organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di-n-propyl-1,1′-[p-phenyl­enebis(methyl­ene)]diimidazolium dibromide

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 June 2011; accepted 1 July 2011; online 6 July 2011)

The asymmetric unit of the title compound, C20H28N42+·2Br, consists of half a 3,3′-di-n-propyl-1,1′-[p-phenyl­enenis(methyl­ene)]diimidazolium cation and a bromide anion. The cation is located on an inversion center and adopts an ⋯AAAtrans conformation. In the crystal, the cation is linked to the anions via weak C—H⋯Br hydrogen bonds.

Related literature

For details of N-heterocyclic carbenes, see: Herrmann et al. (1998[Herrmann, W. A., Reisinger, C.-P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93-96.]); Zhang & Trudell (2000[Zhang, C. & Trudell, M. L. (2000). Tetrahedron Lett. 41, 595-598.]); Lee et al. (2004[Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807-5825.]). For structures with similar ⋯AAA⋯ trans conformations, see: Chen et al. (2007[Chen, H.-C., Hu, H.-L., Chan, Z.-K., Yeh, C.-W., Jia, H.-W., Wu, C.-P., Chen, J.-D. & Wang, J.-C. (2007). Cryst. Growth Des. 7, 698-704.]); Cheng et al. (2009[Cheng, P.-C., Wu, C.-J., Chen, H.-C., Chen, J.-D. & Wang, J.-C. (2009). Acta Cryst. E65, o1825.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28N42+·2Br

  • Mr = 484.28

  • Monoclinic, P 21 /c

  • a = 8.9420 (2) Å

  • b = 11.2443 (2) Å

  • c = 11.3536 (2) Å

  • β = 109.716 (1)°

  • V = 1074.64 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.78 mm−1

  • T = 296 K

  • 0.37 × 0.35 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.338, Tmax = 0.397

  • 11799 measured reflections

  • 3127 independent reflections

  • 2409 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.078

  • S = 1.04

  • 3127 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Br1 0.93 2.77 3.6222 (18) 152

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Heterocyclic carbene (NHC) ligands have been shown to have wide applicability in coordination chemistry and catalysis. Current research efforts are devoted to the discovery of efficient metal NHC catalysts. For example, chelating palladium complexes of bis(NHC) carbenes have been found to be efficient catalysts in C–C coupling reactions (Herrmann et al., 1998; Zhang & Trudell, 2000). NHC ligands are generally accessible via the deprotonation of imidazolium salts. The preparation of chelating bis(NHC) ligands are also receiving much attention, since they can provide extra air and moisture stability for the metal centers. Several bis(imidazolium) halides, as bis(NHC) ligand precursors, have been synthesized and structurally characterized by us (Lee et al., 2004). We report here the structure of 3,3'-Di-n-propyl-1,1'-(p- phenylenedimethylene)diimidazolium dibromide, (I).

The asymmetric unit of the title compound, consists of a half of the 3,3'-Di-n-propyl-1,1'-(p-phenylenedimethylene) diimidazolium cation (located on a crystallographic inversion center) and a bromide anion (Fig. 1). The cation adopts the ···AAA··· trans conformation in the solid state. This conformation is the same as that found for the neutral N1,N2-di(2-pyridyl)adipoamide ligand which cocrystallizes with water and 2-{5-[N-(2-Pyridyl)carbamoyl]pentanamido} pyridinium hexafluorophosphate (Chen et al., 2007; Cheng et al., 2009).

In the crystal structure (Fig.2), the cations and anions are linked via C7—H7A···Br1 (Table 1) hydrogen bonds.

Related literature top

For details of N-heterocyclic carbenes, see: Herrmann et al. (1998); Zhang & Trudell (2000); Lee et al. (2004). For structures with similar ···AAA··· trans conformations, see: Chen et al. (2007); Cheng et al. (2009).

Experimental top

To a solution of 1,4-bis((1H-imidazol-1-yl)methyl)benzene (1.0 g, 4.2 mmol) in 15 ml of acetonitrile, 1-bromopropane (1.0 g, 8.4 mmol) was added. The mixture was refluxed at 363 K for 24 h. The resulting white precipitate was filtered, washed with fresh acetonitrile (2 X 3 ml) and recrystallised from methanol to give colorless crystals. Yield :1.3 g, (93%); m.p: 521–523 K. Crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the salt solution in methanol at ambient temperature.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Only the unique anion is shown (symmetry code (A): -x, -y+1, -z+1).
[Figure 2] Fig. 2. The crystal packing of the title compound, showing weak hydrogen bonds as dashed lines.
3,3'-Di-n-propyl-1,1'-[p-phenylenebis(methylene)]diimidazolium dibromide top
Crystal data top
C20H28N42+·2BrF(000) = 492
Mr = 484.28Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4287 reflections
a = 8.9420 (2) Åθ = 2.4–29.8°
b = 11.2443 (2) ŵ = 3.78 mm1
c = 11.3536 (2) ÅT = 296 K
β = 109.716 (1)°Block, colourless
V = 1074.64 (4) Å30.37 × 0.35 × 0.30 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3127 independent reflections
Radiation source: fine-focus sealed tube2409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.338, Tmax = 0.397k = 1515
11799 measured reflectionsl = 1116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.234P]
where P = (Fo2 + 2Fc2)/3
3127 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C20H28N42+·2BrV = 1074.64 (4) Å3
Mr = 484.28Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.9420 (2) ŵ = 3.78 mm1
b = 11.2443 (2) ÅT = 296 K
c = 11.3536 (2) Å0.37 × 0.35 × 0.30 mm
β = 109.716 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3127 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2409 reflections with I > 2σ(I)
Tmin = 0.338, Tmax = 0.397Rint = 0.030
11799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3127 reflectionsΔρmin = 0.59 e Å3
118 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24338 (3)0.428391 (17)0.069769 (19)0.04870 (9)
N10.06730 (17)0.72483 (12)0.28704 (13)0.0340 (3)
N20.28760 (18)0.76133 (14)0.25525 (15)0.0389 (3)
C10.0905 (2)0.60075 (16)0.49714 (17)0.0358 (4)
H1A0.15080.66840.49600.043*
C20.0537 (2)0.47667 (16)0.40181 (16)0.0350 (4)
H2A0.09070.46080.33600.042*
C30.03759 (19)0.57747 (14)0.39781 (16)0.0316 (3)
C40.0764 (2)0.66197 (17)0.28836 (18)0.0383 (4)
H4A0.12160.61790.21100.046*
H4B0.15470.71930.29410.046*
C50.1346 (2)0.82204 (16)0.35896 (17)0.0401 (4)
H5A0.09330.86390.41160.048*
C60.2712 (2)0.84497 (16)0.33885 (18)0.0427 (4)
H6A0.34200.90610.37470.051*
C70.1620 (2)0.68965 (16)0.22476 (17)0.0370 (4)
H7A0.14340.62590.16950.044*
C80.4185 (2)0.75295 (18)0.2048 (2)0.0456 (4)
H8A0.41230.67720.16250.055*
H8B0.51890.75570.27320.055*
C90.4132 (2)0.85232 (19)0.1143 (2)0.0469 (5)
H9A0.41810.92830.15580.056*
H9B0.31390.84880.04460.056*
C100.5517 (3)0.8419 (2)0.0657 (2)0.0586 (6)
H10A0.54710.90580.00850.088*
H10B0.54570.76720.02340.088*
H10C0.64990.84620.13470.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06110 (15)0.03539 (11)0.05110 (14)0.00544 (9)0.02086 (10)0.00409 (8)
N10.0411 (8)0.0308 (7)0.0319 (7)0.0010 (6)0.0149 (6)0.0013 (6)
N20.0424 (8)0.0354 (7)0.0417 (9)0.0021 (6)0.0176 (7)0.0004 (6)
C10.0370 (9)0.0318 (8)0.0416 (10)0.0037 (7)0.0173 (8)0.0001 (7)
C20.0386 (9)0.0355 (8)0.0352 (9)0.0020 (7)0.0181 (8)0.0010 (7)
C30.0301 (8)0.0311 (8)0.0337 (8)0.0039 (6)0.0109 (7)0.0001 (7)
C40.0357 (9)0.0406 (9)0.0382 (10)0.0003 (7)0.0119 (7)0.0036 (8)
C50.0552 (11)0.0329 (8)0.0333 (9)0.0016 (8)0.0165 (8)0.0023 (7)
C60.0522 (11)0.0349 (9)0.0397 (10)0.0072 (8)0.0138 (9)0.0035 (8)
C70.0456 (10)0.0319 (8)0.0361 (9)0.0015 (7)0.0171 (8)0.0009 (7)
C80.0416 (10)0.0456 (10)0.0545 (12)0.0018 (8)0.0224 (9)0.0055 (9)
C90.0471 (11)0.0496 (11)0.0484 (11)0.0004 (9)0.0219 (9)0.0047 (9)
C100.0566 (13)0.0693 (15)0.0598 (14)0.0037 (11)0.0326 (11)0.0048 (12)
Geometric parameters (Å, º) top
N1—C71.333 (2)C4—H4B0.9700
N1—C51.376 (2)C5—C61.341 (3)
N1—C41.471 (2)C5—H5A0.9300
N2—C71.330 (2)C6—H6A0.9300
N2—C61.379 (2)C7—H7A0.9300
N2—C81.470 (2)C8—C91.508 (3)
C1—C31.387 (2)C8—H8A0.9700
C1—C2i1.388 (3)C8—H8B0.9700
C1—H1A0.9300C9—C101.521 (3)
C2—C1i1.388 (3)C9—H9A0.9700
C2—C31.389 (2)C9—H9B0.9700
C2—H2A0.9300C10—H10A0.9600
C3—C41.509 (2)C10—H10B0.9600
C4—H4A0.9700C10—H10C0.9600
C7—N1—C5108.76 (15)C5—C6—N2107.47 (16)
C7—N1—C4125.17 (15)C5—C6—H6A126.3
C5—N1—C4125.78 (14)N2—C6—H6A126.3
C7—N2—C6108.44 (15)N2—C7—N1108.29 (15)
C7—N2—C8124.99 (16)N2—C7—H7A125.9
C6—N2—C8126.56 (16)N1—C7—H7A125.9
C3—C1—C2i120.18 (16)N2—C8—C9111.85 (16)
C3—C1—H1A119.9N2—C8—H8A109.2
C2i—C1—H1A119.9C9—C8—H8A109.2
C1i—C2—C3120.77 (16)N2—C8—H8B109.2
C1i—C2—H2A119.6C9—C8—H8B109.2
C3—C2—H2A119.6H8A—C8—H8B107.9
C1—C3—C2119.05 (16)C8—C9—C10110.34 (17)
C1—C3—C4120.26 (15)C8—C9—H9A109.6
C2—C3—C4120.68 (15)C10—C9—H9A109.6
N1—C4—C3110.61 (14)C8—C9—H9B109.6
N1—C4—H4A109.5C10—C9—H9B109.6
C3—C4—H4A109.5H9A—C9—H9B108.1
N1—C4—H4B109.5C9—C10—H10A109.5
C3—C4—H4B109.5C9—C10—H10B109.5
H4A—C4—H4B108.1H10A—C10—H10B109.5
C6—C5—N1107.04 (16)C9—C10—H10C109.5
C6—C5—H5A126.5H10A—C10—H10C109.5
N1—C5—H5A126.5H10B—C10—H10C109.5
C2i—C1—C3—C20.7 (3)N1—C5—C6—N20.3 (2)
C2i—C1—C3—C4179.54 (16)C7—N2—C6—C50.5 (2)
C1i—C2—C3—C10.7 (3)C8—N2—C6—C5179.06 (17)
C1i—C2—C3—C4179.54 (16)C6—N2—C7—N10.4 (2)
C7—N1—C4—C392.7 (2)C8—N2—C7—N1179.02 (16)
C5—N1—C4—C380.3 (2)C5—N1—C7—N20.2 (2)
C1—C3—C4—N1110.19 (18)C4—N1—C7—N2173.88 (15)
C2—C3—C4—N168.6 (2)C7—N2—C8—C9107.5 (2)
C7—N1—C5—C60.1 (2)C6—N2—C8—C970.9 (2)
C4—N1—C5—C6174.13 (16)N2—C8—C9—C10179.05 (18)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br10.932.773.6222 (18)152

Experimental details

Crystal data
Chemical formulaC20H28N42+·2Br
Mr484.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.9420 (2), 11.2443 (2), 11.3536 (2)
β (°) 109.716 (1)
V3)1074.64 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.78
Crystal size (mm)0.37 × 0.35 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.338, 0.397
No. of measured, independent and
observed [I > 2σ(I)] reflections
11799, 3127, 2409
Rint0.030
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.04
No. of reflections3127
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.59

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br10.932.773.6222 (18)152
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH and SFN thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), a short term grant (304/PKIMIA/639001) and an RU grant (1001/PKIMIA/813023). HKF and MH thank the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H.-C., Hu, H.-L., Chan, Z.-K., Yeh, C.-W., Jia, H.-W., Wu, C.-P., Chen, J.-D. & Wang, J.-C. (2007). Cryst. Growth Des. 7, 698–704.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheng, P.-C., Wu, C.-J., Chen, H.-C., Chen, J.-D. & Wang, J.-C. (2009). Acta Cryst. E65, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerrmann, W. A., Reisinger, C.-P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93–96.  CSD CrossRef CAS Google Scholar
First citationLee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807–5825.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C. & Trudell, M. L. (2000). Tetrahedron Lett. 41, 595–598.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds