organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-5-benzyl­­idene-2-sulfanyl­idene-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Government Collge University, Lahore 54000, Pakistan, and bThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: asamgcu@yahoo.com

(Received 4 July 2011; accepted 8 July 2011; online 23 July 2011)

In the title mol­ecule, C17H13NOS2, the essentially planar thia­zole ring (r.m.s deviation 0.005 Å) forms dihedral angles of 16.85 (8)° and 75.02 (8)° with the phenyl rings. The dihedral angle between the two phenyl rings is 61.95 (9)°.

Related literature

For the synthesis and related structures, see: Shahwar et al. (2009[Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009). Acta Cryst. E65, o2917.], 2011[Shahwar, D., Tahir, M. N., Raza, M. A., Ahmad, N. & Aslam, S. (2011). Acta Cryst. E67, o133.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NOS2

  • Mr = 311.40

  • Triclinic, [P \overline 1]

  • a = 6.3152 (2) Å

  • b = 10.8168 (3) Å

  • c = 11.4545 (3) Å

  • α = 84.1150 (9)°

  • β = 77.6000 (9)°

  • γ = 76.1770 (9)°

  • V = 740.99 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.35 × 0.31 × 0.15 mm

Data collection
  • Bruker Kappa APEX II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.949

  • 13205 measured reflections

  • 3583 independent reflections

  • 2930 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.03

  • 3583 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structure determination of the title compound (I) is a countinuation of our work on thiazolidinone derivatives (Shahwar et al., 2009, 2011).

The molecular structure of the title compound is shown in Fig. 1. The essentially planar thiazole ring [r.m.s deviation 0.005 Å] forms dihedral angles of 16.85 (8)° and 75.02 (8)° with the C5-C10 and C12-C17 phenyl rings, respectively. The dihedral angle between the two phenyl rings is 61.95 (9)°.

Related literature top

For the synthesis and related structures, see: Shahwar et al. (2009, 2011).

Experimental top

The title compound was prepared following a previously published method (Shahwar et al., 2009). X-ray quality crystals were grown from a solution of the title compound in n-hexane:ethylacetate:methanol (6:3:1).

Refinement top

All H atoms were positioned with idealized geometry with C—H = 0.93 - 0.97 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C). Four reflections 1 1 0, 0 0 1, 2 2 0 & 0 1 0 were omitted in the final refinemnt as they were obscured by the beamstop.

Computing details top

Data collection: APEXII (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with thermal ellipsoids drawn at the 50% probability level.
3-Benzyl-5-benzylidene-2-sulfanylidene-1,3-thiazolidin-4-one top
Crystal data top
C17H13NOS2Z = 2
Mr = 311.40F(000) = 324
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3152 (2) ÅCell parameters from 6403 reflections
b = 10.8168 (3) Åθ = 2.6–28.3°
c = 11.4545 (3) ŵ = 0.36 mm1
α = 84.1150 (9)°T = 296 K
β = 77.6000 (9)°Needle, pale yellow
γ = 76.1770 (9)°0.35 × 0.31 × 0.15 mm
V = 740.99 (4) Å3
Data collection top
Bruker KAPPA APEX II CCD
diffractometer
3583 independent reflections
Radiation source: fine-focus sealed tube2930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.4°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS;Bruker, 2007)
h = 88
Tmin = 0.886, Tmax = 0.949k = 1414
13205 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.048P)2 + 0.1921P]
where P = (Fo2 + 2Fc2)/3
3583 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H13NOS2γ = 76.1770 (9)°
Mr = 311.40V = 740.99 (4) Å3
Triclinic, P1Z = 2
a = 6.3152 (2) ÅMo Kα radiation
b = 10.8168 (3) ŵ = 0.36 mm1
c = 11.4545 (3) ÅT = 296 K
α = 84.1150 (9)°0.35 × 0.31 × 0.15 mm
β = 77.6000 (9)°
Data collection top
Bruker KAPPA APEX II CCD
diffractometer
3583 independent reflections
Absorption correction: multi-scan
(SADABS;Bruker, 2007)
2930 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.949Rint = 0.028
13205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
3583 reflectionsΔρmin = 0.26 e Å3
190 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36101 (6)0.34929 (4)0.98088 (4)0.04416 (12)
S20.24747 (8)0.57799 (4)0.82368 (4)0.05631 (14)
O10.0562 (2)0.18668 (12)0.89696 (10)0.0518 (3)
N10.06938 (19)0.37139 (12)0.85045 (10)0.0382 (3)
C30.2282 (2)0.22259 (14)0.99118 (13)0.0374 (3)
C40.2515 (2)0.11550 (14)1.06168 (13)0.0401 (3)
H40.16360.06021.05400.048*
C120.0019 (3)0.36707 (14)0.64596 (13)0.0414 (3)
C50.3954 (2)0.07342 (14)1.14880 (13)0.0401 (3)
C10.2109 (2)0.43656 (15)0.87728 (13)0.0395 (3)
C20.0659 (2)0.25206 (14)0.91071 (12)0.0384 (3)
C110.0820 (2)0.42216 (15)0.76689 (13)0.0430 (3)
H11A0.10130.51410.75750.052*
H11B0.22630.40360.80070.052*
C60.5720 (3)0.12723 (16)1.15454 (15)0.0481 (4)
H60.60610.19201.09890.058*
C100.3525 (3)0.02573 (16)1.23169 (16)0.0529 (4)
H100.23830.06501.22820.063*
C70.6974 (3)0.08547 (18)1.24193 (17)0.0554 (4)
H70.81460.12261.24480.066*
C130.1276 (3)0.30505 (19)0.60087 (17)0.0594 (5)
H130.26440.29590.64640.071*
C170.2039 (3)0.38009 (18)0.57709 (15)0.0541 (4)
H170.29240.42260.60580.065*
C80.6501 (3)0.01051 (19)1.32454 (18)0.0611 (5)
H80.73360.03781.38380.073*
C90.4783 (3)0.06585 (19)1.31873 (19)0.0651 (5)
H90.44660.13121.37420.078*
C160.2752 (4)0.3298 (2)0.46494 (17)0.0692 (6)
H160.41230.33780.41900.083*
C140.0563 (5)0.2564 (2)0.4888 (2)0.0784 (6)
H140.14550.21520.45910.094*
C150.1443 (4)0.2685 (2)0.42184 (18)0.0751 (7)
H150.19250.23510.34660.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0472 (2)0.0448 (2)0.0463 (2)0.01693 (16)0.01683 (16)0.00314 (16)
S20.0700 (3)0.0434 (2)0.0624 (3)0.0228 (2)0.0220 (2)0.00817 (19)
O10.0605 (7)0.0539 (7)0.0511 (7)0.0274 (5)0.0180 (5)0.0010 (5)
N10.0415 (6)0.0407 (7)0.0344 (6)0.0112 (5)0.0093 (5)0.0016 (5)
C30.0404 (7)0.0390 (7)0.0334 (7)0.0110 (6)0.0054 (5)0.0041 (6)
C40.0456 (7)0.0387 (7)0.0369 (7)0.0114 (6)0.0061 (6)0.0053 (6)
C120.0501 (8)0.0369 (7)0.0364 (7)0.0052 (6)0.0152 (6)0.0044 (6)
C50.0463 (7)0.0344 (7)0.0368 (7)0.0052 (6)0.0057 (6)0.0042 (6)
C10.0400 (7)0.0418 (8)0.0370 (7)0.0104 (6)0.0062 (6)0.0030 (6)
C20.0422 (7)0.0427 (8)0.0315 (7)0.0130 (6)0.0048 (5)0.0041 (6)
C110.0418 (7)0.0464 (8)0.0405 (8)0.0062 (6)0.0122 (6)0.0012 (6)
C60.0473 (8)0.0483 (9)0.0473 (9)0.0127 (7)0.0089 (7)0.0082 (7)
C100.0631 (10)0.0402 (8)0.0598 (11)0.0171 (7)0.0197 (8)0.0070 (7)
C70.0489 (9)0.0575 (10)0.0623 (11)0.0131 (7)0.0194 (8)0.0050 (8)
C130.0733 (12)0.0610 (11)0.0518 (10)0.0236 (9)0.0208 (9)0.0012 (8)
C170.0549 (9)0.0590 (11)0.0459 (9)0.0099 (8)0.0092 (7)0.0005 (8)
C80.0641 (11)0.0582 (11)0.0634 (11)0.0091 (8)0.0294 (9)0.0113 (9)
C90.0786 (13)0.0512 (10)0.0684 (12)0.0191 (9)0.0279 (10)0.0232 (9)
C160.0730 (12)0.0707 (13)0.0467 (10)0.0048 (10)0.0005 (9)0.0020 (9)
C140.1163 (19)0.0720 (14)0.0588 (13)0.0261 (13)0.0332 (13)0.0124 (10)
C150.1135 (19)0.0592 (12)0.0438 (10)0.0038 (12)0.0195 (11)0.0085 (9)
Geometric parameters (Å, º) top
S1—C11.7390 (15)C6—C71.382 (2)
S1—C31.7517 (15)C6—H60.9300
S2—C11.6389 (16)C10—C91.379 (2)
O1—C21.2066 (18)C10—H100.9300
N1—C11.3614 (19)C7—C81.374 (3)
N1—C21.4026 (19)C7—H70.9300
N1—C111.4715 (18)C13—C141.380 (3)
C3—C41.339 (2)C13—H130.9300
C3—C21.480 (2)C17—C161.388 (3)
C4—C51.459 (2)C17—H170.9300
C4—H40.9300C8—C91.374 (3)
C12—C131.378 (2)C8—H80.9300
C12—C171.379 (2)C9—H90.9300
C12—C111.503 (2)C16—C151.368 (3)
C5—C61.392 (2)C16—H160.9300
C5—C101.395 (2)C14—C151.361 (3)
C11—H11A0.9700C14—H140.9300
C11—H11B0.9700C15—H150.9300
C1—S1—C392.81 (7)C7—C6—H6119.6
C1—N1—C2116.64 (12)C5—C6—H6119.6
C1—N1—C11123.42 (13)C9—C10—C5120.40 (16)
C2—N1—C11119.89 (12)C9—C10—H10119.8
C4—C3—C2121.65 (13)C5—C10—H10119.8
C4—C3—S1128.94 (12)C8—C7—C6120.44 (17)
C2—C3—S1109.35 (10)C8—C7—H7119.8
C3—C4—C5129.10 (14)C6—C7—H7119.8
C3—C4—H4115.5C12—C13—C14120.65 (19)
C5—C4—H4115.5C12—C13—H13119.7
C13—C12—C17118.90 (16)C14—C13—H13119.7
C13—C12—C11119.66 (15)C12—C17—C16120.04 (18)
C17—C12—C11121.41 (15)C12—C17—H17120.0
C6—C5—C10118.12 (14)C16—C17—H17120.0
C6—C5—C4123.75 (14)C7—C8—C9119.40 (16)
C10—C5—C4118.12 (14)C7—C8—H8120.3
N1—C1—S2127.66 (12)C9—C8—H8120.3
N1—C1—S1111.06 (11)C8—C9—C10120.86 (17)
S2—C1—S1121.28 (9)C8—C9—H9119.6
O1—C2—N1122.92 (13)C10—C9—H9119.6
O1—C2—C3126.97 (14)C15—C16—C17120.2 (2)
N1—C2—C3110.11 (12)C15—C16—H16119.9
N1—C11—C12112.72 (12)C17—C16—H16119.9
N1—C11—H11A109.0C15—C14—C13120.1 (2)
C12—C11—H11A109.0C15—C14—H14119.9
N1—C11—H11B109.0C13—C14—H14119.9
C12—C11—H11B109.0C14—C15—C16120.13 (19)
H11A—C11—H11B107.8C14—C15—H15119.9
C7—C6—C5120.75 (15)C16—C15—H15119.9
C1—S1—C3—C4176.86 (14)C1—N1—C11—C12101.92 (16)
C1—S1—C3—C20.27 (11)C2—N1—C11—C1280.68 (17)
C2—C3—C4—C5177.53 (14)C13—C12—C11—N1122.62 (16)
S1—C3—C4—C50.7 (2)C17—C12—C11—N159.2 (2)
C3—C4—C5—C614.8 (2)C10—C5—C6—C71.6 (2)
C3—C4—C5—C10164.69 (16)C4—C5—C6—C7177.88 (15)
C2—N1—C1—S2178.75 (11)C6—C5—C10—C91.9 (3)
C11—N1—C1—S21.3 (2)C4—C5—C10—C9177.57 (16)
C2—N1—C1—S11.48 (16)C5—C6—C7—C80.3 (3)
C11—N1—C1—S1178.95 (10)C17—C12—C13—C140.2 (3)
C3—S1—C1—N10.97 (11)C11—C12—C13—C14178.45 (17)
C3—S1—C1—S2179.24 (10)C13—C12—C17—C160.8 (3)
C1—N1—C2—O1178.07 (14)C11—C12—C17—C16179.01 (15)
C11—N1—C2—O10.5 (2)C6—C7—C8—C90.8 (3)
C1—N1—C2—C31.27 (17)C7—C8—C9—C100.4 (3)
C11—N1—C2—C3178.83 (12)C5—C10—C9—C81.0 (3)
C4—C3—C2—O11.5 (2)C12—C17—C16—C150.8 (3)
S1—C3—C2—O1178.84 (13)C12—C13—C14—C150.4 (3)
C4—C3—C2—N1177.84 (13)C13—C14—C15—C160.5 (3)
S1—C3—C2—N10.46 (14)C17—C16—C15—C140.1 (3)

Experimental details

Crystal data
Chemical formulaC17H13NOS2
Mr311.40
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.3152 (2), 10.8168 (3), 11.4545 (3)
α, β, γ (°)84.1150 (9), 77.6000 (9), 76.1770 (9)
V3)740.99 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.35 × 0.31 × 0.15
Data collection
DiffractometerBruker KAPPA APEX II CCD
diffractometer
Absorption correctionMulti-scan
(SADABS;Bruker, 2007)
Tmin, Tmax0.886, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
13205, 3583, 2930
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.03
No. of reflections3583
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: APEXII (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

DS acknowledges Government College University, Lahore, for providing funds under the GCU-funded Research Projects Programme.

References

First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Ahmad, N. & Aslam, S. (2011). Acta Cryst. E67, o133.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009). Acta Cryst. E65, o2917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds