metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(nitrito-κ2O,O′)silver(I)]-μ-1,2-bis­­[1-(pyridin-4-yl)ethyl­­idene]hydrazine-κ2N:N′]

aDepartment of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and bDepartment of Chemistry and Biochemistry, Moi University, PO Box 1125-30100, Eldoret, Kenya
*Correspondence e-mail: okothmdo@mu.ac.ke

(Received 29 June 2011; accepted 15 July 2011; online 23 July 2011)

The asymmetric unit of the title compound, [Ag(NO2)(C14H14N4)]n, contains half of the repeating formula unit (Z′ = 1/2). The AgI ion lies on a twofold rotation axis. The primary structure consists of a one-dimensional coordination polymer formed by the AgI ions and the bipyridyl azine ligand in which there is an inversion center at the mid-point of the N—N bond. The nitrite anion inter­acts with the AgI ion through a chelating μ2 inter­action involving both O atoms. In the crystal, the coordination chains are parallel and inter­act through Ag⋯π [3.220 (2) Å] and ππ [3.489 (3) Å] inter­actions.

Related literature

For a review of Ag(I) bipyridyl coordination behaviour, see: Khlobystov et al. (2001[Khlobystov, A. N., Blake, A. J., Champness, N. R., Lemenovskii, D. A., Majouga, A. G., Zyk, N. V. & Schröder, M. (2001). Coord. Chem. Rev. 222, 155-192.]). For the synthesis and structure of related coordination polymers with azine linkers, see: Kennedy et al. (2005[Kennedy, A. R., Brown, K. G., Graham, D., Kirkhouse, J. B., Kittner, M., Major, C., McHugh, C. J., Murdoch, P. & Smith, W. E. (2005). New J. Chem. 29, 826-832.]). For nitrite-containing examples, see: Chen & Mak (2005[Chen, X.-D. & Mak, T. C. W. (2005). Chem. Commun. pp. 3529-3531.]); Blake et al. (1999[Blake, A. J., Champness, N. R., Crew, M. & Parsons, S. (1999). New J. Chem. 23, 13-15.]); Cingolani et al. (1999[Cingolani, A., Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (1999). J. Chem. Soc. Dalton Trans. pp. 4047-4055.]); Flörke et al. (1998[Flörke, U., Haupt, H.-J. & Chaudhuri, P. (1998). J. Chem. Soc. Dalton Trans. pp. 3801-3804.]); Tong et al. (2002[Tong, M.-L., Shi, J.-X. & Chen, X.-M. (2002). New J. Chem. 26, 814-816.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO2)(C14H14N4)]

  • Mr = 392.17

  • Monoclinic, P 2/n

  • a = 4.8645 (2) Å

  • b = 7.3283 (2) Å

  • c = 20.7228 (6) Å

  • β = 93.710 (2)°

  • V = 737.19 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 123 K

  • 0.30 × 0.30 × 0.28 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.667, Tmax = 0.687

  • 3223 measured reflections

  • 1693 independent reflections

  • 1487 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.048

  • S = 1.05

  • 1693 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SIR92 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The formation of Ag(I) complexes of "off-axis rod" type bipyridyl ligands has attracted much interest. Partly this is due to the relative ease of crystal formation, as compared to similar systems with other metals, and partly because aggregation of the one-dimensional polymeric chains typically formed is thought to give insight into the formation of more complicated two-dimensional or three-dimensional networks (Khlobystov et al., 2001). Previous work on such bipyridyl ligands containing azine chromophores showed that all displayed simple one-dimensional chains based on the coordination of two ligands to each Ag(I) centre in a trans manner (Kennedy et al., 2005). However, the stacking of these chains is not simple - with much variation seen in the interaction types observed. With better coordinating anions Ag···anion interactions were important but Ag···Ag, Ag···solvent, Ag···azine and Ag···π contacts were also observed with little apparent systematic variation. Here we utilize the nitrite anion to limit the number of interchain Ag···anion interactions possible.

[Ag(pyC(Me)N—NC(Me)py)(NO2)]n (I) has the expected primary chain structure with each Ag(I) centre forming two dative bonds to pyridyl fragments from two seperate ligands, see Fig 1. However, the nitrite anion also interacts with the Ag(I) centre. Its O,O' chelating geometry appears to be more sterically demanding than that of other anions used with such systems (e.g. NO3, ClO4, BF4 and SbF6) and thus the NAgN angle of 142.18 (8) ° is considerably more bent than previously seen (range 167.0 to 180 °, Kennedy et al., 2005).

Whilst the observed chelating nitrite bonding mode is the commonest found in related Ag(I) complexes (see for example Blake et al., 1999; Chen & Mak, 2005; Tong et al., 2002) nitrite can also bridge between Ag(I) centres either through O atom coordination only (Cingolani et al., 1999) or more rarely by also using the central N atom to bind (Flörke et al., 1998). However, in (I) no further interactions are formed by the nitrite anion. Instead the intermolecular network expands through Ag···π interactions. Pyridyl rings lie equidistant above and below the plane of primary coordination (Ag1···C1iii and Ag1···C1iv are both 3.220 (2) Å, where iii is 1 + x, y, z and iv is 0.5 - x, y, 0.5 - z). Additionally the coordination chains also form ππ contacts that are within the range normally treated as significant (C3···C5v = 3.489 (3) Å where v is x - 1, y, z) (see Fig. 2 for the crystal packing).

Related literature top

For a review of Ag(I) bipyridyl coordination behaviour, see: Khlobystov et al. (2001). For the synthesis and structure of related coordination polymers with azine linkers, see: Kennedy et al. (2005). For nitrite-containing examples, see: Chen & Mak (2005); Blake et al. (1999); Cingolani et al. (1999); Flörke et al. (1998); Tong et al. (2002).

Experimental top

The azine ligand and complex (I) were synthesized as described in Kennedy et al. (2005), and crystals were grown by the solvent layering method also described therein.

Refinement top

H atoms were placed in calculated positions and refined in riding modes with C—H = 0.98 or 0.95 Å for the CH3 and CH groups respectively. For the methyl group Uiso(H) = 1.5Ueq and for CH groups Uiso(H) = 1.2Ueq of the parent C atoms.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) extended to show coordination geometry about Ag1. Non-H atoms are drawn as 50% probability displacement ellipsoids. i = 1.5 - x, y, 0.5 - z, ii = -1 - x, -y, -z.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along the crystallographic a direction.
catena-Poly[[(nitrito-κ2O,O')silver(I)]- µ-1,2-bis[1-(pyridin-4-yl)ethylidene]hydrazine-κ2N:N'] top
Crystal data top
[Ag(NO2)(C14H14N4)]F(000) = 392
Mr = 392.17Dx = 1.767 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 7462 reflections
a = 4.8645 (2) Åθ = 1.0–27.5°
b = 7.3283 (2) ŵ = 1.38 mm1
c = 20.7228 (6) ÅT = 123 K
β = 93.710 (2)°Prism, orange
V = 737.19 (4) Å30.30 × 0.30 × 0.28 mm
Z = 2
Data collection top
Nonius Kappa CCD
diffractometer
1693 independent reflections
Radiation source: fine-focus sealed tube1487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 66
Tmin = 0.667, Tmax = 0.687k = 99
3223 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.063P]
where P = (Fo2 + 2Fc2)/3
1693 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ag(NO2)(C14H14N4)]V = 737.19 (4) Å3
Mr = 392.17Z = 2
Monoclinic, P2/nMo Kα radiation
a = 4.8645 (2) ŵ = 1.38 mm1
b = 7.3283 (2) ÅT = 123 K
c = 20.7228 (6) Å0.30 × 0.30 × 0.28 mm
β = 93.710 (2)°
Data collection top
Nonius Kappa CCD
diffractometer
1693 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1487 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.687Rint = 0.027
3223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
1693 reflectionsΔρmin = 0.44 e Å3
102 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.75000.19621 (3)0.25000.01866 (8)
O10.7224 (4)0.5063 (2)0.19907 (7)0.0362 (4)
N10.4040 (3)0.0979 (2)0.18357 (7)0.0172 (4)
N20.3966 (3)0.0334 (2)0.02212 (7)0.0177 (4)
N30.75000.5978 (3)0.25000.0307 (6)
C10.2330 (4)0.2146 (3)0.15100 (9)0.0178 (4)
H10.26280.34180.15700.021*
C20.0163 (4)0.1591 (3)0.10933 (9)0.0184 (4)
H20.10030.24710.08790.022*
C30.0314 (4)0.0271 (3)0.09871 (8)0.0155 (4)
C40.1426 (4)0.1477 (3)0.13369 (9)0.0178 (4)
H40.11560.27560.12930.021*
C50.3544 (4)0.0809 (3)0.17470 (9)0.0180 (4)
H50.47080.16590.19780.022*
C60.2540 (4)0.0928 (3)0.05205 (9)0.0168 (4)
C70.2886 (5)0.2950 (3)0.04252 (10)0.0252 (5)
H7A0.44650.31830.01180.038*
H7B0.32020.35280.08400.038*
H7C0.12160.34580.02550.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01728 (12)0.01806 (13)0.01952 (12)0.0000.00753 (8)0.000
O10.0545 (11)0.0246 (9)0.0279 (9)0.0056 (8)0.0108 (8)0.0019 (7)
N10.0160 (9)0.0178 (9)0.0173 (8)0.0010 (7)0.0022 (7)0.0006 (7)
N20.0139 (8)0.0228 (9)0.0156 (8)0.0017 (7)0.0040 (6)0.0011 (7)
N30.0342 (16)0.0185 (14)0.0373 (16)0.0000.0143 (12)0.000
C10.0162 (10)0.0163 (10)0.0204 (10)0.0007 (8)0.0026 (8)0.0008 (8)
C20.0165 (10)0.0183 (10)0.0198 (10)0.0023 (8)0.0032 (8)0.0014 (8)
C30.0130 (10)0.0204 (10)0.0131 (9)0.0005 (8)0.0003 (7)0.0004 (8)
C40.0194 (10)0.0142 (10)0.0196 (10)0.0010 (8)0.0008 (8)0.0004 (8)
C50.0168 (10)0.0174 (11)0.0194 (10)0.0030 (8)0.0023 (8)0.0017 (8)
C60.0157 (10)0.0193 (11)0.0153 (9)0.0012 (8)0.0007 (8)0.0015 (8)
C70.0265 (11)0.0214 (11)0.0262 (11)0.0012 (9)0.0105 (9)0.0013 (9)
Geometric parameters (Å, º) top
Ag1—N12.2242 (16)C2—C31.399 (3)
Ag1—N1i2.2242 (16)C2—H20.9500
Ag1—O1i2.5058 (15)C3—C41.394 (3)
Ag1—O12.5058 (15)C3—C61.485 (3)
O1—N31.2501 (19)C4—C51.382 (3)
N1—C51.343 (2)C4—H40.9500
N1—C11.344 (2)C5—H50.9500
N2—C61.291 (3)C6—C71.503 (3)
N2—N2ii1.405 (3)C7—H7A0.9800
N3—O1i1.2501 (19)C7—H7B0.9800
C1—C21.380 (3)C7—H7C0.9800
C1—H10.9500
N1—Ag1—N1i142.18 (8)C4—C3—C2116.58 (18)
N1—Ag1—O1i124.92 (6)C4—C3—C6121.75 (18)
N1i—Ag1—O1i90.89 (5)C2—C3—C6121.67 (17)
N1—Ag1—O190.89 (5)C5—C4—C3119.94 (18)
N1i—Ag1—O1124.92 (6)C5—C4—H4120.0
O1i—Ag1—O149.81 (7)C3—C4—H4120.0
N3—O1—Ag197.52 (13)N1—C5—C4123.36 (18)
C5—N1—C1116.89 (17)N1—C5—H5118.3
C5—N1—Ag1121.54 (13)C4—C5—H5118.3
C1—N1—Ag1121.56 (13)N2—C6—C3115.29 (17)
C6—N2—N2ii113.8 (2)N2—C6—C7126.27 (17)
O1—N3—O1i115.2 (2)C3—C6—C7118.41 (17)
N1—C1—C2123.34 (18)C6—C7—H7A109.5
N1—C1—H1118.3C6—C7—H7B109.5
C2—C1—H1118.3H7A—C7—H7B109.5
C1—C2—C3119.86 (18)C6—C7—H7C109.5
C1—C2—H2120.1H7A—C7—H7C109.5
C3—C2—H2120.1H7B—C7—H7C109.5
N1—Ag1—O1—N3137.41 (9)C1—C2—C3—C42.2 (3)
N1i—Ag1—O1—N355.60 (11)C1—C2—C3—C6177.15 (18)
O1i—Ag1—O1—N30.0C2—C3—C4—C52.0 (3)
N1i—Ag1—N1—C50.55 (13)C6—C3—C4—C5177.38 (17)
O1i—Ag1—N1—C5157.90 (13)C1—N1—C5—C41.0 (3)
O1—Ag1—N1—C5163.02 (15)Ag1—N1—C5—C4179.70 (14)
N1i—Ag1—N1—C1179.78 (15)C3—C4—C5—N10.4 (3)
O1i—Ag1—N1—C121.33 (17)N2ii—N2—C6—C3179.36 (17)
O1—Ag1—N1—C117.75 (15)N2ii—N2—C6—C71.1 (3)
Ag1—O1—N3—O1i0.0C4—C3—C6—N2178.81 (18)
C5—N1—C1—C20.8 (3)C2—C3—C6—N20.5 (3)
Ag1—N1—C1—C2179.94 (15)C4—C3—C6—C70.4 (3)
N1—C1—C2—C30.9 (3)C2—C3—C6—C7178.89 (18)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(NO2)(C14H14N4)]
Mr392.17
Crystal system, space groupMonoclinic, P2/n
Temperature (K)123
a, b, c (Å)4.8645 (2), 7.3283 (2), 20.7228 (6)
β (°) 93.710 (2)
V3)737.19 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.30 × 0.30 × 0.28
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.667, 0.687
No. of measured, independent and
observed [I > 2σ(I)] reflections
3223, 1693, 1487
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.048, 1.05
No. of reflections1693
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.44

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988), DENZO (Otwinowski & Minor, 1997), SIR92 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and X-SEED (Barbour, 2001).

 

Acknowledgements

MOO thanks the Commonwealth Scholarship Commission and the British Council for funding and Moi University for sabbatical leave.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBlake, A. J., Champness, N. R., Crew, M. & Parsons, S. (1999). New J. Chem. 23, 13–15.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, X.-D. & Mak, T. C. W. (2005). Chem. Commun. pp. 3529–3531.  Web of Science CSD CrossRef Google Scholar
First citationCingolani, A., Effendy, Marchetti, F., Pettinari, C., Skelton, B. W. & White, A. H. (1999). J. Chem. Soc. Dalton Trans. pp. 4047–4055.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlörke, U., Haupt, H.-J. & Chaudhuri, P. (1998). J. Chem. Soc. Dalton Trans. pp. 3801–3804.  Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKennedy, A. R., Brown, K. G., Graham, D., Kirkhouse, J. B., Kittner, M., Major, C., McHugh, C. J., Murdoch, P. & Smith, W. E. (2005). New J. Chem. 29, 826–832.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhlobystov, A. N., Blake, A. J., Champness, N. R., Lemenovskii, D. A., Majouga, A. G., Zyk, N. V. & Schröder, M. (2001). Coord. Chem. Rev. 222, 155–192.  Web of Science CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M.-L., Shi, J.-X. & Chen, X.-M. (2002). New J. Chem. 26, 814–816.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds