organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(2,4-Di­methyl­phen­yl)imino­meth­yl]phenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 June 2011; accepted 1 July 2011; online 6 July 2011)

The asymmetric unit of the title compound, C15H15NO, contains two independent mol­ecules, both of which exist in trans configurations with respect to the C=N bonds [1.278 (2) and 1.279 (2) Å]. In each mol­ecule, intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. In one mol­ecule, the benzene rings form a dihedral angle of 13.38 (9)°, while in the other mol­ecule the dihedral angle is 30.60 (10)°. In the crystal, the two independent mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to and the pharmacological activity of Schiff base compounds, see: Gallant et al. (2004[Gallant, A. J., Patrick, B. O. & MacLachlan, M. J. (2004). J Org Chem. 69, 8739-8744.]); Kulkarni (1975[Kulkarni, V. H. (1975). Asian J. Chem. 7, 50-54.]); Zhao et al. (1988[Zhao, G., Li, F., Xie, J. & Ma, X. Y. (1988). Polyhedron, 7, 393-398.]); Ma & Zhao (1988[Ma, X. Y. & Zhao, G. (1988). Polyhedron, 7, 1101-1105.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Prasad, D. J. (2011). Acta Cryst. E67, o1932.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Orthorhombic, P 21 21 21

  • a = 7.3161 (4) Å

  • b = 12.0287 (7) Å

  • c = 28.1634 (15) Å

  • V = 2478.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.51 × 0.35 × 0.32 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.976

  • 39373 measured reflections

  • 4117 independent reflections

  • 3381 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.122

  • S = 1.02

  • 4117 reflections

  • 319 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1A 0.88 (2) 1.80 (2) 2.5854 (19) 147 (2)
O1B—H1OB⋯N1B 0.90 (2) 1.82 (2) 2.604 (2) 145 (2)
C5A—H5AA⋯O1Bi 0.93 2.56 3.455 (2) 162
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During the last 50 years, a vast number of structural studies on Schiff bases derived from hydroxyaryl aldehydes have been studied. Schiff bases can be synthesized from an aromatic amine and a carbonyl compound in a nucleophilic addition to a hemiaminal followed by elimination of water to the imine (Gallant et al., 2004). These Schiff bases have shown varied redox and electrical behaviors, depending on the involvement of active coordination sites (Kulkarni, 1975; Zhao et al., 1988; Ma & Zhao, 1988). Among the organic reagents actually used, Schiff bases possess excellent characteristics, structural similarities with natural biological substances, relatively simple preparation procedures and the synthetic flexibility that enables the design of suitable structural properties.

The asymmetric unit contains two independent molecules (Fig. 1), A and B. Both molecules exist in trans configurations with respect to the C7N1 bonds [C7AN1A = 1.278 (2) Å, C7BN1B = 1.279 (2) Å]. The molecular structure is stabilized by intramolecular O1A–H1OA···N1A and O1B–H1OB···N1B hydrogen bonds (Table 1) which generate S(6) ring motifs (Fig. 1, Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011). In molecule A, the benzene rings (C1A-C6A and C8A-C13A) form a dihedral angle of 13.38 (9)°. The corresponding dihedral angle for molecule B is 30.60 (10)°.

In the crystal structure, Fig. 2, molecules A are linked to molecules B via weak intermolecular C5A–H5AA···O1Bi hydrogen bonds (Table 1) into pairs.

Related literature top

For general background to and the pharmacological activity of Schiff base compounds, see: Gallant et al. (2004); Kulkarni (1975); Zhao et al. (1988); Ma & Zhao (1988). For a related structure, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of salicylaldehyde (0.01 mol) and 2,4 dimethyl aniline (0.01 mol) in presence of glacial acetic acid (0.5 mL) in ethanol (25 mL) was refluxed gently for 4-5 h. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into a beaker containing crushed ice. The precipitate thus obtained was filtered, dried and recrystallized from ethanol. Yield: 80%, m.p. 425-428 K.

Refinement top

H1OA and H1OB atoms were located in a difference Fourier map and refined freely [O1A–H1OA = 0.88 (3) Å, O1B–H1OB = 0.89 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located at 0.72 Å from C7A and the deepest hole is located at 1.28 Å from C12B. In the absence of significant anomalous dispersion, 3161 Friedel pairs were merged for the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-[(E)-(2,4-Dimethylphenyl)iminomethyl]phenol top
Crystal data top
C15H15NOF(000) = 960
Mr = 225.28Dx = 1.207 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9995 reflections
a = 7.3161 (4) Åθ = 2.8–29.8°
b = 12.0287 (7) ŵ = 0.08 mm1
c = 28.1634 (15) ÅT = 296 K
V = 2478.5 (2) Å3Block, yellow
Z = 80.51 × 0.35 × 0.32 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4117 independent reflections
Radiation source: fine-focus sealed tube3381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.963, Tmax = 0.976k = 1616
39373 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.1832P]
where P = (Fo2 + 2Fc2)/3
4117 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C15H15NOV = 2478.5 (2) Å3
Mr = 225.28Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 7.3161 (4) ŵ = 0.08 mm1
b = 12.0287 (7) ÅT = 296 K
c = 28.1634 (15) Å0.51 × 0.35 × 0.32 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4117 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3381 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.976Rint = 0.027
39373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
4117 reflectionsΔρmin = 0.13 e Å3
319 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.9304 (2)0.77108 (12)0.04120 (5)0.0671 (4)
N1A0.7924 (2)0.91236 (11)0.01797 (4)0.0445 (3)
C1A0.8636 (2)0.83620 (14)0.07601 (5)0.0485 (3)
C2A0.8931 (3)0.80560 (16)0.12313 (6)0.0598 (5)
H2AA0.96010.74190.13010.072*
C3A0.8235 (3)0.86924 (18)0.15938 (6)0.0656 (5)
H3AA0.84390.84790.19070.079*
C4A0.7240 (3)0.96424 (17)0.15021 (6)0.0670 (5)
H4AA0.67661.00630.17500.080*
C5A0.6955 (3)0.99621 (16)0.10335 (6)0.0573 (4)
H5AA0.62931.06040.09690.069*
C6A0.7647 (2)0.93353 (13)0.06593 (5)0.0446 (3)
C7A0.7319 (2)0.96829 (14)0.01727 (5)0.0465 (3)
H7AA0.66531.03280.01160.056*
C8A0.7652 (2)0.94552 (13)0.06567 (5)0.0416 (3)
C9A0.7052 (3)1.05078 (14)0.07882 (5)0.0505 (4)
H9AA0.67701.10290.05560.061*
C10A0.6870 (3)1.07866 (16)0.12636 (6)0.0555 (4)
H10A0.64611.14930.13450.067*
C11A0.7287 (3)1.00352 (17)0.16175 (5)0.0521 (4)
C12A0.7875 (3)0.89892 (15)0.14813 (5)0.0527 (4)
H12A0.81360.84700.17160.063*
C13A0.8095 (2)0.86800 (14)0.10087 (5)0.0472 (3)
C14A0.7152 (3)1.0353 (2)0.21353 (6)0.0696 (6)
H14A0.64200.98150.23000.104*
H14B0.65971.10730.21630.104*
H14C0.83541.03730.22720.104*
C15A0.8789 (4)0.75441 (16)0.08827 (7)0.0703 (6)
H15A0.89820.71220.11680.105*
H15B0.99220.76110.07130.105*
H15C0.79080.71720.06860.105*
O1B0.0454 (2)0.23511 (11)0.08434 (5)0.0626 (3)
N1B0.1838 (2)0.08482 (12)0.14035 (5)0.0500 (3)
C1B0.0999 (2)0.16993 (14)0.04804 (6)0.0487 (4)
C2B0.0575 (3)0.20224 (15)0.00174 (6)0.0568 (4)
H2BA0.00900.26690.00360.068*
C3B0.1143 (3)0.13803 (17)0.03601 (6)0.0628 (5)
H3BA0.08640.16030.06680.075*
C4B0.2116 (3)0.04152 (17)0.02891 (6)0.0620 (5)
H4BA0.25140.00010.05480.074*
C5B0.2499 (3)0.00667 (16)0.01675 (6)0.0551 (4)
H5BA0.31280.05960.02150.066*
C6B0.1953 (2)0.06990 (13)0.05584 (5)0.0460 (3)
C7B0.2336 (2)0.03067 (14)0.10346 (6)0.0497 (4)
H7BA0.29650.03590.10730.060*
C8B0.2118 (2)0.04277 (15)0.18674 (5)0.0494 (4)
C9B0.2152 (3)0.06991 (16)0.19735 (6)0.0582 (4)
H9BA0.20360.12160.17300.070*
C10B0.2357 (3)0.10637 (17)0.24352 (6)0.0660 (5)
H10B0.23880.18230.24970.079*
C11B0.2515 (3)0.03198 (19)0.28073 (6)0.0628 (5)
C12B0.2454 (3)0.07986 (19)0.26989 (6)0.0649 (5)
H12B0.25440.13090.29460.078*
C13B0.2264 (3)0.11976 (16)0.22389 (6)0.0583 (4)
C14B0.2744 (4)0.0720 (2)0.33137 (6)0.0847 (7)
H14D0.34250.14020.33150.127*
H14E0.15630.08430.34530.127*
H14F0.33890.01680.34940.127*
C15B0.2263 (5)0.24280 (17)0.21427 (8)0.0910 (9)
H15D0.25940.28200.24270.137*
H15E0.10650.26550.20430.137*
H15F0.31300.25930.18970.137*
H1OA0.906 (4)0.802 (2)0.0136 (8)0.092 (8)*
H1OB0.068 (4)0.201 (2)0.1120 (8)0.090 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0892 (11)0.0605 (7)0.0517 (7)0.0224 (8)0.0009 (7)0.0004 (6)
N1A0.0474 (7)0.0463 (6)0.0398 (6)0.0021 (6)0.0024 (5)0.0014 (5)
C1A0.0499 (8)0.0489 (8)0.0468 (8)0.0004 (7)0.0029 (7)0.0026 (6)
C2A0.0665 (11)0.0597 (10)0.0532 (9)0.0045 (9)0.0070 (9)0.0120 (8)
C3A0.0806 (14)0.0739 (12)0.0423 (8)0.0055 (11)0.0055 (9)0.0090 (8)
C4A0.0892 (15)0.0693 (11)0.0425 (8)0.0027 (12)0.0034 (10)0.0049 (8)
C5A0.0730 (12)0.0515 (8)0.0475 (8)0.0059 (9)0.0037 (9)0.0005 (7)
C6A0.0463 (8)0.0476 (7)0.0400 (7)0.0031 (7)0.0008 (6)0.0021 (6)
C7A0.0478 (8)0.0484 (8)0.0431 (7)0.0021 (7)0.0013 (6)0.0035 (6)
C8A0.0401 (7)0.0463 (7)0.0384 (6)0.0028 (6)0.0010 (6)0.0001 (5)
C9A0.0607 (9)0.0476 (8)0.0433 (7)0.0029 (8)0.0003 (7)0.0000 (6)
C10A0.0637 (11)0.0546 (9)0.0481 (8)0.0020 (9)0.0027 (8)0.0074 (7)
C11A0.0475 (8)0.0673 (10)0.0415 (7)0.0101 (8)0.0026 (7)0.0053 (7)
C12A0.0562 (9)0.0599 (9)0.0421 (7)0.0050 (8)0.0023 (7)0.0070 (7)
C13A0.0473 (8)0.0489 (8)0.0454 (7)0.0010 (7)0.0018 (7)0.0022 (6)
C14A0.0711 (12)0.0956 (15)0.0420 (8)0.0062 (13)0.0044 (9)0.0117 (9)
C15A0.0933 (16)0.0566 (10)0.0609 (10)0.0196 (11)0.0087 (11)0.0030 (8)
O1B0.0783 (9)0.0510 (6)0.0586 (7)0.0045 (7)0.0039 (7)0.0023 (6)
N1B0.0519 (8)0.0539 (7)0.0441 (6)0.0028 (7)0.0005 (6)0.0005 (6)
C1B0.0487 (8)0.0459 (7)0.0516 (8)0.0080 (7)0.0021 (7)0.0006 (6)
C2B0.0579 (10)0.0540 (9)0.0586 (9)0.0074 (8)0.0019 (8)0.0120 (8)
C3B0.0713 (12)0.0709 (11)0.0462 (8)0.0168 (10)0.0020 (8)0.0085 (8)
C4B0.0735 (12)0.0650 (10)0.0474 (8)0.0088 (10)0.0080 (9)0.0035 (8)
C5B0.0594 (10)0.0540 (8)0.0519 (8)0.0034 (8)0.0074 (8)0.0017 (7)
C6B0.0465 (8)0.0477 (8)0.0437 (7)0.0073 (7)0.0023 (6)0.0014 (6)
C7B0.0511 (8)0.0508 (8)0.0471 (8)0.0019 (7)0.0017 (7)0.0023 (7)
C8B0.0472 (8)0.0584 (9)0.0426 (7)0.0024 (8)0.0015 (7)0.0010 (7)
C9B0.0698 (12)0.0562 (9)0.0487 (8)0.0041 (9)0.0006 (8)0.0015 (7)
C10B0.0784 (14)0.0643 (11)0.0555 (9)0.0025 (11)0.0019 (10)0.0104 (8)
C11B0.0599 (11)0.0837 (13)0.0449 (8)0.0007 (11)0.0037 (8)0.0048 (8)
C12B0.0729 (13)0.0749 (11)0.0470 (8)0.0052 (11)0.0024 (9)0.0097 (8)
C13B0.0664 (11)0.0595 (9)0.0490 (8)0.0038 (9)0.0036 (8)0.0060 (7)
C14B0.0918 (17)0.1126 (19)0.0496 (10)0.0030 (17)0.0001 (11)0.0142 (11)
C15B0.143 (3)0.0597 (11)0.0709 (12)0.0069 (16)0.0003 (17)0.0125 (10)
Geometric parameters (Å, º) top
O1A—C1A1.346 (2)O1B—C1B1.349 (2)
O1A—H1OA0.88 (3)O1B—H1OB0.89 (2)
N1A—C7A1.278 (2)N1B—C7B1.279 (2)
N1A—C8A1.4155 (18)N1B—C8B1.416 (2)
C1A—C2A1.394 (2)C1B—C2B1.395 (2)
C1A—C6A1.405 (2)C1B—C6B1.408 (2)
C2A—C3A1.374 (3)C2B—C3B1.378 (3)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.379 (3)C3B—C4B1.376 (3)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.390 (2)C4B—C5B1.382 (2)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.391 (2)C5B—C6B1.396 (2)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.453 (2)C6B—C7B1.449 (2)
C7A—H7AA0.9300C7B—H7BA0.9300
C8A—C9A1.390 (2)C8B—C9B1.388 (3)
C8A—C13A1.399 (2)C8B—C13B1.401 (2)
C9A—C10A1.387 (2)C9B—C10B1.380 (2)
C9A—H9AA0.9300C9B—H9BA0.9300
C10A—C11A1.379 (3)C10B—C11B1.383 (3)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.384 (3)C11B—C12B1.380 (3)
C11A—C14A1.511 (2)C11B—C14B1.514 (2)
C12A—C13A1.391 (2)C12B—C13B1.389 (2)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C15A1.500 (2)C13B—C15B1.505 (3)
C14A—H14A0.9600C14B—H14D0.9600
C14A—H14B0.9600C14B—H14E0.9600
C14A—H14C0.9600C14B—H14F0.9600
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C1A—O1A—H1OA109.1 (17)C1B—O1B—H1OB110.0 (17)
C7A—N1A—C8A122.67 (14)C7B—N1B—C8B121.75 (15)
O1A—C1A—C2A118.90 (16)O1B—C1B—C2B118.72 (16)
O1A—C1A—C6A121.63 (14)O1B—C1B—C6B121.66 (15)
C2A—C1A—C6A119.47 (15)C2B—C1B—C6B119.61 (16)
C3A—C2A—C1A120.19 (17)C3B—C2B—C1B119.84 (18)
C3A—C2A—H2AA119.9C3B—C2B—H2BA120.1
C1A—C2A—H2AA119.9C1B—C2B—H2BA120.1
C2A—C3A—C4A121.21 (16)C4B—C3B—C2B121.10 (17)
C2A—C3A—H3AA119.4C4B—C3B—H3BA119.4
C4A—C3A—H3AA119.4C2B—C3B—H3BA119.4
C3A—C4A—C5A119.07 (18)C3B—C4B—C5B119.74 (18)
C3A—C4A—H4AA120.5C3B—C4B—H4BA120.1
C5A—C4A—H4AA120.5C5B—C4B—H4BA120.1
C4A—C5A—C6A120.98 (18)C4B—C5B—C6B120.70 (18)
C4A—C5A—H5AA119.5C4B—C5B—H5BA119.6
C6A—C5A—H5AA119.5C6B—C5B—H5BA119.6
C5A—C6A—C1A119.08 (14)C5B—C6B—C1B118.96 (15)
C5A—C6A—C7A119.90 (15)C5B—C6B—C7B119.78 (16)
C1A—C6A—C7A121.02 (14)C1B—C6B—C7B121.24 (15)
N1A—C7A—C6A121.58 (15)N1B—C7B—C6B122.04 (16)
N1A—C7A—H7AA119.2N1B—C7B—H7BA119.0
C6A—C7A—H7AA119.2C6B—C7B—H7BA119.0
C9A—C8A—C13A119.42 (14)C9B—C8B—C13B118.89 (16)
C9A—C8A—N1A123.64 (14)C9B—C8B—N1B123.37 (15)
C13A—C8A—N1A116.88 (14)C13B—C8B—N1B117.64 (16)
C10A—C9A—C8A120.51 (15)C10B—C9B—C8B121.00 (17)
C10A—C9A—H9AA119.7C10B—C9B—H9BA119.5
C8A—C9A—H9AA119.7C8B—C9B—H9BA119.5
C11A—C10A—C9A121.19 (17)C9B—C10B—C11B121.15 (18)
C11A—C10A—H10A119.4C9B—C10B—H10B119.4
C9A—C10A—H10A119.4C11B—C10B—H10B119.4
C10A—C11A—C12A117.65 (15)C12B—C11B—C10B117.41 (17)
C10A—C11A—C14A121.14 (18)C12B—C11B—C14B121.42 (19)
C12A—C11A—C14A121.19 (17)C10B—C11B—C14B121.2 (2)
C11A—C12A—C13A122.96 (16)C11B—C12B—C13B123.12 (18)
C11A—C12A—H12A118.5C11B—C12B—H12B118.4
C13A—C12A—H12A118.5C13B—C12B—H12B118.4
C12A—C13A—C8A118.23 (15)C12B—C13B—C8B118.42 (18)
C12A—C13A—C15A120.59 (15)C12B—C13B—C15B120.53 (18)
C8A—C13A—C15A121.18 (14)C8B—C13B—C15B121.03 (16)
C11A—C14A—H14A109.5C11B—C14B—H14D109.5
C11A—C14A—H14B109.5C11B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C11A—C14A—H14C109.5C11B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C13A—C15A—H15A109.5C13B—C15B—H15D109.5
C13A—C15A—H15B109.5C13B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C13A—C15A—H15C109.5C13B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
O1A—C1A—C2A—C3A178.71 (19)O1B—C1B—C2B—C3B178.93 (17)
C6A—C1A—C2A—C3A1.0 (3)C6B—C1B—C2B—C3B2.1 (3)
C1A—C2A—C3A—C4A0.1 (3)C1B—C2B—C3B—C4B0.5 (3)
C2A—C3A—C4A—C5A0.6 (3)C2B—C3B—C4B—C5B1.5 (3)
C3A—C4A—C5A—C6A0.4 (3)C3B—C4B—C5B—C6B1.8 (3)
C4A—C5A—C6A—C1A0.4 (3)C4B—C5B—C6B—C1B0.1 (3)
C4A—C5A—C6A—C7A179.54 (19)C4B—C5B—C6B—C7B178.76 (17)
O1A—C1A—C6A—C5A178.57 (17)O1B—C1B—C6B—C5B179.27 (16)
C2A—C1A—C6A—C5A1.1 (3)C2B—C1B—C6B—C5B1.8 (2)
O1A—C1A—C6A—C7A0.5 (3)O1B—C1B—C6B—C7B2.1 (2)
C2A—C1A—C6A—C7A179.75 (17)C2B—C1B—C6B—C7B176.81 (16)
C8A—N1A—C7A—C6A178.82 (15)C8B—N1B—C7B—C6B176.07 (15)
C5A—C6A—C7A—N1A179.56 (17)C5B—C6B—C7B—N1B178.89 (17)
C1A—C6A—C7A—N1A0.5 (3)C1B—C6B—C7B—N1B0.3 (3)
C7A—N1A—C8A—C9A13.7 (2)C7B—N1B—C8B—C9B29.7 (3)
C7A—N1A—C8A—C13A169.08 (15)C7B—N1B—C8B—C13B153.98 (18)
C13A—C8A—C9A—C10A0.8 (3)C13B—C8B—C9B—C10B1.1 (3)
N1A—C8A—C9A—C10A177.94 (16)N1B—C8B—C9B—C10B177.34 (19)
C8A—C9A—C10A—C11A0.4 (3)C8B—C9B—C10B—C11B0.7 (4)
C9A—C10A—C11A—C12A0.6 (3)C9B—C10B—C11B—C12B0.2 (4)
C9A—C10A—C11A—C14A177.81 (18)C9B—C10B—C11B—C14B179.9 (2)
C10A—C11A—C12A—C13A1.3 (3)C10B—C11B—C12B—C13B0.7 (4)
C14A—C11A—C12A—C13A177.09 (19)C14B—C11B—C12B—C13B179.3 (2)
C11A—C12A—C13A—C8A1.7 (3)C11B—C12B—C13B—C8B0.3 (3)
C11A—C12A—C13A—C15A178.23 (19)C11B—C12B—C13B—C15B178.2 (3)
C9A—C8A—C13A—C12A1.4 (2)C9B—C8B—C13B—C12B0.6 (3)
N1A—C8A—C13A—C12A178.78 (15)N1B—C8B—C13B—C12B177.06 (18)
C9A—C8A—C13A—C15A178.55 (18)C9B—C8B—C13B—C15B179.1 (2)
N1A—C8A—C13A—C15A1.2 (2)N1B—C8B—C13B—C15B4.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.88 (2)1.80 (2)2.5854 (19)147 (2)
O1B—H1OB···N1B0.90 (2)1.82 (2)2.604 (2)145 (2)
C5A—H5AA···O1Bi0.932.563.455 (2)162
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.3161 (4), 12.0287 (7), 28.1634 (15)
V3)2478.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.51 × 0.35 × 0.32
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.963, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
39373, 4117, 3381
Rint0.027
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.122, 1.02
No. of reflections4117
No. of parameters319
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.88 (2)1.80 (2)2.5854 (19)147 (2)
O1B—H1OB···N1B0.90 (2)1.82 (2)2.604 (2)145 (2)
C5A—H5AA···O1Bi0.932.563.455 (2)162
Symmetry code: (i) x+1/2, y+3/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Viveka, S., Madhukumar, D. J. & Prasad, D. J. (2011). Acta Cryst. E67, o1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGallant, A. J., Patrick, B. O. & MacLachlan, M. J. (2004). J Org Chem. 69, 8739–8744.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKulkarni, V. H. (1975). Asian J. Chem. 7, 50–54.  Google Scholar
First citationMa, X. Y. & Zhao, G. (1988). Polyhedron, 7, 1101–1105.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, G., Li, F., Xie, J. & Ma, X. Y. (1988). Polyhedron, 7, 393–398.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds