organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-5-(2,3,4-trimeth­­oxy­benzyl­­idene)-1,3-dioxane-4,6-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 27 June 2011; accepted 1 July 2011; online 6 July 2011)

The title compound, C16H18O7, was prepared by the reaction of 2,2-dimethyl-1,3-dioxane-4,6-dione and 2,3,4-trimeth­oxy­benzaldehyde. The 1,3-dioxane ring is in a slightly distorted boat conformation. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Zeng (2011a[Zeng, W.-L. (2011a). Acta Cryst. E67, o1351.],b[Zeng, W.-L. (2011b). Acta Cryst. E67, o478.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O7

  • Mr = 322.30

  • Monoclinic, P 21 /c

  • a = 12.722 (3) Å

  • b = 9.2669 (19) Å

  • c = 13.537 (3) Å

  • β = 98.83 (3)°

  • V = 1577.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 14870 measured reflections

  • 3613 independent reflections

  • 3073 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.131

  • S = 1.03

  • 3613 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O4i 0.96 2.46 3.392 (2) 163
C16—H16B⋯O5ii 0.96 2.58 3.397 (2) 143
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In previous papers the crystal structures of 2,2-Dimethyl-5-[(5-methylfuran-2-yl)methylidene]-1,3- dioxane-4,6-dione and (5-(3,4-Dimethylbenzylidene)-2,2- dimethyl-1,3-dioxane-4,6-dione are reported (Zeng. 2011a,b). As part of the search for new Meldrum's acids, the molecular structure of title compound (I) has been synthesized and its crystal structure is reported herein. The crystal structure of the title compound is shown in Fig. 1. The 1,3-dioxane ring exhibits a slightly distorted boat conformation. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For related structures, see: Zeng (2011a,b).

Experimental top

A mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303K. After dissolving, propan-2-one (3.48 g, 0.06 mol) was added dropwise into the solution for 1 h. The reaction was allowed to proceed for 2 h. The mixture was cooled and filtered, and then an ethanol solution of 2,3,4-trimethoxybenzaldehyde (11.76g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an petroleum ether-ethylacetate (3:1 v/v) solution of (I) at room temperature over a period of several days.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.96 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
2,2-Dimethyl-5-(2,3,4-trimethoxybenzylidene)-1,3-dioxane-4,6-dione top
Crystal data top
C16H18O7F(000) = 680
Mr = 322.30Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3073 reflections
a = 12.722 (3) Åθ = 3.0–27.5°
b = 9.2669 (19) ŵ = 0.11 mm1
c = 13.537 (3) ÅT = 293 K
β = 98.83 (3)°Block, yellow
V = 1577.0 (5) Å30.22 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3073 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1616
14870 measured reflectionsk = 1210
3613 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0828P)2 + 0.1973P]
where P = (Fo2 + 2Fc2)/3
3613 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H18O7V = 1577.0 (5) Å3
Mr = 322.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.722 (3) ŵ = 0.11 mm1
b = 9.2669 (19) ÅT = 293 K
c = 13.537 (3) Å0.22 × 0.18 × 0.16 mm
β = 98.83 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3073 reflections with I > 2σ(I)
14870 measured reflectionsRint = 0.033
3613 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
3613 reflectionsΔρmin = 0.25 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.52394 (8)0.12332 (10)0.25642 (7)0.0477 (2)
O30.30226 (7)0.11922 (11)0.24083 (6)0.0475 (2)
O70.01954 (7)0.41504 (10)0.11404 (7)0.0455 (2)
O50.04628 (7)0.11016 (11)0.07142 (6)0.0470 (2)
O60.09078 (7)0.23104 (10)0.06837 (6)0.0423 (2)
O40.17489 (8)0.46436 (11)0.02499 (9)0.0549 (3)
O10.61501 (7)0.18353 (12)0.09474 (8)0.0535 (3)
C140.10299 (10)0.38024 (13)0.04308 (9)0.0390 (3)
C90.35150 (10)0.14559 (12)0.15946 (9)0.0373 (3)
C130.09149 (9)0.24390 (13)0.01095 (8)0.0361 (3)
C120.01832 (9)0.18810 (13)0.00905 (8)0.0361 (3)
C80.46155 (10)0.14555 (13)0.16543 (9)0.0387 (3)
C40.28552 (10)0.18482 (13)0.07028 (9)0.0390 (3)
C70.50721 (10)0.18263 (13)0.08077 (10)0.0413 (3)
C60.44249 (11)0.21837 (16)0.00816 (10)0.0467 (3)
H6A0.47260.24080.06470.056*
C50.33352 (11)0.22040 (15)0.01229 (10)0.0455 (3)
H5A0.29100.24620.07180.055*
C100.17081 (10)0.17055 (14)0.06602 (9)0.0395 (3)
H10A0.14930.10020.10760.047*
C110.05435 (10)0.30305 (14)0.15114 (9)0.0414 (3)
C150.15002 (13)0.37887 (18)0.20694 (12)0.0561 (4)
H15A0.17810.44450.16280.084*
H15B0.20330.30900.23160.084*
H15C0.12960.43150.26210.084*
C30.32531 (14)0.01527 (18)0.29164 (13)0.0626 (4)
H3A0.28610.02160.34670.094*
H3B0.40010.02100.31620.094*
H3C0.30520.09340.24610.094*
C20.58511 (12)0.00798 (17)0.26325 (14)0.0616 (4)
H2A0.62620.01560.32870.092*
H2B0.63200.00680.21410.092*
H2C0.53790.08910.25150.092*
C160.00279 (14)0.19646 (17)0.21299 (10)0.0563 (4)
H16A0.05740.15300.17240.084*
H16B0.02030.24560.26830.084*
H16C0.05320.12300.23770.084*
C10.66751 (13)0.2140 (2)0.01138 (14)0.0695 (5)
H1A0.74310.21120.03210.104*
H1B0.64710.30820.01430.104*
H1C0.64760.14320.03990.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0458 (5)0.0472 (5)0.0461 (5)0.0004 (4)0.0054 (4)0.0007 (4)
O30.0486 (5)0.0564 (6)0.0394 (5)0.0052 (4)0.0130 (4)0.0080 (4)
O70.0446 (5)0.0398 (5)0.0518 (5)0.0001 (4)0.0062 (4)0.0080 (4)
O50.0473 (5)0.0564 (5)0.0399 (5)0.0060 (4)0.0141 (4)0.0081 (4)
O60.0350 (4)0.0527 (5)0.0392 (4)0.0028 (4)0.0058 (3)0.0051 (4)
O40.0456 (5)0.0437 (5)0.0765 (7)0.0090 (4)0.0134 (5)0.0020 (5)
O10.0344 (5)0.0634 (6)0.0636 (6)0.0038 (4)0.0109 (4)0.0018 (5)
C140.0361 (6)0.0377 (6)0.0455 (6)0.0008 (5)0.0134 (5)0.0020 (5)
C90.0402 (6)0.0364 (6)0.0360 (6)0.0007 (5)0.0082 (5)0.0009 (4)
C130.0350 (6)0.0407 (6)0.0336 (5)0.0019 (4)0.0082 (4)0.0017 (4)
C120.0356 (6)0.0412 (6)0.0329 (5)0.0005 (4)0.0096 (4)0.0022 (4)
C80.0385 (6)0.0352 (6)0.0408 (6)0.0010 (5)0.0012 (5)0.0018 (4)
C40.0358 (6)0.0426 (6)0.0389 (6)0.0011 (5)0.0072 (5)0.0003 (5)
C70.0359 (6)0.0390 (6)0.0499 (7)0.0017 (5)0.0097 (5)0.0046 (5)
C60.0438 (7)0.0554 (7)0.0435 (7)0.0023 (6)0.0149 (5)0.0022 (6)
C50.0421 (7)0.0567 (8)0.0381 (6)0.0051 (6)0.0072 (5)0.0042 (5)
C100.0390 (6)0.0454 (6)0.0349 (5)0.0004 (5)0.0079 (5)0.0008 (5)
C110.0442 (7)0.0437 (6)0.0364 (6)0.0003 (5)0.0063 (5)0.0044 (5)
C150.0520 (8)0.0605 (9)0.0524 (8)0.0052 (6)0.0034 (6)0.0089 (6)
C30.0726 (10)0.0571 (9)0.0623 (9)0.0038 (7)0.0240 (8)0.0149 (7)
C20.0482 (8)0.0536 (8)0.0775 (10)0.0039 (6)0.0074 (7)0.0128 (7)
C160.0732 (10)0.0582 (8)0.0390 (6)0.0102 (7)0.0131 (6)0.0002 (6)
C10.0452 (8)0.0925 (13)0.0762 (11)0.0078 (8)0.0267 (8)0.0085 (9)
Geometric parameters (Å, º) top
O2—C81.3745 (15)C6—C51.3789 (19)
O2—C21.4396 (18)C6—H6A0.9300
O3—C91.3702 (14)C5—H5A0.9300
O3—C31.4319 (18)C10—H10A0.9300
O7—C141.3567 (16)C11—C151.5044 (19)
O7—C111.4379 (16)C11—C161.5085 (19)
O5—C121.2056 (14)C15—H15A0.9600
O6—C121.3453 (15)C15—H15B0.9600
O6—C111.4406 (14)C15—H15C0.9600
O4—C141.1981 (15)C3—H3A0.9600
O1—C71.3553 (15)C3—H3B0.9600
O1—C11.4251 (19)C3—H3C0.9600
C14—C131.4783 (17)C2—H2A0.9600
C9—C81.3898 (17)C2—H2B0.9600
C9—C41.4082 (17)C2—H2C0.9600
C13—C101.3436 (17)C16—H16A0.9600
C13—C121.4861 (16)C16—H16B0.9600
C8—C71.4048 (18)C16—H16C0.9600
C4—C51.3931 (17)C1—H1A0.9600
C4—C101.4576 (17)C1—H1B0.9600
C7—C61.3901 (19)C1—H1C0.9600
C8—O2—C2114.60 (11)O7—C11—C15105.86 (11)
C9—O3—C3117.14 (11)O6—C11—C15105.95 (11)
C14—O7—C11118.31 (10)O7—C11—C16110.48 (11)
C12—O6—C11118.63 (9)O6—C11—C16110.34 (11)
C7—O1—C1118.55 (12)C15—C11—C16114.48 (12)
O4—C14—O7118.68 (12)C11—C15—H15A109.5
O4—C14—C13125.83 (12)C11—C15—H15B109.5
O7—C14—C13115.29 (10)H15A—C15—H15B109.5
O3—C9—C8122.28 (11)C11—C15—H15C109.5
O3—C9—C4116.70 (11)H15A—C15—H15C109.5
C8—C9—C4120.82 (11)H15B—C15—H15C109.5
C10—C13—C14125.73 (11)O3—C3—H3A109.5
C10—C13—C12117.23 (11)O3—C3—H3B109.5
C14—C13—C12116.94 (10)H3A—C3—H3B109.5
O5—C12—O6118.84 (11)O3—C3—H3C109.5
O5—C12—C13125.03 (11)H3A—C3—H3C109.5
O6—C12—C13116.13 (10)H3B—C3—H3C109.5
O2—C8—C9119.34 (11)O2—C2—H2A109.5
O2—C8—C7120.90 (11)O2—C2—H2B109.5
C9—C8—C7119.44 (11)H2A—C2—H2B109.5
C5—C4—C9118.16 (11)O2—C2—H2C109.5
C5—C4—C10123.32 (12)H2A—C2—H2C109.5
C9—C4—C10118.16 (11)H2B—C2—H2C109.5
O1—C7—C6124.85 (12)C11—C16—H16A109.5
O1—C7—C8115.09 (12)C11—C16—H16B109.5
C6—C7—C8120.04 (11)H16A—C16—H16B109.5
C5—C6—C7119.77 (12)C11—C16—H16C109.5
C5—C6—H6A120.1H16A—C16—H16C109.5
C7—C6—H6A120.1H16B—C16—H16C109.5
C6—C5—C4121.74 (12)O1—C1—H1A109.5
C6—C5—H5A119.1O1—C1—H1B109.5
C4—C5—H5A119.1H1A—C1—H1B109.5
C13—C10—C4129.65 (11)O1—C1—H1C109.5
C13—C10—H10A115.2H1A—C1—H1C109.5
C4—C10—H10A115.2H1B—C1—H1C109.5
O7—C11—O6109.50 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O4i0.962.463.392 (2)163
C16—H16B···O5ii0.962.583.397 (2)143
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H18O7
Mr322.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.722 (3), 9.2669 (19), 13.537 (3)
β (°) 98.83 (3)
V3)1577.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14870, 3613, 3073
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.03
No. of reflections3613
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O4i0.962.463.392 (2)163
C16—H16B···O5ii0.962.583.397 (2)143
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W.-L. (2011a). Acta Cryst. E67, o1351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2011b). Acta Cryst. E67, o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds