C6—C161.487 (4)C24—C251.400 (4)
C6—C101.492 (4)C25—C371.389 (4)
C7—C81.494 (4)C25—H250.9500
C7—C9i1.511 (4)C26—C271.381 (4)
C7—C121.541 (4)C26—H260.9500
C7—C131.552 (4)C27—C291.387 (5)
C9—C7i1.511 (4)C27—H270.9500
C10—C131.357 (4)C28—C341.387 (5)
C10—C181.484 (4)C28—H280.9500
C11—C141.388 (4)C29—H290.9500
C11—C291.391 (4)C31—C331.386 (4)
C11—H110.9500C31—H310.9500
C12—C241.480 (4)C32—C351.377 (5)
C13—C151.475 (4)C32—H320.9500
C14—C181.388 (4)C33—C361.382 (5)
C14—H140.9500C33—H330.9500
C15—C211.388 (4)C34—H340.9500
C15—C231.407 (4)C35—H350.9500
C16—C191.396 (4)C36—C371.368 (5)
C16—C171.397 (4)C36—H360.9500
C17—C221.388 (4)C37—H370.9500
C17—H170.9500Cl1—C381.721 (16)
C18—C261.396 (4)Cl2—C381.564 (17)
C19—C351.394 (4)C38—H38A0.9900
C19—H190.9500C38—H38B0.9900
C20—C281.382 (4)
C9—C4—C5124.5 (3)C15—C21—C34121.7 (3)
C9—C4—C4i119.9 (3)C15—C21—H21119.1
C5—C4—C4i115.5 (3)C34—C21—H21119.1
C8—C5—F1119.4 (3)C32—C22—C17119.8 (3)
C8—C5—C4122.8 (3)C32—C22—H22120.1
F1—C5—C4117.8 (2)C17—C22—H22120.1
C12—C6—C16125.7 (3)C20—C23—C15121.0 (3)
C12—C6—C10110.2 (2)C20—C23—H23119.5
C16—C6—C10124.1 (2)C15—C23—H23119.5
C8—C7—C9i108.8 (2)C31—C24—C25118.4 (3)
C8—C7—C12111.7 (2)C31—C24—C12119.8 (3)
C9i—C7—C12107.0 (2)C25—C24—C12121.8 (3)
C8—C7—C13114.2 (2)C37—C25—C24120.0 (3)
C9i—C7—C13112.2 (2)C37—C25—H25120.0
C12—C7—C13102.6 (2)C24—C25—H25120.0
C5—C8—F3119.7 (3)C27—C26—C18120.4 (3)
C5—C8—C7125.6 (3)C27—C26—H26119.8
F3—C8—C7114.6 (2)C18—C26—H26119.8
C4—C9—F2121.1 (2)C26—C27—C29120.5 (3)
C4—C9—C7i127.2 (3)C26—C27—H27119.7
F2—C9—C7i111.6 (2)C29—C27—H27119.7
C13—C10—C18127.5 (2)C20—C28—C34119.4 (3)
C13—C10—C6109.8 (2)C20—C28—H28120.3
C18—C10—C6122.7 (2)C34—C28—H28120.3
C14—C11—C29119.9 (3)C27—C29—C11119.5 (3)
C14—C11—H11120.1C27—C29—H29120.2
C29—C11—H11120.1C11—C29—H29120.2
C6—C12—C24128.6 (3)C33—C31—C24121.0 (3)
C6—C12—C7109.0 (2)C33—C31—H31119.5
C24—C12—C7122.1 (2)C24—C31—H31119.5
C10—C13—C15128.9 (2)C35—C32—C22120.3 (3)
C10—C13—C7108.2 (2)C35—C32—H32119.8
C15—C13—C7122.9 (2)C22—C32—H32119.8
C11—C14—C18120.8 (3)C36—C33—C31119.9 (3)
C11—C14—H14119.6C36—C33—H33120.0
C18—C14—H14119.6C31—C33—H33120.0
C21—C15—C23117.3 (3)C28—C34—C21119.9 (3)
C21—C15—C13122.8 (3)C28—C34—H34120.0
C23—C15—C13119.9 (3)C21—C34—H34120.0
C19—C16—C17118.8 (3)C32—C35—C19120.3 (3)
C19—C16—C6120.9 (3)C32—C35—H35119.9
C17—C16—C6120.3 (2)C19—C35—H35119.9
C22—C17—C16120.7 (3)C37—C36—C33119.8 (3)
C22—C17—H17119.7C37—C36—H36120.1
C16—C17—H17119.7C33—C36—H36120.1
C14—C18—C26118.9 (3)C36—C37—C25120.9 (3)
C14—C18—C10120.0 (2)C36—C37—H37119.6
C26—C18—C10121.0 (2)C25—C37—H37119.6
C35—C19—C16120.1 (3)Cl2—C38—Cl1122.2 (8)
C35—C19—H19119.9Cl2—C38—H38A106.8
C16—C19—H19119.9Cl1—C38—H38A106.8
C28—C20—C23120.5 (3)Cl2—C38—H38B106.8
C28—C20—H20119.7Cl1—C38—H38B106.8
C23—C20—H20119.7H38A—C38—H38B106.6
C9—C4—C5—C8179.9 (3)C10—C13—C15—C2326.1 (4)
C4i—C4—C5—C82.1 (4)C7—C13—C15—C23153.3 (3)
C9—C4—C5—F11.2 (4)C12—C6—C16—C1945.4 (4)
C4i—C4—C5—F1176.9 (3)C10—C6—C16—C19137.8 (3)
F1—C5—C8—F31.1 (4)C12—C6—C16—C17132.5 (3)
C4—C5—C8—F3177.8 (2)C10—C6—C16—C1744.3 (4)
F1—C5—C8—C7175.4 (2)C19—C16—C17—C220.6 (4)
C4—C5—C8—C73.5 (4)C6—C16—C17—C22177.4 (3)
C9i—C7—C8—C54.0 (4)C11—C14—C18—C261.3 (4)
C12—C7—C8—C5113.9 (3)C11—C14—C18—C10179.4 (3)
C13—C7—C8—C5130.2 (3)C13—C10—C18—C14117.4 (3)
C9i—C7—C8—F3178.5 (2)C6—C10—C18—C1461.8 (4)
C12—C7—C8—F360.6 (3)C13—C10—C18—C2664.6 (4)
C13—C7—C8—F355.3 (3)C6—C10—C18—C26116.2 (3)
C5—C4—C9—F20.6 (4)C17—C16—C19—C350.7 (4)
C4i—C4—C9—F2178.5 (3)C6—C16—C19—C35177.3 (3)
C5—C4—C9—C7i178.9 (3)C23—C15—C21—C343.9 (4)
C4i—C4—C9—C7i3.2 (5)C13—C15—C21—C34176.4 (3)
C12—C6—C10—C130.4 (3)C16—C17—C22—C320.7 (5)
C16—C6—C10—C13176.8 (3)C28—C20—C23—C151.5 (5)
C12—C6—C10—C18178.9 (3)C21—C15—C23—C204.1 (4)
C16—C6—C10—C183.9 (4)C13—C15—C23—C20176.1 (3)
C16—C6—C12—C241.1 (5)C6—C12—C24—C3161.1 (4)
C10—C6—C12—C24176.1 (3)C7—C12—C24—C31111.4 (3)
C16—C6—C12—C7174.3 (3)C6—C12—C24—C25117.3 (4)
C10—C6—C12—C72.8 (3)C7—C12—C24—C2570.3 (4)
C8—C7—C12—C6126.6 (3)C31—C24—C25—C370.3 (5)
C9i—C7—C12—C6114.4 (3)C12—C24—C25—C37178.1 (3)
C13—C7—C12—C63.9 (3)C14—C18—C26—C270.5 (4)
C8—C7—C12—C2459.6 (3)C10—C18—C26—C27178.5 (3)
C9i—C7—C12—C2459.3 (3)C18—C26—C27—C290.6 (5)
C13—C7—C12—C24177.6 (2)C23—C20—C28—C341.5 (5)
C18—C10—C13—C152.0 (5)C26—C27—C29—C110.7 (5)
C6—C10—C13—C15177.3 (3)C14—C11—C29—C270.2 (5)
C18—C10—C13—C7178.5 (3)C25—C24—C31—C330.7 (5)
C6—C10—C13—C72.1 (3)C12—C24—C31—C33177.8 (3)
C8—C7—C13—C10124.6 (3)C17—C22—C32—C350.9 (5)
C9i—C7—C13—C10111.0 (3)C24—C31—C33—C360.3 (5)
C12—C7—C13—C103.6 (3)C20—C28—C34—C211.8 (5)
C8—C7—C13—C1554.9 (3)C15—C21—C34—C281.0 (5)
C9i—C7—C13—C1569.5 (3)C22—C32—C35—C191.1 (5)
C12—C7—C13—C15175.9 (2)C16—C19—C35—C320.9 (5)
C29—C11—C14—C181.2 (4)C31—C33—C36—C370.5 (6)
C10—C13—C15—C21154.1 (3)C33—C36—C37—C250.9 (6)
C7—C13—C15—C2126.5 (4)C24—C25—C37—C360.5 (5)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC66H40F6·CH2Cl2
Mr1031.91
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.1652 (18), 11.814 (2), 12.353 (3)
α, β, γ (°)79.67 (3), 73.38 (3), 84.91 (3)
V3)1259.9 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.28 × 0.26 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.947, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
10301, 5748, 4416
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.213, 1.15
No. of reflections5748
No. of parameters352
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationChen, Z., Muller, P. & Swager, T. M. (2006). Org. Lett. 8, 273–276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCho, D. M., Parkin, S. R. & Watson, M. D. (2005). Org. Lett. 7, 1067–1068.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, S., Xiang, J., Mei, X. & Xu, C. (2008). Tetrahedron Lett. 49, 1690–1693.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorrison, D. J., Trefz, T. K., Piers, W. E., McDonald, R. & Parvez, M. (2005). J. Org. Chem. 70, 5309–5312.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation. Tokyo. Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwartz, C. R., Parkin, S. R., Bullock, J. E., Anthony, J. E., Mayer, A. C. & Malliaras, G. G. (2005). Org. Lett. 7, 3163–3166.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTannaci, J. F., Noji, M., McBee, J. & Tilley, T. D. (2007). J. Org. Chem. 72, 5567–5573.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, Z., Wang, C. & Xi, Z. (2006). Tetrahedron Lett. 47, 4157–4160.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds