metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1105-m1106

3,5-Di­amino-4H-1,2,4-triazol-1-ium hydroxonium bis­­(pyridine-2,6-di­carboxyl­ato)cobaltate(II) pyridine-2,6-dicarb­­oxy­lic acid monohydrate

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi 75270, Pakistan, bDepartment of Pure and Applied Chemistry, University of Calabar, Calabar, PMB 1115, Nigeria, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 July 2011; accepted 12 July 2011; online 16 July 2011)

The asymmetric unit of the title complex, (C2H6N5)(H3O)[Co(C7H3NO4)2]·C7H5NO4·H2O, contains a CoII ion coordin­ated by four O atoms and two N atoms from two dipicolinate ligands in a disorted octa­hedral environment, a protonated triazole mol­ecule, a neutral pyridine-2,6-dicarb­oxy­lic acid mol­ecule, a hydroxonium ion and a solvent water mol­ecule. In the crystal, the components are linked into a three-dimensional framework by inter­molecular O—H⋯O, N—H⋯O and N—H⋯N and weak C—H⋯O hydrogen bonds. In addition, ππ stacking inter­actions with centroid–centroid distances in the range 3.4809 (7)–3.8145 (6) Å are observed.

Related literature

For the different coordination modes for transition metal–dipicolinate complexes, see: Quaglieri et al. (1972[Quaglieri, P., Loiseleur, H. & Thomas, G. (1972). Acta Cryst. B28, 2583-2590.]); Hakansson et al. (1993[Hakansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449-455.]); Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 305-307.]); Aghajani et al. (2009[Aghajani, Z., Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373-385.]). For crystal structures of related complexes, see: Yousuf et al. (2011[Yousuf, S., Johnson, A. S., Kazmi, S. A., Offiong, O. E. & Fun, H.-K. (2011). Acta Cryst. E67, m509-m510.]); Aghabozorg et al. (2009[Aghabozorg, H., Derikvand, Z., Attar Gharamaleki, J. & Yousefi, M. (2009). Acta Cryst. E65, m826-m827.]); Ramos Silva et al. (2008[Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173-m1174.]); Wang et al. (2004[Wang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem., 57, 1353-1359.]); MacDonald et al. (2000[MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692-11702.], 2004[MacDonald, J. C., Luo, T.-J. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 24, 1203-1209.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H6N5)(H3O)[Co(C7H3NO4)2]·C7H5NO4·H2O

  • Mr = 693.42

  • Triclinic, [P \overline 1]

  • a = 8.0209 (2) Å

  • b = 9.2028 (2) Å

  • c = 18.7004 (4) Å

  • α = 98.536 (1)°

  • β = 96.721 (1)°

  • γ = 100.515 (1)°

  • V = 1327.32 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 100 K

  • 0.78 × 0.59 × 0.35 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.595, Tmax = 0.781

  • 25547 measured reflections

  • 7698 independent reflections

  • 7360 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.05

  • 7698 reflections

  • 467 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O10i 0.841 (19) 2.249 (18) 3.0304 (15) 154.5 (17)
N3—H1N3⋯N8i 0.841 (19) 2.47 (2) 3.1379 (15) 136.5 (16)
N3—H2N3⋯O11i 0.86 (2) 2.28 (2) 2.9563 (15) 135.7 (17)
N4—H1N4⋯O2 0.85 (2) 2.072 (19) 2.9084 (14) 169 (2)
N4—H2N4⋯O1W 0.85 (2) 1.96 (2) 2.8057 (16) 172 (2)
N6—H1N6⋯O3ii 0.877 (18) 1.870 (18) 2.7368 (12) 169.7 (16)
N7—H1N7⋯O7 0.85 (2) 1.89 (2) 2.7245 (13) 167 (2)
O10—H1OA⋯O7i 0.79 (2) 1.86 (2) 2.5775 (13) 152 (3)
O1W—H1W1⋯O6iii 0.78 (2) 2.06 (2) 2.8315 (14) 172 (2)
O1W—H2W1⋯O1ii 0.82 (3) 2.23 (3) 2.8901 (14) 138 (2)
O2W—H2W2⋯O8iv 0.87 (3) 1.67 (2) 2.5279 (13) 170 (2)
O2W—H1W2⋯O5v 0.98 (3) 1.48 (3) 2.4622 (13) 177 (3)
O2W—H3W2⋯O6ii 0.87 (2) 1.71 (2) 2.5746 (13) 174 (2)
O12—H12B⋯N5vi 0.89 (2) 1.76 (2) 2.6303 (14) 169 (2)
C3—H3A⋯O9vii 0.95 2.52 3.1725 (14) 126
C5—H5A⋯O9i 0.95 2.59 3.5380 (15) 175
C10—H10A⋯O1viii 0.95 2.38 3.2669 (14) 156
C19—H19A⋯O2W 0.95 2.50 3.4269 (15) 165
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y-1, z; (iii) -x+1, -y+1, -z; (iv) x+1, y-1, z; (v) x+1, y, z; (vi) x, y+1, z; (vii) x-1, y+1, z; (viii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and PLATON.

Supporting information


Comment top

Pyridine-2,6 dicarboxylic acid (H2dipic) and its anions (dipic2- & dipicH-) have been identified to be well suited for the construction of multidimensional frameworks with simple metal ions and non-metal cations due to the presence of heterocyclic nitrogen atoms and two carboxylate groups. A range of different coordination modes exists in transition metal-dipicolinate complexes (Quaglieri et al., 1972, Hakansson et al., 1993, Okabe & Oya, 2000) depending on whether the anionic or protonated forms of the carboxylates are coordinated to the metal ion. It has been observed that providing suitable conditions for the transfer of acidic protons to appropriate bases will result in increased intermolecular interactions and stabilization of the resulting system (Aghajani et al., 2009). In recent work on the study of the structural features of molecules containing metal chelate and triazole rings, we have determined the crystal structure of a Cu(II) with a derivative of 1,2,4-triazole and dipicolinic acid (Yousuf et al., 2011). Herein, we report the crystal structure of the title complex (I).

The asymmetric unit of (I) is shown in Fig. 1. It contains a CoII ion, two tridentate dipicolinte ligands, a protonated triazole molecule, a neutral pyridine 2,6-dicarboxylic acid molecule, a hydroxonium ion and a solvent water molecule. The CoII ion is in a distorted octahedral coordination environment formed by four oxygen atoms and two nitrogen atoms from two dipicolinate ligands. The two dipiconilate ligands are assembled approximately perpendicular to each other around the CoII ion with atoms O3 and O4 in the axial sites and atoms N1/N2/O1/O2 forming the equatorial sites. All bond lengths are in agreement with those common to related structures (Yousuf et al., 2011; Aghabozorg et al., 2009; Ramos Silva et al., 2008; Wang et al., 2004; MacDonald et al., 2000,2004).

In the crystal structure (Fig. 2), intermolecular O—H···O, N—H···O, N—H···N and weak C—H···O (Table 1) hydrogen bonds form a three-dimensional network. The network is further stabilized by ππ stacking interactions between the centroids of Co1/O2/N1/C6/C7 (Cg1), Co1/O3/N2/C13/C14 (Cg2), N1/C2–C6 (Cg3), N2/C9–C13 (Cg4), N8/C17–C21 (Cg5) and N5–N7/C15/C16 (Cg6) rings, with Cg1···Cg5i, Cg2···Cg4ii, Cg3···Cg5iii, Cg3···Cg6iv and Cg4···Cg4v, distances of 3.6235 (6) Å, 3.8145 (6) Å, 3.7500 (7) Å, 3.5247 (7) Å and 3.4809 (7) Å, respectively [symmetry codes: (i) -1+x, y, z; (ii) 1-x, 1-y, -z; (iii) -1+x, y, z; (iv) x, -1+y, z; (v) -x, 1-y, -z].

Related literature top

For the different coordination modes for transition metal–dipicolinate complexes, see: Quaglieri et al. (1972); Hakansson et al. (1993); Okabe & Oya (2000); Aghajani et al. (2009). For crystal structures of related complexes, see: Yousuf et al. (2011); Aghabozorg et al. (2009); Ramos Silva et al. (2008); Wang et al. (2004); MacDonald et al. (2000, 2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Pyridine-2,6-dicarboxylic acid and 3,5-diamino-1,2,4-triazole were purchased from Merck and Molekula respectively. Cobaltchloride hexahydrate (CoCl2.6H2O) and HPLC grade methanol were Uni-Chem and M TEDIA products, respectively. Deionized water was also used in the procedures when needed.

A method similar to that reported by Yousuf et al. (2011) was used. 1 mmol (0.099 g) of 3,5-diamino- 1,2,4-triazole and 1 mmol of dipicolinic acid (0.167 g) were dissolved in a mixture of methanol/water solution (1:10, 11 ml). The resulting solution was heated to 338 K with stirring. An aqueous solution (1 ml) containing 0.5 mmol (0.119 g) of CoCl2.6H2O was added to the stirred solution. The redish purple suspension was allowed to stir further for 1 hr, and then filtered while hot. The filtrate was kept at room temperature. Well shaped purple crystals of the title compound were formed by slow evaporation of the solution after 2 weeks. Percentage yield based on cobalt is 46.34%.

Refinement top

The N– and O-bound H atoms were located from a difference map and refined freely [N–H = 0.841 (19)–0.877 (18) Å and O–H = 0.78 (2)–0.98 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). One reflection (0 0 1) blocked by the beamstop and two outlier reflections (-2 -5 24) and (2 - 5 24) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen bonds as dashed lines.
3,5-Diamino-4H-1,2,4-triazol-1-ium hydroxonium bis(pyridine-2,6-dicarboxylato)cobaltate(II) pyridine-2,6-dicarboxylic acid monohydrate top
Crystal data top
(C2H6N5)(H3O)[Co(C7H3NO4)2]·C7H5NO4·H2OZ = 2
Mr = 693.42F(000) = 710
Triclinic, P1Dx = 1.735 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0209 (2) ÅCell parameters from 9943 reflections
b = 9.2028 (2) Åθ = 2.9–35.1°
c = 18.7004 (4) ŵ = 0.74 mm1
α = 98.536 (1)°T = 100 K
β = 96.721 (1)°Block, purple
γ = 100.515 (1)°0.78 × 0.59 × 0.35 mm
V = 1327.32 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7698 independent reflections
Radiation source: fine-focus sealed tube7360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.595, Tmax = 0.781k = 1212
25547 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.8694P]
where P = (Fo2 + 2Fc2)/3
7698 reflections(Δ/σ)max = 0.001
467 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
(C2H6N5)(H3O)[Co(C7H3NO4)2]·C7H5NO4·H2Oγ = 100.515 (1)°
Mr = 693.42V = 1327.32 (5) Å3
Triclinic, P1Z = 2
a = 8.0209 (2) ÅMo Kα radiation
b = 9.2028 (2) ŵ = 0.74 mm1
c = 18.7004 (4) ÅT = 100 K
α = 98.536 (1)°0.78 × 0.59 × 0.35 mm
β = 96.721 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7698 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7360 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.781Rint = 0.018
25547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
7698 reflectionsΔρmin = 0.43 e Å3
467 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.302228 (19)0.644423 (16)0.169857 (8)0.01036 (5)
N10.31342 (12)0.75361 (10)0.27349 (5)0.01027 (16)
N20.30641 (12)0.58813 (10)0.06050 (5)0.01004 (16)
O10.13428 (11)0.80434 (9)0.15754 (4)0.01381 (15)
O20.45499 (11)0.52726 (9)0.23827 (4)0.01373 (15)
O30.52409 (11)0.80151 (9)0.14717 (4)0.01281 (15)
O40.12604 (11)0.43393 (9)0.13837 (5)0.01510 (16)
O50.00050 (11)0.25528 (9)0.04207 (5)0.01481 (16)
O60.63852 (12)0.88973 (10)0.05403 (5)0.01749 (17)
O70.54563 (11)0.51915 (9)0.35540 (5)0.01517 (16)
O80.06823 (12)1.00920 (10)0.22102 (5)0.01651 (16)
C10.13704 (14)0.89743 (12)0.21521 (6)0.01192 (19)
C20.23804 (14)0.87158 (12)0.28416 (6)0.01092 (18)
C30.25593 (15)0.95939 (12)0.35273 (6)0.01309 (19)
H3A0.20251.04340.35980.016*
C40.35408 (15)0.92139 (13)0.41088 (6)0.0138 (2)
H4A0.36880.98010.45830.017*
C50.43087 (15)0.79723 (12)0.39962 (6)0.01307 (19)
H5A0.49720.76920.43880.016*
C60.40713 (14)0.71590 (12)0.32909 (6)0.01085 (18)
C70.47660 (14)0.57714 (12)0.30615 (6)0.01145 (19)
C80.09977 (14)0.37796 (12)0.07162 (6)0.01156 (19)
C90.19911 (13)0.46510 (12)0.02260 (6)0.01047 (18)
C100.19089 (14)0.42474 (12)0.05245 (6)0.01231 (19)
H10A0.11490.33660.07880.015*
C110.29789 (15)0.51793 (13)0.08794 (6)0.0145 (2)
H11A0.29440.49440.13940.017*
C120.41009 (15)0.64579 (13)0.04790 (6)0.0135 (2)
H12A0.48350.71030.07140.016*
C130.41151 (14)0.67618 (12)0.02725 (6)0.01103 (18)
C140.53451 (14)0.80151 (12)0.07972 (6)0.01191 (19)
O91.31990 (13)0.28490 (10)0.44827 (5)0.01975 (18)
O101.29486 (12)0.49673 (10)0.51898 (5)0.01785 (17)
O110.93965 (12)0.82190 (10)0.44184 (5)0.01879 (17)
O120.83933 (12)0.78120 (10)0.32170 (5)0.01702 (17)
N81.08308 (12)0.56516 (10)0.41642 (5)0.01197 (17)
C170.97897 (14)0.60148 (12)0.36347 (6)0.01172 (19)
C180.92791 (15)0.51390 (13)0.29409 (6)0.0144 (2)
H18A0.85330.54390.25830.017*
C190.98785 (16)0.38218 (13)0.27808 (6)0.0150 (2)
H19A0.95380.31960.23150.018*
C201.09842 (15)0.34425 (12)0.33159 (6)0.0144 (2)
H20A1.14400.25620.32230.017*
C211.14112 (14)0.43846 (12)0.39946 (6)0.01212 (19)
C221.26029 (15)0.39687 (13)0.45743 (6)0.0139 (2)
C230.91764 (14)0.74663 (12)0.38133 (6)0.01276 (19)
N30.79103 (15)0.19736 (13)0.43972 (6)0.0187 (2)
N40.47746 (15)0.21239 (12)0.21219 (6)0.0187 (2)
N50.72357 (13)0.03157 (11)0.32639 (5)0.01330 (18)
N60.62946 (13)0.03978 (11)0.25973 (5)0.01312 (17)
N70.62630 (13)0.24252 (11)0.33308 (5)0.01265 (17)
C150.57107 (15)0.16592 (12)0.26417 (6)0.01257 (19)
C160.71983 (14)0.15723 (12)0.36943 (6)0.01230 (19)
O1W0.29638 (15)0.03156 (12)0.08229 (6)0.0269 (2)
O2W0.87798 (12)0.10223 (10)0.12792 (5)0.01508 (16)
H1N30.795 (2)0.285 (2)0.4615 (11)0.027 (5)*
H2N30.863 (3)0.147 (2)0.4562 (11)0.036 (5)*
H1N40.457 (3)0.300 (2)0.2214 (11)0.033 (5)*
H2N40.430 (3)0.152 (2)0.1733 (11)0.027 (5)*
H1N60.609 (2)0.036 (2)0.2233 (10)0.024 (4)*
H1N70.605 (3)0.328 (2)0.3472 (11)0.031 (5)*
H1OA1.351 (3)0.468 (3)0.5490 (12)0.041 (6)*
H12B0.806 (3)0.868 (2)0.3295 (11)0.036 (5)*
H1W10.306 (3)0.047 (3)0.0429 (13)0.043 (6)*
H2W10.218 (3)0.039 (3)0.0821 (12)0.039 (6)*
H2W20.947 (3)0.065 (3)0.1557 (13)0.044 (6)*
H1W20.930 (4)0.165 (3)0.0952 (16)0.079 (9)*
H3W20.796 (3)0.028 (2)0.1059 (12)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01302 (7)0.00984 (7)0.00789 (7)0.00244 (5)0.00097 (5)0.00086 (5)
N10.0119 (4)0.0096 (4)0.0093 (4)0.0025 (3)0.0011 (3)0.0019 (3)
N20.0109 (4)0.0096 (4)0.0093 (4)0.0019 (3)0.0007 (3)0.0013 (3)
O10.0170 (4)0.0134 (4)0.0104 (4)0.0044 (3)0.0007 (3)0.0008 (3)
O20.0183 (4)0.0124 (4)0.0110 (4)0.0059 (3)0.0014 (3)0.0010 (3)
O30.0158 (4)0.0112 (3)0.0099 (3)0.0005 (3)0.0005 (3)0.0007 (3)
O40.0187 (4)0.0136 (4)0.0113 (4)0.0010 (3)0.0022 (3)0.0020 (3)
O50.0165 (4)0.0115 (4)0.0142 (4)0.0016 (3)0.0001 (3)0.0023 (3)
O60.0186 (4)0.0165 (4)0.0138 (4)0.0050 (3)0.0013 (3)0.0030 (3)
O70.0203 (4)0.0137 (4)0.0125 (4)0.0080 (3)0.0011 (3)0.0025 (3)
O80.0218 (4)0.0152 (4)0.0144 (4)0.0098 (3)0.0002 (3)0.0033 (3)
C10.0130 (5)0.0119 (5)0.0110 (5)0.0025 (4)0.0006 (4)0.0034 (4)
C20.0126 (4)0.0104 (4)0.0101 (4)0.0030 (4)0.0013 (4)0.0026 (4)
C30.0168 (5)0.0111 (4)0.0118 (5)0.0048 (4)0.0020 (4)0.0011 (4)
C40.0180 (5)0.0126 (5)0.0104 (5)0.0038 (4)0.0013 (4)0.0003 (4)
C50.0160 (5)0.0130 (5)0.0103 (5)0.0043 (4)0.0000 (4)0.0023 (4)
C60.0129 (4)0.0096 (4)0.0104 (4)0.0027 (4)0.0016 (4)0.0024 (3)
C70.0123 (4)0.0104 (4)0.0118 (5)0.0031 (4)0.0010 (4)0.0022 (4)
C80.0114 (4)0.0111 (4)0.0125 (5)0.0026 (4)0.0007 (4)0.0034 (4)
C90.0098 (4)0.0104 (4)0.0111 (5)0.0025 (3)0.0009 (3)0.0016 (3)
C100.0120 (5)0.0124 (5)0.0112 (5)0.0020 (4)0.0002 (4)0.0001 (4)
C110.0156 (5)0.0172 (5)0.0097 (5)0.0024 (4)0.0013 (4)0.0011 (4)
C120.0143 (5)0.0151 (5)0.0108 (5)0.0012 (4)0.0019 (4)0.0029 (4)
C130.0110 (4)0.0104 (4)0.0110 (5)0.0014 (4)0.0008 (4)0.0013 (3)
C140.0128 (5)0.0106 (4)0.0112 (5)0.0014 (4)0.0004 (4)0.0009 (4)
O90.0265 (5)0.0157 (4)0.0186 (4)0.0114 (3)0.0001 (3)0.0019 (3)
O100.0241 (4)0.0166 (4)0.0129 (4)0.0101 (3)0.0040 (3)0.0006 (3)
O110.0241 (4)0.0176 (4)0.0149 (4)0.0096 (3)0.0003 (3)0.0005 (3)
O120.0231 (4)0.0135 (4)0.0149 (4)0.0088 (3)0.0028 (3)0.0020 (3)
N80.0135 (4)0.0112 (4)0.0117 (4)0.0038 (3)0.0014 (3)0.0022 (3)
C170.0130 (5)0.0109 (4)0.0114 (5)0.0032 (4)0.0013 (4)0.0021 (4)
C180.0172 (5)0.0141 (5)0.0112 (5)0.0036 (4)0.0005 (4)0.0019 (4)
C190.0201 (5)0.0134 (5)0.0111 (5)0.0031 (4)0.0024 (4)0.0008 (4)
C200.0185 (5)0.0112 (5)0.0142 (5)0.0044 (4)0.0036 (4)0.0021 (4)
C210.0139 (5)0.0116 (5)0.0115 (5)0.0036 (4)0.0014 (4)0.0033 (4)
C220.0159 (5)0.0129 (5)0.0131 (5)0.0039 (4)0.0012 (4)0.0027 (4)
C230.0125 (5)0.0125 (5)0.0135 (5)0.0036 (4)0.0004 (4)0.0029 (4)
N30.0260 (5)0.0177 (5)0.0116 (4)0.0078 (4)0.0019 (4)0.0004 (4)
N40.0256 (5)0.0145 (5)0.0148 (5)0.0072 (4)0.0046 (4)0.0009 (4)
N50.0177 (4)0.0120 (4)0.0106 (4)0.0050 (3)0.0003 (3)0.0021 (3)
N60.0180 (4)0.0102 (4)0.0105 (4)0.0037 (3)0.0004 (3)0.0006 (3)
N70.0170 (4)0.0101 (4)0.0109 (4)0.0047 (3)0.0008 (3)0.0004 (3)
C150.0152 (5)0.0099 (4)0.0120 (5)0.0017 (4)0.0019 (4)0.0013 (4)
C160.0145 (5)0.0111 (4)0.0116 (5)0.0029 (4)0.0022 (4)0.0024 (4)
O1W0.0335 (6)0.0282 (5)0.0137 (4)0.0070 (4)0.0010 (4)0.0062 (4)
O2W0.0156 (4)0.0137 (4)0.0141 (4)0.0003 (3)0.0010 (3)0.0031 (3)
Geometric parameters (Å, º) top
Co1—N12.0302 (9)O9—C221.2110 (14)
Co1—N22.0395 (9)O10—C221.3283 (14)
Co1—O42.1363 (8)O10—H1OA0.78 (2)
Co1—O12.1875 (8)O11—C231.2113 (14)
Co1—O22.1967 (8)O12—C231.3242 (13)
Co1—O32.2037 (8)O12—H12B0.89 (2)
N1—C61.3363 (14)N8—C171.3402 (14)
N1—C21.3371 (13)N8—C211.3415 (14)
N2—C131.3329 (14)C17—C181.3949 (15)
N2—C91.3373 (13)C17—C231.5112 (15)
O1—C11.2691 (13)C18—C191.3888 (16)
O2—C71.2644 (13)C18—H18A0.9500
O3—C141.2738 (13)C19—C201.3851 (16)
O4—C81.2553 (14)C19—H19A0.9500
O5—C81.2640 (13)C20—C211.3939 (15)
O6—C141.2443 (14)C20—H20A0.9500
O7—C71.2546 (13)C21—C221.4999 (15)
O8—C11.2500 (13)N3—C161.3393 (15)
C1—C21.5141 (15)N3—H1N30.84 (2)
C2—C31.3873 (15)N3—H2N30.86 (2)
C3—C41.3920 (15)N4—C151.3271 (15)
C3—H3A0.9500N4—H1N40.84 (2)
C4—C51.3946 (15)N4—H2N40.85 (2)
C4—H4A0.9500N5—C161.3146 (14)
C5—C61.3901 (15)N5—N61.3992 (13)
C5—H5A0.9500N6—C151.3238 (14)
C6—C71.5094 (15)N6—H1N60.876 (19)
C8—C91.5081 (15)N7—C151.3553 (14)
C9—C101.3882 (15)N7—C161.3765 (14)
C10—C111.3950 (16)N7—H1N70.84 (2)
C10—H10A0.9500O1W—H1W10.78 (2)
C11—C121.3962 (15)O1W—H2W10.82 (2)
C11—H11A0.9500O2W—H2W20.86 (2)
C12—C131.3899 (15)O2W—H1W20.98 (3)
C12—H12A0.9500O2W—H3W20.87 (2)
C13—C141.5128 (15)
N1—Co1—N2165.60 (4)C12—C11—H11A120.0
N1—Co1—O4116.74 (4)C13—C12—C11118.22 (10)
N2—Co1—O475.79 (3)C13—C12—H12A120.9
N1—Co1—O176.28 (3)C11—C12—H12A120.9
N2—Co1—O194.70 (3)N2—C13—C12121.33 (10)
O4—Co1—O1102.06 (3)N2—C13—C14113.26 (9)
N1—Co1—O275.36 (3)C12—C13—C14125.30 (10)
N2—Co1—O2114.18 (3)O6—C14—O3126.51 (10)
O4—Co1—O285.99 (3)O6—C14—C13118.22 (10)
O1—Co1—O2151.12 (3)O3—C14—C13115.21 (9)
N1—Co1—O393.99 (3)C22—O10—H1OA110.1 (16)
N2—Co1—O374.89 (3)C23—O12—H12B113.6 (13)
O4—Co1—O3148.33 (3)C17—N8—C21116.54 (10)
O1—Co1—O392.04 (3)N8—C17—C18123.48 (10)
O2—Co1—O395.24 (3)N8—C17—C23116.87 (9)
C6—N1—C2120.70 (9)C18—C17—C23119.64 (10)
C6—N1—Co1120.21 (7)C19—C18—C17118.96 (10)
C2—N1—Co1118.84 (7)C19—C18—H18A120.5
C13—N2—C9120.81 (9)C17—C18—H18A120.5
C13—N2—Co1119.95 (7)C20—C19—C18118.44 (10)
C9—N2—Co1119.22 (7)C20—C19—H19A120.8
C1—O1—Co1114.51 (7)C18—C19—H19A120.8
C7—O2—Co1115.16 (7)C19—C20—C21118.38 (10)
C14—O3—Co1115.29 (7)C19—C20—H20A120.8
C8—O4—Co1116.54 (7)C21—C20—H20A120.8
O8—C1—O1127.20 (10)N8—C21—C20124.19 (10)
O8—C1—C2116.62 (10)N8—C21—C22117.51 (10)
O1—C1—C2116.17 (9)C20—C21—C22118.30 (10)
N1—C2—C3121.32 (10)O9—C22—O10123.98 (11)
N1—C2—C1113.46 (9)O9—C22—C21123.16 (11)
C3—C2—C1125.22 (10)O10—C22—C21112.85 (10)
C2—C3—C4118.37 (10)O11—C23—O12124.81 (10)
C2—C3—H3A120.8O11—C23—C17124.43 (10)
C4—C3—H3A120.8O12—C23—C17110.74 (9)
C3—C4—C5120.10 (10)C16—N3—H1N3119.3 (13)
C3—C4—H4A120.0C16—N3—H2N3117.9 (14)
C5—C4—H4A120.0H1N3—N3—H2N3118.9 (19)
C6—C5—C4117.77 (10)C15—N4—H1N4117.7 (14)
C6—C5—H5A121.1C15—N4—H2N4120.0 (13)
C4—C5—H5A121.1H1N4—N4—H2N4121.8 (19)
N1—C6—C5121.75 (10)C16—N5—N6104.54 (9)
N1—C6—C7112.49 (9)C15—N6—N5110.78 (9)
C5—C6—C7125.75 (10)C15—N6—H1N6128.7 (12)
O7—C7—O2125.78 (10)N5—N6—H1N6120.4 (12)
O7—C7—C6117.92 (10)C15—N7—C16107.23 (9)
O2—C7—C6116.27 (9)C15—N7—H1N7122.3 (13)
O4—C8—O5126.31 (10)C16—N7—H1N7130.4 (13)
O4—C8—C9116.39 (9)N6—C15—N4127.91 (11)
O5—C8—C9117.30 (10)N6—C15—N7106.84 (10)
N2—C9—C10121.80 (10)N4—C15—N7125.25 (10)
N2—C9—C8111.81 (9)N5—C16—N3125.83 (11)
C10—C9—C8126.33 (10)N5—C16—N7110.61 (10)
C9—C10—C11117.79 (10)N3—C16—N7123.53 (10)
C9—C10—H10A121.1H1W1—O1W—H2W1112 (2)
C11—C10—H10A121.1H2W2—O2W—H1W2117 (2)
C10—C11—C12120.03 (10)H2W2—O2W—H3W2107 (2)
C10—C11—H11A120.0H1W2—O2W—H3W2114 (2)
N2—Co1—N1—C6129.11 (14)Co1—O2—C7—O7173.12 (9)
O4—Co1—N1—C681.84 (9)Co1—O2—C7—C64.72 (12)
O1—Co1—N1—C6178.61 (9)N1—C6—C7—O7170.09 (10)
O2—Co1—N1—C64.12 (8)C5—C6—C7—O78.47 (17)
O3—Co1—N1—C690.27 (8)N1—C6—C7—O27.92 (14)
N2—Co1—N1—C245.17 (19)C5—C6—C7—O2173.51 (11)
O4—Co1—N1—C2103.88 (8)Co1—O4—C8—O5179.79 (9)
O1—Co1—N1—C27.12 (8)Co1—O4—C8—C91.30 (12)
O2—Co1—N1—C2178.39 (9)C13—N2—C9—C100.75 (16)
O3—Co1—N1—C284.01 (8)Co1—N2—C9—C10177.15 (8)
N1—Co1—N2—C1330.87 (19)C13—N2—C9—C8176.77 (9)
O4—Co1—N2—C13177.41 (9)Co1—N2—C9—C85.33 (12)
O1—Co1—N2—C1381.32 (8)O4—C8—C9—N22.47 (14)
O2—Co1—N2—C1398.53 (8)O5—C8—C9—N2176.54 (10)
O3—Co1—N2—C139.53 (8)O4—C8—C9—C10179.86 (10)
N1—Co1—N2—C9147.05 (13)O5—C8—C9—C100.85 (16)
O4—Co1—N2—C94.67 (8)N2—C9—C10—C110.58 (16)
O1—Co1—N2—C996.60 (8)C8—C9—C10—C11177.72 (10)
O2—Co1—N2—C983.55 (8)C9—C10—C11—C120.86 (16)
O3—Co1—N2—C9172.55 (9)C10—C11—C12—C130.11 (17)
N1—Co1—O1—C17.60 (8)C9—N2—C13—C121.79 (16)
N2—Co1—O1—C1161.02 (8)Co1—N2—C13—C12176.09 (8)
O4—Co1—O1—C1122.53 (8)C9—N2—C13—C14174.64 (9)
O2—Co1—O1—C118.69 (12)Co1—N2—C13—C147.48 (12)
O3—Co1—O1—C186.02 (8)C11—C12—C13—N21.46 (17)
N1—Co1—O2—C70.71 (8)C11—C12—C13—C14174.52 (10)
N2—Co1—O2—C7169.25 (8)Co1—O3—C14—O6172.81 (10)
O4—Co1—O2—C7118.28 (8)Co1—O3—C14—C1310.06 (12)
O1—Co1—O2—C710.43 (12)N2—C13—C14—O6179.76 (10)
O3—Co1—O2—C793.47 (8)C12—C13—C14—O63.49 (17)
N1—Co1—O3—C14160.07 (8)N2—C13—C14—O32.37 (14)
N2—Co1—O3—C1410.63 (8)C12—C13—C14—O3173.89 (11)
O4—Co1—O3—C1433.44 (11)C21—N8—C17—C181.17 (16)
O1—Co1—O3—C1483.69 (8)C21—N8—C17—C23178.06 (10)
O2—Co1—O3—C14124.29 (8)N8—C17—C18—C190.37 (18)
N1—Co1—O4—C8169.32 (8)C23—C17—C18—C19178.84 (10)
N2—Co1—O4—C83.10 (8)C17—C18—C19—C200.96 (17)
O1—Co1—O4—C888.76 (8)C18—C19—C20—C211.41 (17)
O2—Co1—O4—C8119.28 (8)C17—N8—C21—C200.67 (17)
O3—Co1—O4—C825.80 (12)C17—N8—C21—C22178.97 (10)
Co1—O1—C1—O8171.75 (10)C19—C20—C21—N80.61 (18)
Co1—O1—C1—C26.90 (12)C19—C20—C21—C22179.75 (10)
C6—N1—C2—C30.73 (16)N8—C21—C22—O9179.71 (11)
Co1—N1—C2—C3173.52 (8)C20—C21—C22—O90.62 (18)
C6—N1—C2—C1179.91 (9)N8—C21—C22—O101.23 (15)
Co1—N1—C2—C15.85 (12)C20—C21—C22—O10178.43 (10)
O8—C1—C2—N1177.62 (10)N8—C17—C23—O118.97 (17)
O1—C1—C2—N11.18 (14)C18—C17—C23—O11171.78 (12)
O8—C1—C2—C31.72 (17)N8—C17—C23—O12170.01 (10)
O1—C1—C2—C3179.48 (11)C18—C17—C23—O129.25 (15)
N1—C2—C3—C40.38 (17)C16—N5—N6—C150.68 (13)
C1—C2—C3—C4179.67 (10)N5—N6—C15—N4179.92 (12)
C2—C3—C4—C50.34 (17)N5—N6—C15—N70.39 (13)
C3—C4—C5—C60.70 (17)C16—N7—C15—N60.05 (13)
C2—N1—C6—C50.35 (16)C16—N7—C15—N4179.50 (11)
Co1—N1—C6—C5173.82 (8)N6—N5—C16—N3178.62 (11)
C2—N1—C6—C7178.28 (9)N6—N5—C16—N70.70 (12)
Co1—N1—C6—C77.55 (12)C15—N7—C16—N50.49 (13)
C4—C5—C6—N10.37 (17)C15—N7—C16—N3178.47 (11)
C4—C5—C6—C7178.81 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O10i0.841 (19)2.249 (18)3.0304 (15)154.5 (17)
N3—H1N3···N8i0.841 (19)2.47 (2)3.1379 (15)136.5 (16)
N3—H2N3···O11i0.86 (2)2.28 (2)2.9563 (15)135.7 (17)
N4—H1N4···O20.85 (2)2.072 (19)2.9084 (14)169 (2)
N4—H2N4···O1W0.85 (2)1.96 (2)2.8057 (16)172 (2)
N6—H1N6···O3ii0.877 (18)1.870 (18)2.7368 (12)169.7 (16)
N7—H1N7···O70.85 (2)1.89 (2)2.7245 (13)167 (2)
O10—H1OA···O7i0.79 (2)1.86 (2)2.5775 (13)152 (3)
O1W—H1W1···O6iii0.78 (2)2.06 (2)2.8315 (14)172 (2)
O1W—H2W1···O1ii0.82 (3)2.23 (3)2.8901 (14)138 (2)
O2W—H2W2···O8iv0.87 (3)1.67 (2)2.5279 (13)170 (2)
O2W—H1W2···O5v0.98 (3)1.48 (3)2.4622 (13)177 (3)
O2W—H3W2···O6ii0.87 (2)1.71 (2)2.5746 (13)174 (2)
O12—H12B···N5vi0.89 (2)1.76 (2)2.6303 (14)169 (2)
C3—H3A···O9vii0.952.523.1725 (14)126
C5—H5A···O9i0.952.593.5380 (15)175
C10—H10A···O1viii0.952.383.2669 (14)156
C19—H19A···O2W0.952.503.4269 (15)165
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1, y1, z; (v) x+1, y, z; (vi) x, y+1, z; (vii) x1, y+1, z; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C2H6N5)(H3O)[Co(C7H3NO4)2]·C7H5NO4·H2O
Mr693.42
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0209 (2), 9.2028 (2), 18.7004 (4)
α, β, γ (°)98.536 (1), 96.721 (1), 100.515 (1)
V3)1327.32 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.78 × 0.59 × 0.35
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.595, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
25547, 7698, 7360
Rint0.018
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.05
No. of reflections7698
No. of parameters467
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.43

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O10i0.841 (19)2.249 (18)3.0304 (15)154.5 (17)
N3—H1N3···N8i0.841 (19)2.47 (2)3.1379 (15)136.5 (16)
N3—H2N3···O11i0.86 (2)2.28 (2)2.9563 (15)135.7 (17)
N4—H1N4···O20.85 (2)2.072 (19)2.9084 (14)169 (2)
N4—H2N4···O1W0.85 (2)1.96 (2)2.8057 (16)172 (2)
N6—H1N6···O3ii0.877 (18)1.870 (18)2.7368 (12)169.7 (16)
N7—H1N7···O70.85 (2)1.89 (2)2.7245 (13)167 (2)
O10—H1OA···O7i0.79 (2)1.86 (2)2.5775 (13)152 (3)
O1W—H1W1···O6iii0.78 (2)2.06 (2)2.8315 (14)172 (2)
O1W—H2W1···O1ii0.82 (3)2.23 (3)2.8901 (14)138 (2)
O2W—H2W2···O8iv0.87 (3)1.67 (2)2.5279 (13)170 (2)
O2W—H1W2···O5v0.98 (3)1.48 (3)2.4622 (13)177 (3)
O2W—H3W2···O6ii0.87 (2)1.71 (2)2.5746 (13)174 (2)
O12—H12B···N5vi0.89 (2)1.76 (2)2.6303 (14)169 (2)
C3—H3A···O9vii0.952.523.1725 (14)126
C5—H5A···O9i0.952.593.5380 (15)175
C10—H10A···O1viii0.952.383.2669 (14)156
C19—H19A···O2W0.952.503.4269 (15)165
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1, y1, z; (v) x+1, y, z; (vi) x, y+1, z; (vii) x1, y+1, z; (viii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AJ thanks The Academy of Sciences for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship, and the H·E.J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

References

First citationAghabozorg, H., Derikvand, Z., Attar Gharamaleki, J. & Yousefi, M. (2009). Acta Cryst. E65, m826–m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghajani, Z., Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373–385.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHakansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449–455.  Google Scholar
First citationMacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacDonald, J. C., Luo, T.-J. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 24, 1203–1209.  Web of Science CSD CrossRef Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 305–307.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationQuaglieri, P., Loiseleur, H. & Thomas, G. (1972). Acta Cryst. B28, 2583–2590.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRamos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem., 57, 1353–1359.  Web of Science CSD CrossRef CAS Google Scholar
First citationYousuf, S., Johnson, A. S., Kazmi, S. A., Offiong, O. E. & Fun, H.-K. (2011). Acta Cryst. E67, m509–m510.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1105-m1106
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds